`SDMS US EPA Region V

Imagery Insert Form

Document ID:

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

Specify Type of Document(s) / Comments: Technica	11	legible due to bad source documents. Image(s) in SDMS is equivalent to hard copy.
Includes COLOR or RESOLUTION variations. Unless otherwise noted, these pages are available in monochrome. The source document page(s) is more legible that images. The original document is available for viewing at the Superfund Records Center. Specify Type of Document(s) / Comments: Confidential Business Information (CBI). This document contains highly sensitive information. Due to confidentiality, materials with such information are not in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Unscannable Material: Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The orig document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.		Specify Type of Document(s) / Comments:
Unless otherwise noted, these pages are available in monochrome. The source document page(s) is more legible that images. The original document is available for viewing at the Superfund Records Center. Specify Type of Document(s) / Comments: Confidential Business Information (CBI). This document contains highly sensitive information. Due to confidentiality, materials with such information are not n SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Unscannable Material: Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.		Technical Memorandum - Maps
Confidential Business Information (CBI). This document contains highly sensitive information. Due to confidentiality, materials with such information are not in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Unscannable Material: Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.	Uı	nless otherwise noted, these pages are available in monochrome. The source document page(s) is more legible than lages. The original document is available for viewing at the Superfund Records Center.
This document contains highly sensitive information. Due to confidentiality, materials with such information are not in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Unscannable Material: Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.	Æ	Specify Type of Document(s) / Comments:
This document contains highly sensitive information. Due to confidentiality, materials with such information are not in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Unscannable Material: Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.	L	
Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.		SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document.
Oversized or Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center. Specify Type of Document(s) / Comments: Document is available at the EPA Region 5 Records Center.	L	
Document is available at the EPA Region 5 Records Center.	C	Oversized or Format. Oue to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The origin
		Specify Type of Document(s) / Comments:
	ſ	
Specify Type of Document(s) / Comments:	L	
	L I	Oocument is available at the EPA Region 5 Records Center.

TECHNICAL MEMORANDUM SEPTEMBER 1997 GROUNDWATER SAMPLING RESULTS REPORT AND GROUNDWATER MONITORING PLAN (Revised July 21, 1998)

AMERICAN CHEMICAL SERVICE, INC.

NPL SITE

GRIFFITH, INDIANA

Montgomery Watson File No. 1252042

Prepared For:

ACS RD/RA Executive Committee

Prepared By:

Montgomery Watson 2100 Corporate Drive Addison, Illinois 60101

July 1998

TECHNICAL MEMORANDUM SEPTEMBER 1997 GROUNDWATER SAMPLING RESULTS REPORT AND GROUNDWATER MONITORING PLAN (Revised July 21, 1998)

AMERICAN CHEMICAL SERVICE, INC. NPL SITE GRIFFITH, INDIANA

Montgomery Watson File No. 1252042

Prepared For:

ACS RD/RA Executive Committee

Prepared By:

Montgomery Watson 2100 Corporate Drive Addison, Illinois 60101

July 1998

EXECUTIVE SUMMARY

This Technical Memorandum presents the results of the fourth quarter baseline groundwater sampling event for the American Chemical Service (ACS) NPL Site (Site) in Griffith, Indiana. It also provides a summary of the baseline sampling data in the context of previous sampling results and it includes a proposal for an interim groundwater monitoring plan (during remedial design and remedial action) on the basis of the accumulated data and future requirements.

The fourth sampling event for the baseline groundwater monitoring was initiated on September 22, 1997 with the measurement of water levels at staff gauges, piezometers, and monitoring wells on the ACS Site. During the next two weeks, groundwater samples were collected from 24 upper aquifer and 23 lower aquifer monitoring wells and submitted under standard chain-of-custody for laboratory analyses of the full scan Target Compound List (TCL) organic and Target Analyte List (TAL) parameters. The detected analytes and concentrations were generally consistent with previous sampling results. On October 2, 1997, groundwater samples were collected from five residential wells in the vicinity and submitted for laboratory analysis of TCL/TAL parameters.

Groundwater contour maps were developed for the upper and lower aquifers based on the September 1997 water level data. The interpreted groundwater flow patterns are consistent with flow patterns observed at the Site since the Remedial Investigation in 1991. Historically, the water table has been higher to the east of the ACS facility and lower to the west and south. Prior to construction of the barrier wall, there was a groundwater mound beneath the ACS Site, resulting from infiltration through the unvegetated surface of the ACS facility and from the ACS fire pond. The resulting mound created a hydraulic barrier that prevented east-to-west groundwater flow beneath the Site, and caused the groundwater to flow north and south from a divide just east of Colfax Avenue; northward flow was directed around the ACS facility and southward flow was toward an area southeast of the Site with lower water table levels.

There has been little change in the regional groundwater flow following completion of the barrier wall and perimeter groundwater containment system (PGCS) at the ACS Site. These two remedial projects, completed in June and July 1997, only resulted in small localized changes in groundwater direction and velocity in the upper aquifer, mostly related to the 1500 foot groundwater extraction trench that is integral to the PGCS. The water table map developed from the September 1997 water level data shows that groundwater flow is still from east to west, with flow being diverted north around the ACS facility and to the south. The hydraulic barrier formerly caused by surface water infiltration on the ACS Site, has been replaced by the barrier wall. There is no observable change in the groundwater flow pattern in the lower aquifer resulting from the remedial construction. The lower aquifer potentiometric map developed from the September 1997 water level data indicates that, just as in the past, groundwater flow is from south to north in the lower sand aquifer beneath the ACS NPL Site.

Four primary areas of buried waste have been identified as sources of groundwater contamination at and around the Site: the On-Site Containment Area, the Still Bottoms Area, the Off-Site Containment Area, and the Kapica-Pazmey Drum Recycling Area. Previous sampling, beginning in 1989 for the Remedial Investigation, has indicated that groundwater contamination extends southeast from the Off-Site Containment Area and north and west from the ACS facility in the upper aquifer. Monitoring wells installed in 1996 have delineated the outer extent of groundwater impacts in each area. Benzene and chloroethane are the predominant groundwater contaminants. Other constituents such as semi-volatile organic compounds, PCBs, pesticides, metals, and inorganic parameters are not found consistently, or at significant concentrations, in Site groundwater.

The only observed lower aquifer impact has been related to monitoring well MW9, which was installed in 1990 just west of the ACS facility. Soon after installation, chloroethane was detected in MW9, and then in 1995, benzene was detected in a sample from the well. A dye tracer test conducted during 1997 indicated that there is a leak between the upper and lower aquifers at MW9, probably along the well casing. MW9 was abandoned in February 1998 and replaced by MW9R constructed ten feet north (downgradient) from the MW9 location. Future sampling of the replacement well will be used to evaluate the effectiveness of the abandonment and the magnitude of the residual impact from the leakage. Ether, a volatile organic TIC (tentatively identified compound), has been detected in several lower aquifer wells located northwest of the ACS facility. Ether has been detected at a concentration of 12,000 ug/L at monitoring well MW51.

Residential wells were sampled during the remedial investigation and during 1996 and 1997. In some sampling events there were occasional traces of VOCs reported in several samples, upgradient from the Site and to the far east of the Site. None of the detections exceeded levels of concern, such as MCLs.

Construction of the PGCS and the barrier wall has isolated the primary sources of groundwater contamination. Groundwater monitoring of the upper and lower aquifers will be required at and around the Site. Section 4 of this Technical Memorandum details an Interim Monitoring Plan to be conducted during the next few years during remedial design and construction. The monitoring plan addresses: 1) sampling locations, 2) sampling parameters, 3) sampling frequency and 4), a protocol to modify the sampling or take other action, if necessary.

The upper aquifer network of monitoring wells will monitor groundwater quality in three areas of groundwater contamination identified in the upper aquifer: one to the north, one to the west, and the other to the southeast of the ACS NPL Site. Perimeter and internal monitoring wells have been defined for each of these areas. The perimeter wells for each area are near the margins of groundwater impact. Future monitoring at these locations will allow the boundaries of groundwater impacts to be closely monitored, confirm if the groundwater contamination is remaining contained, and provide early warning if it may be expanding. Internal wells have been identified in the north and southeast areas. Results of periodic samples from these wells will provide an indication of the performance of the

Mound (CAR)

1

В

0

9

11

PGCS and barrier wall, show changes in groundwater quality over time, and provide a warning if groundwater impacts are becoming more significant.

The lower aquifer monitoring network wells will be used to: 1) document background groundwater quality, 2) monitor the behavior of the area of contamination associated with groundwater leakage between the upper and lower aquifer at MW9, and 3), monitor the point of compliance at the downgradient boundary (north side) of the Site.

Groundwater monitoring will be conducted on a semi-annual basis during the next few years, as remedial design and remedial action proceed. The upper and lower aquifer network will be sampled and analyzed for full scan TCL/TAL each spring. The second annual sampling event will be conducted each fall, with the samples analyzed for representative indicator parameters: PCE, TCE, TCA, DCE, 1,2-DCA, VC, chloroethane, benzene phenol, phthalates, arsenic, and lead. Because of recent fluctuations in the concentrations of VOCs at upper aquifer wells MW48 and MW49 and because MW9R is a new well, these will be sampled on a quarterly basis and analyzed for indicator parameters. In addition, the water levels will be measured at the level monitoring network locations, analyzed, and reported on a quarterly basis.

1:\1252\042\Sept 97 Sampling Rpt\Final Draft\Exec Sum-GWBL(July 15).doc

1.7

1.0 INTRODUCTION

This Technical Memorandum provides a summary of the Baseline Groundwater sampling conducted at the American Chemical Service (ACS) NPL Site (Site) in Griffith, Indiana during 1996 and 1997. The baseline sampling consisted of four consecutive quarterly sampling rounds of groundwater monitoring at approximately 48 monitoring wells. These rounds included samples collected at the monitoring network wells in: 1) March, August, and November 1996, 2) April and March 1997, 3) June 1997, and 4) September 1997. The monitoring included: the measurement of water levels at monitoring wells, piezometers and staff gauges; the measurement of field parameters, and the collection and submittal of water samples for analysis of Target Compound List (TCL) organic and Target Analyte List (TAL) inorganic parameters.

The remainder of this Technical Memorandum includes three sections: Section 2 provides a listing of the September 1997 sampling event, Section 3 presents a summary and evaluation of the four quarterly events of Baseline Sampling, and Section 4 presents a proposed interimlong-term groundwater monitoring plan to be in effect during the remediation remedial design and remedial action phases at the Sitebased on the Baseline Sampling results. In addition, many of the monitoring wells were sampled four or five times prior the baseline sampling, including sampling during and following the remedial investigation.

2.0 SEPTEMBER 1997 SAMPLING

2.1 PURPOSE AND SCOPE

The fourth round of the Baseline Groundwater Sampling Program, conducted in September 1997, consisted of measuring water levels and collecting groundwater samples.

- Water levels were measured at staff gauges and upper and lower aquifer wells and piezometers on September 22, 1997.
- Groundwater samples were collected from 24 monitoring wells screened in the upper aquifer and 23 monitoring wells screened in the lower aquifer during the weeks of September 22, 1997 and September 29, 1997 and analyzed for TCL/TAL parameters.

In addition, and at the request of U.S. EPA, water samples were collected at five nearby residences and analyzed for full scan TCL/TAL parameters.

As defined in the October 1996 Phase 2 Upper Aquifer Technical Memorandum (revised June 1997), the objectives of monitoring the upper aquifer are to:

- Monitor groundwater quality at the boundaries of the known extent of contamination to determine whether the contaminant plume in the upper aquifer is stable or expanding.
- Measure water levels in the upper aquifer to determine how remedial actions affect groundwater flow patterns at the Site.
- Monitor groundwater quality in the plume interior to determine how contaminant concentrations change in response to remedial actions.

The objectives of monitoring of the lower aquifer (listed in the September 1996 Lower Aquifer Investigation Report (revised June 1997), are to:

- Verify the historic northerly horizontal groundwater gradient;
- Monitor the effect, if any, of remedial actions the remedial actions consisting of the barrier wall, the northside perimeter groundwater containment system and other remedial actions at and around the Site, on groundwater flow patterns; and
- Monitor for the presence of contaminants, if any, that may migrate from the upper aquifer to the lower aquifer.

Monitoring well locations and sampling parameters for the September 1997 upper aquifer monitoring activities are described in the Phase II Upper Aquifer Investigation Technical Memorandum, revised June 1997. Well locations and sampling parameters for the September 1997 lower aquifer monitoring activities are described in the Lower Aquifer Investigation Report Technical Memorandum, revised June 1997.

As in previous sampling events, the September sampling was conducted in accordance with U.S. EPA-approved Specific Operating Procedures (SOPs), and the approved Quality Assurance Project Plan (QAPP).

2.2 WATER LEVELS

Water levels were measured at the monitoring wells, piezometers, and staff gauges on September 22, 1997. Three additional sets of paired piezometers (P101-P106) were installed on September 25, 1997. These piezometer pairs were installed to complete the level monitoring system for the barrier wall built around the waste areas at the Site during 1997. In addition, piezometers P1, P20, P40, P41, and P49, which were damaged during barrier wall construction, were replaced. The new piezometers were surveyed, but because they were installed after the September 22, 1997 gauging event, these piezometers are not included in the tables and figures accompanying this Technical Memorandum.

2.2.1 Plots of Water Table and Lower Aquifer Potentiometric Surface

Water level measurements are presented in Table 1, which also includes map coordinates (reference points), top of inside the well casing elevations, and calculated groundwater elevations for the measurement points. Figure 1 is a water table contour map prepared from the calculated groundwater elevations (plotted adjacent to the well, piezometer, and staff gauge symbol). Figure 2 is a water table contour plot for November 1996 before the barrier wall and perimeter groundwater containment system were constructed. Figure 3 shows the potentiometric surface for the lower aquifer based on the groundwater elevations at the uppermost well at each lower aquifer well nest (calculated groundwater elevations are plotted adjacent to well and piezometer symbols).

2.2.2 Vertical Gradients Calculated for the Upper and Lower Aquifers

Vertical gradients were calculated for both the upper and lower aquifers on the basis of water level measurement data from adjacent wells and piezometers screened at different depths in each aquifer.

A summary of vertical hydraulic gradients calculated for nested piezometers in the wetland area is presented in Table 2. Vertical gradients were calculated by dividing the difference in head between nested piezometers by the distance between the screen midpoints. (Piezometers screened at the base of the upper aquifer have screens that are two feet long. Piezometers placed to measure the water table are constructed with ten-foot long screens placed to intersect the water table. Therefore, the distance between screen midpoints is an accurate representation of the screen separation, and is appropriate for making the vertical

gradient calculation). Vertical gradients in the wetland area appear to be upward, but low in magnitude.

Vertical gradients calculated for nested wells screened within the lower aquifer during the September 1997 water level monitoring event are presented in Table 3. The gradients were calculated by dividing the difference in head between nested wells by the distance between the bottom of the upper screen and the top of the lower screen at each well location. These reference points were selected rather than screen centers in order to provide the most accurate vertical gradient calculations. Most of the lower aquifer wells have ten foot long screens, the differences in water levels at adjacent lower aquifer wells are generally quite small (most less than 0.02 feet), and the vertical separation between screens is 20 feet or less in most cases. In order to avoid biasing the calculated gradients low, it was appropriate to use the bottom and top of adjacent well screens rather than screen centers.

Four of the gradients calculated between upper, middle, and lower zones were downward, two were upward, and four were within the margin of potential error in the water level measurements. The largest downward gradient was calculated for MW8/MW31, where a difference of one foot was recorded between MW8 and MW31. This is clearly a measurement error at MW8, since previously, MW8 and MW31 have shown water elevations that are within several hundredths of a foot of each other. The error was not discovered until the actual groundwater elevations were calculated from the water depth measurements. Since the calculation was made several days after measurement, it was too late to collect another contemporaneous, accurate measurement. The largest upward gradient was observed at the MW29/MW34/MW9 well nest, where an upward gradient of 0.0013 was calculated between wells MW29 and MW34. Where gradients are measurable, there seems to be a general downward gradient from the upper to the middle part of the lower aquifer. As a result, there is little overall gradient between the top and bottom of the lower aquifer.

2.2.3 Calculated Vertical Gradients Between the Upper and Lower Aquifers

Calculated vertical gradients between wells screened in the upper aquifer and lower aquifer are presented in Table 4. In general head levels are more than ten feet higher in the upper aquifer than in the lower aquifer. It is clear that the water level drop occurs across the clay layer between the upper and lower aquifer rather than across the entire distance between well screens in the upper and lower aquifer. Therefore, Vertical gradients were calculated by dividing the difference in head between the upper and lower aquifer wells by the thickness of the clay confining layer between the two wells. Strong downward vertical gradients ranged from -0.37 calculated between MW17 and MW28 to -0.82 between P27 and MW9.

2.3 GROUNDWATER SAMPLING

Prior to sampling, monitoring wells were purged using low-flow methods in accordance with the approved Monitoring Well Sampling SOP for the Upper Aquifer Investigation

Fourth Quarter Results

July 15, 1998

ACS NPL Site

14

(revision: March 21, 1997). Field parameters, pH, specific conductivity, temperature, and turbidity, were measured and recorded during well purging activities (Table 5).

2.3.1 Upper Aquifer Analytical Results

Laboratory analytical reports for VOC, SVOC, PCB, and inorganic compound analyses of samples from upper aquifer monitoring wells are compiled in Appendix D. Compounds detected in samples are summarized in Table 6. The detections of primary contaminants of concern (as identified in previous sampling rounds) are summarized for each upper aquifer well on Figure 4. The results are consistent with previous sampling data and are discussed in the context of all four quarters of baseline sampling in Section 3. Appendix C contains time trend plots for benzene and chloroethane in upper wells and also a listing of all analytical detections in each upper aquifer well.

2.3.2 Lower Aquifer Analytical Results

Laboratory analytical reports for VOC, SVOC, PCB, and inorganic compound analyses of samples from the lower aquifer monitoring wells are compiled in Appendix E. Compounds detected in samples are summarized in Table 7 for each lower aquifer well and shown on Figure 5. The results of the sampling are consistent with previous results and are discussed in the context of all four quarters of baseline sampling in Section 3. Appendix C contains time trend plots for benzene and chloroethane in lower wells and also a listing of all analytical detections in each lower aquifer well.

Monitoring Well MW9 is a lower aquifer monitoring well that has a history of groundwater contamination. The well was installed in March 1990 using a double casing method. Within six months, low levels of chloroethane were detected in samples collected from the well. Benzene was detected in a sample from the well in January 1995 and chloroethane and benzene have been detected at generally increasing concentrations in samples since that time. Although a review of the construction report for the well did not provide any indication of irregularities in the well construction, the sudden appearance and quick increase in concentrations seemed to suggest that the benzene and chloroethane were migrating down the well casing rather than coming from some other more diffuse or distant source.

Therefore, Montgomery Watson developed a tracer test procedure to evaluate whether or not groundwater was migrating from the upper to lower aquifer in the immediate vicinity of MW9. After U.S. EPA approved the procedure, the tracer test was conducted. Dye and ionic tracers were injected in the upper aquifer in the vicinity of MW9. After 60 days, the dye tracer was detected in groundwater taken from MW9, confirming that there is a leak between the upper and lower aquifers at this location, probably along the well casing. U.S. EPA has approved a specific operating procedure to abandon MW9 and replace it with a new well (MW9R). Following the U.S. EPA approved plan, MW9 was abandoned in February 1998 and replaced by MW9R, located approximately will be placed five to ten feet north (downgradient) from the original MW9 location. The results of future sampling of the new well and MW10C, which is downgradient, will be used to evaluate the effectiveness of the abandonment.

2.4 RESIDENTIAL WELL SAMPLING

Samples were collected at 18 residential wells in March 1997. The samples were analyzed for full scan TCL/TAL compounds. Trace levels of VOCs were detected in several of the wells, but none of the detections was above an MCL. Wells at 7the following five addresses were re-sampled concurrent with the September 1997 groundwater sampling event: These were the wells at the following addresses: 938 South Arbogast, 1014 South Arbogast, 1033 Reder Road, 1130 Reder Road (two houses served by the same well), and 430 East Avenue H. At the request of U.S. EPA, residential wells were sampled at the following addresses in the vicinity of the ACS NPL Site in October 1997.

4.3

The sample to be collected from 938 S. Arbogast was not collected because this address had previously been connected to the City of Griffith water and sewer utilities. Therefore, U.S. EPA instructed Montgomery Watson to collect a sample from 1002 Reder Rd. The sample designation assigned to this well in the field was ACS-PWY-02 and a duplicate of this sample was collected and designated ACS-PWY-92. Due to a laboratory error, the sample from ACS-PWY-02 was analyzed for multi-concentration VOCs, not the required low-level detection limits used for the private well samples. By the time the laboratory notified Montgomery Watson of this mistake, the sample was beyond the allowable holding time, and the laboratory could not re-extract the sample to run low-level detection limit VOCs. Therefore, the VOC and VOC TIC data sheets for ACS-PWY-02 are not available. However, because sample ACS-PWY92-02 was a duplicate of ACS-PWY-02, low-level detection limit VOCs and VOC TICs are available from 1002 Reder Rd., and are included in Appendix F.

Sample Identifier	<u>Address</u>
PWY-02	1002 Reder Road
PWD-02	1033 Reder Road
PWRC-02	1130 Reder Road (Center House)
PWRE-02	1130 Reder Road (East House)
PWK-02	1014 South Arbogast
PWZ-02	430 East Avenue H

The locations of the residential wells east and south of the Site are shown on Figure 6. Each residential well sample was analyzed for TCL and TAL parameters using low detection limit analytical methods. The sampling results are tabulated in Appendix \underline{F} and the analytical detections are summarized in Table 8.

The September 1997 sampling results (the sampling date was actually October 2, 1997) were similar to the March 1997 sampling. In sample from residential well PWK, TCE was detected at 0.3 parts per billion in March and at 0.2 parts per billion in September. PWK. PWK is screened in the lower aquifer, upgradient (south of the Site) and outside the footprint of the upper aquifer impacted groundwater. The samples from PWRE and PWRC again showed trace levels of VOCs, as they did in the March sampling. However, in March the detected VOCs were 2-butanone detected at 3 parts per billion and vinyl chloride

19

भ

detected at 0.3 and 0.2 parts per billion. In the samples collected in September, only one VOC was detected: methylene chloride at 0.2 parts billion.

3.0 EVALUATION OF BASELINE SAMPLING DATA

3.1 SUMMARY OF AVAILABLE GROUNDWATER DATA

The Remedial Investigation for the ACS NPL Site was initiated in 1988. Since that time 28 upper aquifer and 25 lower aquifer monitoring wells have been installed and sampled numerous times. In addition, more than 100 upper aquifer piezometers, three lower aquifer piezometers, and 12 surface water staff gauges have been installed and used to develop groundwater elevation maps on numerous occasions. Water levels and samples from these points have been used to complete a number of hydrogeologic evaluations starting with the Hydrogeologic Technical Memorandum and continuing with the Remedial Investigation Report and subsequent monitoring reports. The following evaluation of the groundwater flow system, aquifer geochemistry, and contaminant distributions is based on previous reports and the Baseline Groundwater monitoring conducted in 1996 and 1997.

3.2 GROUNDWATER FLOW SYSTEM

3.2.1 Groundwater Flow in the Upper Aquifer

Following the collection of water level information in June 1997, two remedial construction projects have been completed: the Perimeter Groundwater Containment System (PGCS) and the Barrier Wall and Extraction System (BWES). The effect of these structures on the upper aquifer groundwater flow system is evident in comparing Figures 1 and 2. Figure 2 illustrates the water table configuration prior to construction and Figure 1 illustrates the water table configuration after construction. Comparison of the contour patterns on these two figures indicates that changes have occurred locally in the flow pattern, but that the general regional groundwater flow paths are unchanged.

The highest groundwater levels in the upper aquifer (other than inside the barrier wall) are located east of the ACS facility as indicated by MW18 and P60 (Figure 1). These high water levels suggest the presence of a groundwater mound approximately along Reder Road. Groundwater flows to the north and south from this mound. The lowest groundwater elevations are to the west and south of the ACS facility. To the west, the groundwater sinks are the drainage ditch between SG11, SG5, SG6 and SG3, and the Griffith Landfill leachate collection system (shown by SG2 and P22). The water table is also lower to the south at locations such as MW43 and MW44. In general, groundwater flow in the vicinity of the Site is from the groundwater mound along Reder road, toward the groundwater lows in the west and south. In addition, the collection trench for the PGCS is a groundwater sink to the northwest and west of the ACS facility, as shown by the water table depression between P82 and P91.

The barrier wall prevents groundwater flow directly to the west from Colfax Avenue. Groundwater flows both north and south from the Reder Road mound. The flow to the north curves around the north end of the barrier wall and is collected in the PGCS

extraction trench (P83) or discharged to the drainage ditch (just beyond MW48). Groundwater also flows south from the Reder Road mound toward the south/southwest.

The effect of the PGCS extraction system and effluent discharge is evident in the wetland to the west of the ACS facility. The 629 and 630 contour lines west of the ACS facility illustrate this effect. The 629 foot elevation contour line wraps around most of the PGCS extraction trench due to lower water levels at P91, P88, and P85. A few hundred feet further to the west, the 630 foot contour line outlines a local groundwater high caused by treated water discharges into the wetlands from the PGCS.

While the barrier wall now prevents groundwater flow west across Colfax Avenue, westerly flow across Colfax Avenue was previously limited by a hydraulic barrier. Figure 2 (the November 1996 water table plot) shows similar general groundwater flow from east of Colfax toward the groundwater lows at the drainage ditch, the landfill leachate collection system or the far south part of the Site. Prior to construction of the barrier wall, surface water infiltration to the water table on the ACS Site and through the ACS facility fire pond (shown by SG7) caused a groundwater high near the center of the Site, resulting in radial groundwater flow from the ACS Site, and a hydraulic barrier to westerly flow across Colfax Avenue.

The upper aquifer matrix is a homogeneous silty sand with no evidence of interlayering or bedding complexities. Since the water table maps are based on water levels collected at 12 staff gauges, 28 wells, and more than 100 piezometers, very little interpolation has been required to develop detailed contour plots. All water table maps developed for the ACS Site since the remedial investigation in 1991 have consistently shown the same general groundwater flow patterns. While the contour lines defining the water table are curved, they clearly show consistent groundwater flow pathways from recharge to discharge areas. The average calculated groundwater flow velocity in the upper aquifer is on the order of 50 feet per year, but the rate probably ranges from a minimum rate of less than 10 feet per year to greater than 200 feet per year. The only locations where the groundwater velocity may exceed 100 feet per year are in the vicinity of the PGCS extraction trench and the Griffith Landfill leachate collection system. (Detailed groundwater velocity calculations, based on the RI aquifer tests and the pumping test conducted in March 1995, are summarized in Appendix A.)

Because of the homogeneity of the upper aquifer, and the relative simplicity of the groundwater flow paths, the total number of staff gauges, wells, and piezometers can be reduced for future monitoring events. The level measurement locations necessary to develop accurate water table maps are presented in Section 4.2.1.

3.2.2 Vertical Gradients in the Upper Aquifer

Due to the presence of elevated levels of benzene at the base of the upper aquifer relative to that of the surface of the upper aquifer which was determined during the tracer investigation. U.S. EPA was concerned that there might be downward gradients in the upper aquifer in the wetland, and so required the installation of four sets of nested piezometers in the wetland to the west of the ACS facility. Table 2 shows the upper aquifer

vertical gradient calculations based on the September 1997 water level measurements. The vertical gradients recorded at each of the four nested piezometer locations for the past five quarters are tabulated below.

43.65.4

Piezometer Nest	August 1996	November 1996	March 1997	June 1997	September 1997
P64/P65	0.009	0.000	0.016	-0.062	0.022
P66/P67	0.005	0.005	-0.003	0.013	0.007
P68/P69	0.000	0.000	0.010	0.002	0.003
P70/P71	-0.020	0.006	0.030	0.042	0.035

Out of the 20 vertical gradients calculated from these four dual piezometer locations in the upper aquifer in the wetland, three were downward, three were zero, and 14 gradients were upward. From these accumulated data, it is apparent that the general vertical gradients are upward, which is the typical occurrence in a wetland area where groundwater discharges to the surface. Therefore, it will not be necessary to continue collecting water levels at these piezometer pairs in future monitoring events.

3.2.3 Groundwater Flow in the Lower Aquifer

at the gray to a

Water levels were measured at staff gauges and the lower aquifer monitoring wells and piezometers on September 22, 1997. The measurements are recorded in Table 1 which also includes the map coordinates and the calculated water elevation for each measurement point. Figure 3 is a plot of the potentiometric surface for the lower aquifer based on the water levels measured at the uppermost well at each lower aquifer well nest. The calculated water elevations are plotted adjacent to the well, piezometer, or staff gauge symbol.

Consistent with the historical groundwater data, the groundwater flow in the lower aquifer is essentially northward. The horizontal hydraulic gradient in the lower aquifer was calculated using the measured difference in head between MW22, located in the southern portion of the Site, and MW10, located at the northern Site boundary. This difference, 1.0 foot on September 22, 1997, was then divided by the lateral distance between the two wells (2,850 feet). Based on this calculation, the horizontal hydraulic gradient in the lower aquifer is 0.00035. As illustrated in the following table, the September 22, 1997 lower aquifer horizontal hydraulic gradient is consistent with previously calculated gradients.

Report of Hydraulic Gradient in Lower Aquifer		Horizontal Hydraulic Gradien	
Remedial Investigation Report	(June 1991)	0.0006	
Technical Memorandum	(October 1995)	0.00041	
Lower Aquifer Tech Memo	(September 1996)	0.00047	
Groundwater Monitoring Report	(August 1996)	0.00047	
Groundwater Monitoring Report	(November 1996)	0.00049	
Groundwater Monitoring Report	(March 1997)	0.00040	
Groundwater Monitoring Report	(June 1997)	0.00044	
This Groundwater Monitoring Re	port	0.00035	

- 1

These accumulated data show a relatively low horizontal hydraulic gradient in the lower aquifer that may be decreasing with time. The lower aquifer is homogeneous like the upper aquifer. It also consists of sand, although it contains more gravel than the upper aquifer. Potentiometric maps developed since the remedial investigation in 1991 have shown a consistent gradient from south to north. Based on these hydraulic gradients and the hydraulic conductivity values calculated from slug test results during the RI, the groundwater flow rate in the lower aquifer is on the order of 50 feet per year. (Appendix A contains the lower aquifer groundwater velocity calculations.) If the hydraulic gradient is decreasing, the groundwater velocity would be decreasing proportionately.

3.2.4 Vertical Gradients in the Lower Aquifer

Seven nested well sets have been installed in the lower aquifer. At each location, there are two or three monitoring wells and/or piezometers, each screened at a different depth within the lower aquifer. The water levels recorded for each of these wells are summarized in Table 1 and were used to calculate vertical hydraulic gradients between well screen intervals and the top and bottom of the lower aquifer at each location. Table 3 summarizes these calculated vertical gradients. Vertical gradients in the lower aquifer have been similarly calculated for each of the past five quarters. Tabulated below are the vertical gradients calculated between the top and bottom of the lower aquifer during that time period.

Well/Piezo Nest	August 1996	November 1996	March 1997	June 1997	September 1997
MW7/MW36	0.0	0.0004	-0.0006	-0.0010	0.0
MW8/MW32	0.0002	0.0002	0.0	0.0	NA
MW9/MW34	-0.0002	-0.0002	0.0005	0.0	0.0
MW51/MW33	NA	-0.0004	0.0	0.0	0.0
MW28/PZ43	-0.0006	0.0028	0.0	0.0	0.0
MW52/MW53	NA	NA	-0.0008	-0.0004	-0.0004
MW54/MW55	NA	NA	0.0008	0.0	0.0

Note

Value of "0.0" indicate that the vertical gradient was not measurable.

NA = A water level necessary for the calculation was not available

From a review of the accumulated data between August 1996 and September 1997, it is apparent that there are not consistent or significant vertical gradients across the lower aquifer. Therefore, it will not be necessary to measure water levels at all lower aquifer wells in each nested location in future monitoring activities. The water level from just the upper most well in each lower aquifer nest will be sufficient to develop the lower aquifer potentiometric maps. The water level measurement locations necessary to develop accurate lower aquifer potentiometric maps are presented in Section 4.1.2.

3.2.5 Vertical Gradient Between Upper and Lower Aquifer

The average groundwater elevations in the upper and lower aquifers are approximately 632 and 621 feet amsl, respectively. The confining clay layer between the upper and lower aquifer varies in thickness from greater than 30 feet to the south to less than 5 feet in the

Fourth Quarter Results

July 15, 1998

ACS NPL Site

3.4 SUMMARY OF NAPL OBSERVATIONS

During investigations at the ACS NPL Site over the past ten years, non-aqueous phase liquids (NAPLs) have been observed at several locations and U.S. EPA has inquired as to the nature and extent. The locations where NAPLs have been observed are now enclosed within the barrier wall. Four areas labeled A, B, C, and D that appear to contain persistent indications of NAPLs are plotted on Figure 7.

1

Area A -- Area West of the Fire Pond

During the Remedial Investigation (RI), floating NAPLs were observed in piezometer P-37. The piezometer was destroyed in the interim between the RI and pre-design investigation and was not replaced. However, the NAPLs were found in the piezometer at each measurement event before the piezometer was destroyed.

Area B - Still Bottoms Pond

During the RI, floating NAPL was observed in several soil borings in the vicinity of the closed Still Bottoms Pond.

Area C - Area South of ACS Rail Spur

Borings were made from ground surface to the confining clay layer along the proposed and final barrier wall alignment during the Dewatering Barrier Wall Alignment Investigation in February 1996. Samples were field evaluated for the presence of oil with hydrophobic dye tests. In the area between the ACS rail spur and the ACS rail tracks, a thin layer of oily soil (less than 1 inch thick) was detected at the base of the upper aquifer and the top of the confining clay at several boring locations in the area labeled C. No layer was observed in any of the perimeter borings.

Area D - Off-Site Containment Area

A number of test pits were excavated during the Pretreatment / Materials Handling Treatability Study in July 1997. Floating NAPLs were observed on the water table in Test Pits SA-01, SA-02, and SA-04. These are inside the area marked D on the attached map.

Miscellaneous Observations of NAPL

Figure 7The attached plot of piezometer locations shows four piezometers whereall upper aquifer monitoring wells and piezometers inside and near the barrier wall. Ffloating NAPLs have been detected in four of these piezometers. As mentioned above, P-37 contained NAPL each time the water level was measured. Three other piezometers (P-12, P-29, and P-35) which had not previously been found to contain NAPLs, did show an indication of floating NAPL during the September 1997 groundwater monitoring event. (The water level probe had an oily sheen after measurement). These are locations where the water table has been depressed by operation of the barrier wall extraction system (BWES). It is possible that this depression has caused the accumulation of NAPLs. All locations are inside the barrier wall.

3.5 ELEVATIONS OF THE TOP OF THE CLAY CONFINING LAYER

U.S. EPA has inquired as to the nature and extent of any NAPLs that may be on and around the Site. Where there are DNAPLs, there is the concern that they may seep to the bottom of the aquifer containing them and then flow by gravity along low areas. Several figures have been developed to evaluate the surface contours and elevation of the top of the clay layer, and evaluate the potential that there might be preferential DNAPL flow paths. The 140 soil borings made at the Site which have made contact with the clay layer are collated on Table 9. The values on this table were used with the Surfer™ contouring software package to develop an interpolated "Top of Clay" surface contour map (Figure 8). The individual boring locations and top of clay elevations are plotted on Figure 98.

One of the objectives of the Dewatering / Barrier Wall Alignment Investigation, conducted early in 1996, was to select an alignment for the barrier wall that would be outside the buried waste, as defined by the ROD and potential NAPL areas. Fifty-two borings were made in the On-Site Area and 29 borings were made in the Off-Site Area during the investigation. Each of the boreholes was advanced to the depth at which it encountered the clay layer, and continuous split spoon samples were collected at each location. Each splits spoon sample was visually inspected for evidence of contamination, and samples at the aquifer clay interface were evaluated for the presence of DNAPL by using an oil-indicating field screening dye. No evidence was found of DNAPLs or LNAPLs in any of the borings located along the final alignment of the barrier wall.

Observation of the top-of-clay elevations on Figure 9 and examination of the contour plot in Figure 8 show that the top of clay elevation varies about the elevation 620 feet amsl. It appears that there may be a slight upward slope to the clay surface going from the ACS facility, south toward the landfill. The top of clay beneath the active ACS facility and On-Site Containment Area appears to be about 619 feet amsl. In the Off-Site Containment Area, the average top of clay elevation is 620 feet amsl, and at the Kapica-Pazmey Area, it is about 621 feet amsl. There is no evidence of channeling or a low area that might have resulted in gravity flow from the internal contaminant source areas, to an area now outside the barrier wall.

Prior to construction of the barrier wall in 1997, it is likely that the areas of buried waste and perhaps the areas containing NAPLs were the source of groundwater contamination. However, Figure 106 shows that these areas are now contained inside the Barrier Wall-and therefore, have been eliminated as sources of groundwater contamination for areas outside the wall. The barrier wall is built to the highest current industry standards for permanence and chemical resistance. The construction materials used and OA/OC standards followed were equivalent to or in excessexeedance of those used in the construction of hazardous waste containment cells such as RCRA Subtitle C landfills. However, since waste materials remain buried inside the barrier wall, there will be long term monitoring. The monitoring will include collection and evaluation of water levels on the inside and outside of the wall to watch for leakage through or under the wall. In addition, there will be ongoing groundwater sampling of monitoring wells in all directions down gradient from

the barrier wall to provide evidence if there is a change in groundwater quality due to leakage.

3.6 INDICATOR CONTAMINANTS AND AREAS OF GROUNDWATER CONTAMINATION

In order to facilitate evaluation of the analytical data collected during the baseline groundwater sampling program, VOC, SVOC, and metals results from the four quarterly sampling events were statistically analyzed. For each analyte detected, the 95% upper confidence limit of the prediction interval (95% UCLP) has been calculated. The 95% UCLP was calculated based on the mean (i.e., the average) of the concentrations and the amount of variability in the data used to calculate the mean. Because the 95% UCLP incorporates the variability inherent in the detected concentrations, the statistical result can be used to easily compare concentrations between individual wells, between groupings of wells, and future results, when obtained, to historic results within the same well. A summary of the statistical approach, including background data and statistical summary tables, is included in Appendix B.

3.6.1 Upper Aquifer

The 95% UCLPs (µg/L) for VOC and SVOC compounds detected in samples collected from upper aquifer wells during the four quarters of baseline groundwater sampling are summarized on Figure 106 provides a spatial summary of the highest detections of VOCs, SVOCs, and metals in upper aquifer monitoring wells during the four consecutive quarterly sampling events of the baseline monitoring. The frequency of detection of each compound in the four sampling events is also indicated on the figure. It is worth notingshould be kept in mind that the sensitivity of the analytical instrumentation performing the VOC analyses has a "detection window" of approximately two orders of magnitude. Therefore, if there is a variability in the concentrations of different compounds; that is greater than two orders of magnitude, the compound that is present in at the lower concentration may not be detected. For example, if the toluene concentration in a certain sample is 1.000800 ug/L, the analysis may not report a benzene concentration of 10 mg/L25, because it falls outside the sensitivity of the instrumentation.

Time trend plots for benzene and chloroethane, the primary indicators of VOC contamination in upper aquifer wells are included in Appendix C. Analytical results for samples from wells such as MW48, MW49, MW13 and MW6 that are near identified groundwater contaminant source areas show consistent, relatively high concentrations (greater than 100 ug/L) of benzene and chloroethane and lower concentrations of several other VOCs and/or SVOCs; the other VOCs and SVOCs were typically not detected consistently in all sampling events. Based on these results, benzene and chloroethane are indicators of groundwater impacts from the Site. These contaminants would also be good indicators of downgradient impacts because they are both relatively soluble and mobile in groundwater.

36

The distribution of benzene and/or chloroethane relative to identified Site source areas is consistent with the groundwater flow pattern in the upper aquifer. For example, based on the water table configurations shown on Figures 1 and 2, transport from a source or sources near MW6 would be expected to the south and southeast in the direction of wells such as MW19 and MW45; both benzene and chloroethane are present in groundwater at MW19 and MW45. Benzene at relatively low concentrations is also present at MW15 in this southern area.

Samples from several other monitoring wells located in the north and west part of the Site show detections of chloroethane and/or benzene. Groundwater flow in the north part of the Site appears to be to the northwest and west, controlled by regionally higher groundwater to the east and local discharge to the drainage ditch which enters the Site between wells MW13 and MW49. Recent changes in benzene concentrations at MW48 and MW49 between the June and September 1997 sampling events are probably attributable to changes in local groundwater flow patterns as a result of construction and operation of the PGCS. In other words, contaminants near the north port of the ACS facility are being "pulled" past these two wells and into the PGCS trench. Although high benzene concentrations are found at MW48, benzene is not detected at MW37, about 300 feet further to the west. This is strong evidence that the benzene impact ends in the vicinity of the drainage ditch. There is a strong gradient directly to the west from the ACS facility, where groundwater discharges to the PGCS. Samples from MW46, which is furthest to the west, have consistently contained benzene but only at low concentrations, indicating that the impacted area ends about 500 feet from the western ACS fence line.

To the east, only well MW12 has shown either of the indicator contaminants; one of the four samples from this well contained benzene at a low concentration. In this area, groundwater flow appears to be westerly toward the Site but the gradient is very low. Due to the low gradient, it is possible that there have been temporary flow reversals in the past that resulted in the temporary transport of benzene to this location

Analytical results for a number of wells that are either farther from the identified sources than those where indicator contaminants are present or are upgradient of the sources, show phenol and, in some cases, bis(2-ethylhexyl)phthalate and dimethylphthalate detections. These wells include MW18, MW37, MW38, MW40, MW41, MW42, MW43, MW44 and MW47. The phthalate detections at these locations appear to reflect field or laboratory artifacts rather than site impacts for the following reasons. (This concept is further supported by lower aquifer results in section 3.54.2.)

- Elevated levels of phthalate in groundwater may be a health concern under certain conditions as indicated by the remediation level of 5.8 ug/L listed in Appendix B of the Statement of Work.
- Phthalates are recognized common field and laboratory artifacts because they may be associated with plastics.

40.a.

- Phthalates are relatively immobile in groundwater and are not likely to be the first compounds to arrive at a location downgradient from a source.
- Phthalates are only reported at a few wells (MW37, MW42, MW43 and MW44) and at all these locations they were not detected consistently in samples (i.e., only in one of the four sampling events).
- Phthalates are not reported consistently at the same locations as indicator contaminants, and hence Site impacts, are present. For example, bis(2-ethylhexyl)phthalate is reported at 8, and dimethylphthalate at 1, of the 11 locations where benzene and/or chloroethane were detected. At all these locations, the phthalate compound was detected in only one sampling event. This pattern also suggests that the phthalate detections at Site-impacted wells are field or laboratory artifacts.
- Since phthalates have been detected in samples from monitoring wells where no benzene or other VOC has been detected, it is apparent that VOCs such as benzene are not reliable indicators of phthalate occurrence. This would be true if phthalates are concluded to be a laboratory artifact.
- When bis(2-ethylhexyl)phthalate or dimethylphthalate were detected at wells with benzene and/or chloroethane, the concentrations were generally lower than those in the wells where indicator contaminants are absent. This concentration pattern is strong evidence that the phthalates are artifacts rather than a result of Site activities.

Phenol has been reported at all monitoring wells, but generally not for all sampling events. Most of these detections do not appear to be Site-related for the following reasons. The distributions and concentrations of phenols are anomalous because they do not correlate with the distribution of known organic contaminants at the Sites, which have well defined plumes of contamination and which follow well document flow paths outward from defined source areas. Phthalates and phenols were detected in samples collected both upgradient and downgradient locations at the Sites. In addition, the highest detected phenols concentrations were found in samples collected from the deepest wells (as high as 340 ppb), while concentrations in shallow wells were much lower, and were not detected in field blanks.

It was noted that the approved sampling SOP required replacing the PVC tubing with a new length of tubing between each well. It was also noted that the water flows through the tubing at a rate of about ten feet per minute when pumped at the rates specified by the low flow sampling protocol. It was evident that water drawn from deeper wells has a longer contact time with the tubing than water drawn from shallow wells. Furthermore, it was noted that when collecting the field blank, the field technician used a very short piece of tubing, generally one to two feet in length. Therefore, a test was developed and conducted to evaluate whether the 0.5 ID., flexible, reinforced PVC, Grundfos tubing used for Low Flow Sampling could be introducing the phenols (and other compounds) into the sample

40.b

volume. A proposed testing procedure was submitted to U.S. EPA and IDEM on March 13th, 1998 and the full details of the tests and results were provide to the Agencies in a letter report, "Results of Analytical Testing of PVC Tubing," dated April 9, 1998.

In summary, the test demonstrated that phenols, phthalates, and some tentatively identified compounds (TICs) can be added to groundwater samples when using the Grundfos PVC tubing and following a low flow sampling protocol. Phenol was reported in the test sample at concentrations in the range of 400 ug/L in samples drawn through PVC tubing while replicating low flow sampling from a deep monitoring well. Furthermore, bis(2-ethylhexyl)phthalate was reported at concentrations in the range of 75 ug/L in the same sample. TICs found in the sample included (2-butoxyethoxy)-ethanol and dehydroacetic acid, with estimated concentrations of 200 and 56 µg/L, respectively.

The concentrations of phenol and bis(2-ethylhexyl)phthalate measured in the investigative and MS/MSD samples from PVC Grundfos tubing are higher than the levels of these compounds reported during routine sampling of groundwater at the ACS site. For example, during the September 1997 sampling event, phenol and bis(2-ethylhexyl)phthalate were measured at concentrations up to 340 and 76 μ g/L, respectively. These concentration relationships indicate that leaching from PVC Grundfos tubing during routine sampling can account for the detections of phenol and bis(2-ethylhexyl)phthalate in monitoring well samples from the ACS Site. The typical pattern of higher concentrations of both of these compounds in the deep wells also suggests that PVC Grundfos tubing is the source. Again as an example, during the September 1997 sampling event, phenol was measured at concentrations up to 130 μ g/L in shallow wells and 340 μ g/L in deep wells; bis(2-ethylhexyl)phthalate was measured at concentrations up to 15 μ g/L in shallow wells and 76 μ g/L in deep wells. Higher concentrations in deeper we'ls are consistent with a source in the tubing because longer sections of new PVC Grundfos tubing are used in these wells during routine sampling.

- In many wells that are peripheral to the Site and do not show benzene and/or ehloroethane (MW18, MW37, MW38, MW40, MW41, MW42, MW43, MW44, and MW47), phenol is the only compound detected (at some wells phthalates may also be reported, but as noted above, these compounds appear to be field or laboratory artifacts).
- The highest 95% UCLP phenol concentrations (about 200 µg/L) are at locations near site sources where benzene and chloroethane levels are also high (e.g., MW48 and MW49). This relationship suggests that site sources may contribute some phenol to groundwater. However, the concentrations near these source areas are not high enough to account for the levels at most downgradient wells that contain benzene and/or chloroethane and, especially, peripheral wells where benzene and/or chloroethane are absent.
- The phenol levels in some of the peripheral wells are higher than nearby and upgradient wells that contain benzene and/or chloroethane. For example, the

phenol concentration at MW47 is higher than at MW19, and the concentrations at MW 41 and MW43 similar to that at MW45, which shows relatively high benzene and chlorocthane concentrations.

41.

Together, these relationships suggest another widespread source for phenol. It is likely, since the area was largely a wetland, that the phenols at most locations are natural, produced by the decay of organic material.

119

Assuming that detections of only—phenol (and possibly phthalates) are unrelated to Site contamination, three areas of groundwater contamination have been designated in the upper aquifer: -south, north, and west. Each area includes wells where groundwater in the upper aquifer has been affected by site activities. The south area includes wells MW6, MW19 and MW45. Based on the pattern of groundwater flow in this area, well MW18 is upgradient with respect to the area of groundwater contamination, wells MW47 and MW43 are downgradient, and wells MW15, MW41, MW44 and MW47 are sidegradient. The low levels of benzene reported at MW15 suggest that this well is located at the boundary of the south area.

The north area includes wells MW48 and MW49. Based on the pattern of groundwater flow in the north part of the Site, MW40 is upgradient from the area of groundwater contamination, MW37 is downgradient and MW38 and MW39 are sidegradient. Well MW11 may also be sidegradient based on the one reported detection of tetrachloroethene.

The west area includes wells MW13 and MW14. Prior to the time when the PGCS began discharging to the wetlands, MW46 was downgradient from the source area at the ACS plant. However, the continuous PGCS discharge since June 1997 introduces a mound of clean groundwater between the site and MW46. Future sampling at MW46 will collect primarily the treated water that is discharged into the wetland and infiltrates into the ground.

3.6.2 Lower Aquifer

The 95% UCLPs (µg/L) for VOC and SVOC compounds detected in samples collected from lower aquifer wells during the four quarters of baseline groundwater sampling are summarized on Figure 117 provides a spatial summary of the highest detections of VOCs, SVOCs,—metals in upper aquifer monitoring wells during the four consecutive quarterly sampling events of the baseline monitoring. The frequency of detection of each compound in the four sampling events is also indicated on the figure (See comment in Section 3.5.1 regarding potential to mask low level VOC detections if one or more compounds in a sample has a concentration two orders of magnitude higher than another compound).

Time trend plots for benezene and chloroethane in lower aquifer wells MW9 and MW10C are included in Appendix C. Benzene and/or chloroethane have been reported in the lower aquifer at only a few locations. Chloroethane was detected at MW9 (soon to be replaced by MW9R), MW10C and MW29, and benzene at MW9, MW29, MW33 and MW53. The presence of indicator contaminants at MW9 is attributable to downward leakage along the

45

well casing from the upper to the lower aquifer. A tracer test conducted at this location, as discussed in Section 2, documented that leakage. MW29 is located adjacent to MW9, but it is screened 15 feet lower. The concentrations of benzene at MW29, MW33 and MW53 are much lower than at MW9. The detections at MW29 indicate that the benzene extends approximately 15 feet below MW9. The other detections at MW10C, MW33 and MW53 likely represent transport through the lower aquifer from MW9, which is directly upgradient.

Bis(2-ethylhexyl)phthalate was reported in samples from many lower aquifer wells; dimethylphthalate was detected at only one well. As in the upper aguifer, the occurrence of these compounds does not correlate with benzene and/or chloroethane, providing further evidence that the phthalate detections at the Site are due to field or laboratory artifacts. (See Section 3.6.1 on Pages 15 and 16 for further details.

Phenol was reported for most of the lower aquifer wells, including wells such as MW22 and MW50, that are upgradient from the Site. Moreover, the phenol levels at some of the lower aquifer wells, including upgradient wells, were higher than those measured in the shallow aquifer, even near identified source areas. These distribution and concentration patterns strongly support the earlier conclusion that phenols are present in groundwater throughout the area and are not derived from site activities.

Based on the baseline groundwater sampling results, only one area of groundwater contamination is present in the lower aquifer. This area includes MW9/MW29 and the downgradient wells MW10C, MW33 and MW53.

3.7 TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

Tentatively Identified Compounds (TICs) were detected in several upper and lower aquifer monitoring wells. Four TICs were reported in two or more monitoring wells in the September 1997 sampling results. The following is a tabulation of tentatively identified compounds, number of acceptions, and highest detected concentrations

Tentatively Identified Compound	Number of Detections	Maximum <u>Concentration</u>	
Chlorodiflouro-methane	4	95 ug/L	
Ether	7	12,000 ug/L	
Tetrahydrofuran	5	170 ug/L	
2-ethyl-1-hexanol	9	28 ug/L	

Table 10 contains a more detailed listing of these TICs and monitoring well locations. The complete listing of TICs for individual monitoring wells is compiled in Appendix C and D.

July 15, 1998 Fourth Quarter Results ACS NPL Site Page 20

4.0 PROPOSED INTERIM GROUNDWATER MONITORING PLAN

4.1 SCOPE AND OBJECTIVES

The Statement of Work (SOW) included as Attachment 2 of the September 30, 1994 Administrative Order for the American Chemical Service Superfund Site states that the respondents shall implement:

"...a groundwater monitoring program designed to detect changes in water quality or concentrations of hazardous substances, contaminants, or pollutants in the groundwater at and beyond the point of compliance and shall include upgradient, downgradient and transgradient monitoring. The groundwater monitoring program shall provide for verification sampling and updating of the current local hydrogeological setting and associated conditions. The program shall consist of summarizing currently available information; installing additional monitoring wells, piezometers, and soil borings; and performing in field measurements or analysis of water levels, pH, temperature, specific conductance, hydraulic conductivity, and other measurements or analyses as approved by EPA, after reasonable opportunity for review and comment by the state. The results of this investigation shall be submitted in report form to EPA for review and approval and shall be incorporated into the work plans."

As discussed in Section 3.2, construction work conducted recently at the ACS Site has modified groundwater flow patterns locally. A barrier wall with internal extraction trenches (BWES) has been constructed around the areas of buried waste and a series of piezometers has been installed to allow documentation of the water levels inside and outside the barrier wall. A perimeter groundwater containment system (PGCS) that includes a 1,500 foot extraction trench has also been installed to prevent further off-site migration of contaminated groundwater to the north and west of the ACS facility. Piezometers have been installed along the trench to allow documentation of gradients induced by pumping. A water treatment plant has been constructed to treat the groundwater extracted from inside the barrier wall and from the PGCS. Influent and effluent samples will be collected to document the quality of the untreated and treated water, as part of the Site monitoring.

Remedial activities will be conducted at the Site for the next several years and so it is premature to develop the long term monitoring Plan at this time. On the basis of the results of the Baseline Groundwater Sampling, an interim groundwater monitoring plan has been developed. In general, groundwater sampling will be conducted semi-annually at the majority of the wells in the monitoring network. One annual sampling event will be conducted for full scan analyses of the samples and the other will be conducted for a reduced list of indicator parameters. The following site-specific objectives have been

developed for the <u>Interim Monitoring Plan long term monitoring plan</u> at the ACS NPL Site <u>during remedial design and remedial action construction activities:</u>

- Collect water level data to monitor groundwater flow in the upper and lower aquifers and calculate the hydraulic gradients between the aquifers
- Collect water level data to document the performance of the PGCS and BWES and to evaluate changes in the groundwater flow system resulting from the remedial actions (these activities are outlined in the Performance Standard Verification Plan, April 1997)
- Collect and analyze samples of the untreated groundwater to provide characterization of the water quality inside the barrier wall
- Collect and analyze samples of treated water to document compliance with the effluent standards
- Collect and analyze groundwater samples from upgradient monitoring wells in the upper and lower aquifer to document background groundwater quality
- Collect and analyze groundwater samples from the monitoring wells at the downgradient boundaries of the site to closely monitor the status of the boundaries of groundwater impacts
- Collect and analyze groundwater samples from the interior of the areas of contaminated groundwater to document how concentrations change with time and in response to the remedial actions
- Assess progress toward attaining cleanup objectives in contaminated areas.

The proposed monitoring plan has been developed to meet these objectives, in the context of the groundwater flow system and the nature and extent of the contaminated groundwater.

As additional information becomes available, it will be analyzed with respect to the above objectives. If the new information indicates that changes to the monitoring program (either additions or deletions) are needed to meet the objectives, these changes will be proposed to U.S. EPA for approval. Similarly, U.S. EPA may seek require—additional groundwater monitoring wells or laboratory analyses based on the need to meet the monitoring objectives.

The three variables in the groundwater monitoring plan are: 1) sampling locations, 2) elemical constituents, and 3), sampling frequency. The following sections present these variables in the context to the monitoring objectives:

Water level measurements will be made quarterly at upper and lower aquifer monitoring wells and piezometers. Field time to collect water level data at all points on Table 11 will be scheduled to be completed in no more than two days, in order to minimize the effects of changes in water levels with time. The water levels will be tabulated and used to calculate groundwater elevations, gradients and develop contour plots of the water table and lower aquifer potentiometric surface. The proposed water level measurement program includes the upper and lower aquifer wells and the staff gauge listed in Table 119 (this table is designed to serve as a field work sheet). The proposed networks of upper and lower aquifer gauging points are described below.

6000

4.2.1 Upper Aquifer Gauging Points

Proposed upper aquifer gauging points include:

- Those wells that are to be sampled as part of the upper aquifer sampling program (see Section 4.2)(See Section 4.3)
- Those wells and piezometers that are already included as part of the PGCS and BWES gauging activities
- Wells or piezometers that fill remaining gaps in the gauging network
- A staff gauge in the pond to the southeast of the Site

The proposed upper aquifer wells and staff gauge in the water level measurement program are shown on Figure 12. This figure shows that the distribution of gauging locations is adequate to prepare a representative water table map. Water levels will be measured at these wells, piezometers and staff gauge during each sampling event, and a water table map will be developed using the data collected.

4.2.2 Remediation Component Gauging Points

<u>Piezometers have been installed to provide water level information in the vicinity of the Perimeter Groundwater Containment System (PGCS) and the Barrier Wall and Extraction System (BWES).</u>

The PGCS consists of a 1,500 foot long groundwater extraction trench located north and west of the ACS facility (Figure 12). Five arrays of three piezometers each have been constructed across the extraction system. At each location, one piezometer is located in the center of the extraction trench, one piezometer is located on the inside (south or east) of the trench and one piezometer is located outside (north or west) of the trench. The piezometer groups are shown on Table 11, numbers P81 through P92.

The Barrier Wall is a 4,500 foot vertical containment wall constructed from combined 60 mil high density polyethylene (HDPE) and 16 inch bentonite slurry mixture. The wall is keyed two feet into the confining clay layer, located at an approximate elevation of 620 feet

Water levels will be measured at each of these piezometers each quarter and compiled and evaluated with the overall Site Monitoring Reports.

4.2.3 Lower Aquifer Gauging Points

Because groundwater flow in the lower aquifer is simpler (north with a small northwest flow component), fewer gauging points are necessary to depict the potentiometric surface. Therefore, the wells listed in Table 119 are proposed to be gauged during each sampling event. At clustered locations along the northern boundary of the Site (Figure 139) only the upper most lower aquifer wells are proposed for gauging, because water levels from the middle or lower, lower aquifer wells does not yield additional useful information. These wells will provide adequate data to prepare a potentiometric surface map for the lower aquifer.

4.3 MONITORING WELL SAMPLING

4.3.1 Semi-Annual Sampling

The sampling schedule for the interim groundwater monitoring plan is summarized in Table 12 for the upper aquifer wells and Table 13 for the lower aquifer wells. In general, there will be two major sampling events each year and two minor sampling events. The major sampling events will be conducted in the spring and fall. Each spring all the up gradient and down gradient wells in both aquifers will be sampled for full scan TCL/TAL parameters. An indicator event will be conducted each fall. In this event, all wells in the monitoring network, including upgradient, downgradient and side gradient wells will be sampled and analyzed for indicator parameters. The indicator parameters will be:

VOCs: PCE, TCE, TCA, DCE, 1,2-DCA, VC, Chloroethane, and Benzene

SVOCs: Phenol, Phthalates

Metals: Arsenic and Lead

4.3.2 Quarterly Sampling

Three monitoring wells will also be sampled during the other quarters, summer and winter. These include upper aquifer monitoring wells MW48 and MW49 and lower aquifer monitoring well MW9R. As shown in Tables 12 and 13, these three wells will be sampled once each year for the full TCL/TAL parameter list (along with all the other wells) and for indicator parameters in the other three quarters of the year.

Fourth Quarter Results

July 15, 1998

ACS NPL Site

0.15

All monitoring wells will be purged and sampled using low-flow methods in accordance with the approved Monitoring Well Sampling Proposal and Protocol SOP for the Upper Aquifer Investigation (revision: Julyrevision:July 25, 1996) and other Agency-approved SOPs. Field parameters, pH, specific conductance, temperature, and turbidity, will be measured and recorded during well purging. Sampling activities are expected to be conducted over a two week period. Standard SW-846 methods will be used for laboratory analyses. Data validation will be conducted on all samples collected.

13.20.36

As indicated in Section 4.1, water levels will be measured at the upper and lower aquifer monitoring wells, piezometers, and staff gauges listed in Table 11 once each quarter, coinciding with the sampling that is conducted. A sufficient number of field technicians will be used so that all the water level locations can be covered in one working day, to minimize potential water level variability with time.

4.4 PRIVATE WELL SAMPLING

The ACS Group will give U.S. EPA four weeks notice of the planned annual collection of samples from five residential wells in the ACS vicinity. If U.S. EPA requests a change in the sampling within two weeks of the event, the ACS group will consider the technical basis provided by the U.S. EPA and schedule the necessary sampling to coincide with one of the groundwater monitoring events. As in the past, the ACS group is committed to collect whatever data is technically justified to meet its obligations to the U.S. EPA. The following private wells are proposed for sampling (assuming owners will provide access):

Well Identifier	Street Address	
PW-Y	1000 Reder Road	
PW-A	1007 Reder Road	
PW-B	1009 Reder Road	
PW-C	1029 Reder Road	
PW-I	739 S. Arbogast	

The well locations are shown on Figure 6. If the U.S. EPA notifies the ACS group prior to the sampling date, one or more of those five samples can be assigned to alternate locations selected by U.S. EPA. Each well will be sampled following the approved private well sampling protocol, and the samples will be analyzed for full scan TCL/TAL parameters. To eliminate delays in reporting, the analytical laboratory will be asked to provide the analytical results as soon as they are available, rather than waiting and providing the results to the ACS Group along with the results of all other sampling.

61

, ,

مر

4.5 OTHER MONITORING

In accordance with the Performance Standard Verification Plan (PSVP) for the PGCS, the influent and effluent of the groundwater treatment system will be sampled during each of the periodic sampling events. Results for these samples will provide information to document the performance of the PGCS.

4.6 REPORTING

A report will be produced each quarter to provide the collected data and analysis to the Agencies. The reports will be submitted to the Agencies, not more than ten weeks after the completion of the sampling event. Each report will include tabulations of data, evaluation of any changes in groundwater flow and analytical data, and recommendations for actions, if necessary, for the next sampling event.

4.6.1 Tabulation of Data

Water level data, field observations, and analytical results will be tabulated each quarter for each well sampled.

4.6.2 Evaluation of Changes

The calculated groundwater elevations will be used to develop contour plots of the upper aquifer and lower aquifer, as well as to calculate vertical gradients between the upper and lower aquifer. These will be compared to the previous maps and gradients.

Appendix \underline{C} has been included in the report, and it lists the maximum concentration of each contaminant detected in each monitoring well during the groundwater sampling at the Site. The results from future sampling rounds will be compared to this list, and any detections that exceed the concentrations listed in the table will be highlighted. Each highlighted value will be evaluated for significance, in the analysis section of the corresponding groundwater monitoring report.

The evaluation will take a number of factors into account to determine significance. Factors will include: groundwater flow direction, concentration of the same compound in the well during previous sampling events, concentrations of the same compound at other nearby wells, and magnitude of the exceedance of the trigger. The exceedance will be considered significant if it shows that the area of groundwater contamination is increasing in area or increasing in concentration. Trigger events will be reported within 90 days of completion of the sample collection, and the report will include a recommendation to the Agencies for action.

4.6.3 Recommendations for Action

Actions may range from a limited action such as waiting until the next sampling event for another evaluation, to actions such as additional sampling, modification of the interim

	The state of the s
ł	monitoring programsampling plan, or implementation of additional remedial or corrective actions.
ļ	J:\1252\042\Sept 97 Sampling Rpt\Final Draft\Sept GW Report (Ju lyne 15).doc
	·

ENCLOSURE

Comments Regarding the
Review of the Technical Memorandum; September 1997
Groundwater Sampling Results Report, and Approval
with Modifications of the Proposed Groundwater
Monitoring Plan for American Chemical Services,
Inc., NPL

Superfund Site, Griffith, Indiana

The United States Environmental Protection Agency provides the following comments on the Technical Memorandum, September 1997 Groundwater Sampling Results Report and Approval with Modifications the proposed Groundwater Monitoring Plan.

General Comments

- 1. Subsequent to the submittal of the Technical Memorandum, several meeting were held with representatives from the group to discuss the proposal. Additional information was also submitted on February 24, 1998, March 2, 1998, and April 1, 1998, to address some questions/issues identified by U.S. EPA. While U.S. EPA appreciates the additional information, it has caused EPA longer than anticipated to review the proposal due to the volume of material that needed to be reviewed.
- 2. The Unilateral Administrative Order, page 22, section 20c, states that long-term monitoring is required to ensure that performance standards are being met. Performance standards are defined on page of the UAO as the cleanup standards in the ROD and SOW. The SOW, page 14, section 2, states that groundwater monitoring wells will need to be sampled quarterly for parameters listed in Appendix B to the SOW.
 - U.S. EPA previously indicated that when the Upper and Lower Aquifer Investigations were complete, U.S. EPA would approve a quarterly groundwater monitoring program in accordance with the UAO. Subsequently, U.S. EPA indicated, that after the initial baseline monitoring period, U.S. EPA was amenable to giving due consideration to allowing the Order Respondents to modify the long-term groundwater monitoring program, if requested and justified. In this regard, based upon a request from the Order Respondents, U.S. EPA gave due

3 NO.

consideration to approving a modification to the long-term groundwater monitoring program.

U.S. EPA hereby approves a monitoring program which incorporates a reduced frequency and a reduced number of analytes from the previously approved monitoring program. U.S. EPA believes that the newly-approved monitoring program is technically justifiable. This conclusion is reached based upon knowledge gained during the Upper and Lower Aquifer Investigations and the baseline monitoring events. This decision is based upon the homogeneity of the upper and lower aquifers and the low flow velocities. U.S. EPA believes that the new sampling program will still serve to monitor the groundwater and protect human health and the environment.

Specifically, rather than quarterly monitoring as previously required, U.S. EPA is approving semiannual monitoring (with several exceptions). In addition, rather than a full scan, U.S. EPA is requiring analysis of the approved indicator parameters, at a minimum, for one of the two required annual sampling events. These sampling events shall take place in the spring and fall of each year. U.S. EPA continues to believe that sampling of the wells within the site and within the plume are needed to better understand the contamination in the source areas, as well as sentinel wells to monitor potential migration.

Given these considerations, U.S. EPA hereby approves, with modifications, the proposed monitoring program in the November 1997 Groundwater Monitoring Report. Following is the approved program which must be documented in the revision to the report. At a minimum, water levels must be measured and samples collected for analysis in the wells as indicated below.

The next round of sampling, which shall occur during the week of June 1, 1998, shall consist of the same requirements for the staff gages/piezometers/wells and analytical parameters as the previously approved program for the upper and lower aquifer wells. After that, then the following program shall be applicable, at a minimum.

The following wells shall be sampled on a quarterly basis: MW-48, MW-49, and MW-9R. MW-48 and 49 shall be sampled for full scan for one of the four quarters; for the other three quarters, the wells shall be sampled for indicator parameters (as

defined below). MW-9R shall be sampled for full scan for the first year to establish a baseline; after that, it can be treated the same as MW-48 and 49.

The following upper aquifer wells shall be sampled on a semi-annual basis: M-4S, MW-6, MW-13, MW-14, MW-15, MW-18, MW-19, MW-37, MW-38, MW-39, MW-41, MW-42 MW-43, MW-44, MW-45, MW-46, and MW-47. One sampling event shall include analysis for indicator parameters, and the other shall be sampled for full-scan analysis.

The following upper aquifer wells shall be sampled on a semi-annual basis for indicator parameters: MW-11, MW-12, MW-40, and M-1S.

The following lower aquifer wells shall be sampled on a semi-annual basis: ATMW-4D, MW-08, MW-10C, MW-23, MW-24, MW-28, MW-29, MW-30, MW-31, MW-32, MW-33, MW-50, MW-51, MW-52, MW-53, MW-54, and MW-55. For these wells, one sampling event shall include analysis for indicator parameters, and the other shall be sampled for full-scan analysis (VOC, SVOCs, PCBs, and metals).

The following lower aquifer wells shall be sampled on semi-annual basis for indicator parameters: MW-7, MW-34, and M-4D.

The indicator parameters shall consist of PCE, TCE, TCA, DCE, VC, chloroethane, benzene, phthalates, phenols, arsenic, and lead.

ACS Order Respondents must give at least 4 weeks advanced notice of the intent to sample. Sampling and analysis shall be conducted in accordance with the approved SOPs (with the exception of the tubing.) See specific comment #60 below about collection water levels. As is described in comment #61 below, full data validation must be A report which discusses the results of each sampling event shall be submitted to the U.S. EPA within 10 weeks following collection of the samples. If additional information becomes available that the groundwater monitoring program is inadequate, then U.S. EPA, after reasonable review and comment by the state, may require additional groundwater monitoring wells and laboratory analysis of additional parameters.

Response: Tables 12 and 13 in the September 1997 Groundwater Monitoring Report have revised provide a detailed indication of the

sampling proposed in response to this comment and several others later in this document. It shows four quarters each for the years 1998 through 2000 and proposes the wells and parameters to be included each quarter. In accordance with this comment, a full scan event is proposed each spring and an "indicator" sampling event is proposed each fall. The table stops with the year 2000, not because sampling would stop, but because the schedule unless modified with U.S. EPA approval, will be consistent in following years.

Text has been added to the report indicating that as additional information becomes available, it will be analyzed in the context of the groundwater monitoring objectives. If the new information indicates that new wells or additional parameters are needed to meet the monitoring objectives, these will be proposed to the U.S. EPA. Similarly, if analysis of the data shows that certain wells and / or parameters are not providing information useful in meeting the monitoring objectives, these will be proposed for elimination from the monitoring plan.

Text has been added to Section 4.3.3 on page 22 of the revised Groundwater Monitoring Plan to state that sampling will be conducted in accordance with approved SOPs. Text has been added to Section 4.6, on page 23 of the revised Plan stating that a report will be submitted to U.S. EPA within 10 weeks following completion of the sampling.

The proposal presented by the ACS Order Respondents 3. relies, in large part, on the use of advanced statistical methods. In the meetings, U.S. EPA has articulated severe reservations about the use and significance of the statistical methods proposed and specifically the use of the 95% upper confidence limit of the prediction interval (95% UCLP), as presented. Based upon this, more information was provided by Order Respondents. U.S. EPA has spent a considerable amount of time evaluating the proposal. However, U.S. EPA still has reservation about the use of the statistics. U.S. EPA could provide numerous comments to support the conclusion, if wanted. In the interest of methods presented are not supportable. proposal using the statistical methods is not approved. Delete all references to the UCLP. stated above, U.S. EPA will provide specific comments upon request.

Response: Reference to the previously proposed statistical method have been deleted from the text, tables and figures of the revised baseline monitoring report and groundwater monitoring plan. The statistical methods to trigger response, have been replaced by a direct numeric method as agreed upon between the ACS Group and U.S. EPA at recent meetings and as described in Comment 62, later in this document.

4. Subsequent to the submittal of the Technical Memorandum, U.S. EPA was informed by way of a letter dated March 16, 1998, that the laboratory that has been used by the Order Respondents and approved by U.S. EPA for analysis of groundwater, soil and sediment samples has filed for bankruptcy. Two other laboratories have been proposed; these are CompuChem, a division of Liberty Analytical Corp. (NC), and Quanterra Environmental Services.

Response: Quanterra Environmental Services has been selected as the laboratory, and the samples collected in June 1998 were analyzed at their facilities.

Subsequent to the submittal of the Technical 5. Memorandum, U.S. EPA was offered, at the February 24, 1998, meeting, an explanation for the phenol detections from Order Respondents that there exists a possibility that the tubing used to sample the groundwater may have contributed to phenol contamination detected in the groundwater. agreed that the suggestion of the phenol being associated with the pump tubing is a plausible hypothesis and should be presented in this document and a clear proposal for testing the hypothesis was made and implemented. U.S. EPA was informed by way of a fax dated April 1, 1998, the results of the investigation. However, phenols are contaminants of concern at this site; that is, phenol is a contaminant which is associated with past site activities. The information recently presented will be reviewed further by U.S. EPA based upon the submissions made by the Order Respondents. this issue is resolved, phenols should be included in the list of indicator compounds. U.S. EPA and IDEM have not had adequate time to fully review this information. EPA will review the submittal along with the review of the data from groundwater samples from the next round of sampling using the polyethylene tubing, and make a decision for future sampling events, In the meantime, polyethylene tubing may be used in the next sampling event.

Response: As detailed in the response to general comment 2 above, the sampling schedule has been set up so that the next sampling round will be for full scan TCL/ TAL parameters. As Tables 12 and 13 show, Indicator parameters will be sampled in next in the fall of 1998. The current notes on these tables defining the indicator list include phenol and phthalates. If and when sampling results indicate that the phenol and / or phthalates are protocol or lab related rather than Site related, the case will be made to the U.S. EPA with a request to eliminate the anomalous compounds from the indicator list for appropriate wells.

When approved, Tables 12 and 13 will be modified accordingly.

Specific Comments

6. Page ii, <u>Executive Summary</u>, fifth paragraph., second sentence.

Rephrase as follows: "at and around the Site."

Response: The text has been changed as requested.

7. Page ii, Executive Summary, 2nd paragraph.
First sentence states that MW9 is the only observed lower aquifer impact, but there are elevated levels of chloroethane at MW10C (420 ppb) and ether (a VOA TIC at 12,000 ppb) at MW 51. Ether has been consistently detected at high levels at MW51, which is screened at the top of the lower aquifer. Indicate this.

Response: The additional provided to U.S. EPA in March has been added to the text of the revised report.

8. Page ii; Executive Summary, 4th paragraph.
Remove the editorial statement "these appear to be unrelated to the ACS site and".

<u>Response:</u> The text specified by this comment has been deleted and replaced by a description of the data regarding trace level VOCs detected in several private wells.

9. Page ii; Executive Summary, last paragraph.

Remove "Nonetheless" from the second sentence.

Response: The text has been changed as requested.

10. Page iii; Executive Summary, first paragraph, fourth sentence.

Replace "that" with "if".

Response: The text has been changed as requested.

11. Page iii; Executive Summary, 3rd paragraph.
As is stated above, the statistical method proposed is not acceptable. Determining which indicator parameters must be based upon analyzing the results of spatial and historical data.

Response: The text has been changed to remove the reference to statistical methods.

12. Page iii; Executive Summary, 4th paragraph.
See General Comment #2. Clarify the approved sampling regime in the text.

Response: The text has been changed as requested.

13. Page 2, Section 2.1; <u>Purpose and Scope, objectives</u>, under second bullet.

Rephrase as follows: monitor the effect, if any, of the remedial actions consisting of the barrier wall and partial perimeter groundwater containment system "at and around the Site", and other remedial actions.

Response: The text has been changed as requested.

14. Page 3, Section 2.2.2; <u>Water Levels, Vertical</u>
<u>Gradients Calculated for the Upper and Lower</u>
<u>Aquifers.</u>

Gradients were calculated in this section using different methods. Vertical gradients in the upper aquifer wetlands area were calculated using the vertical distance between the midpoints of screens. Vertical gradients in the lower aquifer were calculated using the vertical distance between the bottom of the upper screen and the top of the lower screen. These gradients should be calculated using a consistent method. Please rectify this discrepancy.

Response: Hydraulic gradients are calculated from two variables: the change in water elevation between two points and the distance over which that change occurred. The vertical gradient is calculated by dividing the change in water level between two adjacent wells screened at different depths by the vertical distance over which the water level change occurred. U.S. EPA's request to use a "consistent" method is probably based on an assumption that there is a simple linear relationship between change in water level and vertical distance between the two well screens. However, the vertical well spacing is not the only variable, and so the relationship is not a linear one. While using the method requested by U.S. EPA would not likely result in any major change in groundwater flow interpretation, it would result in less precise gradient calculations than the methods used in the report. Text has been added in Section 2.2.2 on Pages 3 and 4 to explain the basis for using different methods used to calculate gradients in the upper aquifer, the lower aquifer, and across the confining clay layer.

15. Page 4, Section 2.2.2; <u>Water Levels, Vertical</u>
<u>Gradients calculated for the Upper and Lower</u>
Aquifers.

The head difference of one foot is explained as "clearly a measurement error". It is not clear why this "error" was not noted in the field and corrected then. Please address this.

Sec. 37.2

Response: A crew of six spends a full day to collect water levels at all 170 measurement locations in a single to achieve a database as representative as possible of "a single moment." We have made the decision not to provide the measuring crew with previous measurements at each location while they are in the field, since this might result in biasing the sampling results (i.e., the technician might re-measure in an attempt to get closer to previous values, if an anomaly is seen). The downside to this approach is that it is not immediately apparent to the sampler if an error is made in the field. Since the technician does not have the results of previous measurements while in the field, an error only becomes apparent when the groundwater elevations are being plotted to develop a contour map.

17 122 3

During plotting, it is dramatically apparent if an error as great a one foot has been made in the measurement. Text has been added to Section 2.2.2 explaining that the measurement error could not be corrected since it was not noticed in the field.

16. Page 4, Section 2.2.3; <u>Water Lévels, Calculated</u> <u>Vertical Gradients</u>.

The vertical gradients between the Upper and Lower Aquifers were calculated using as the vertical distance the thickness of the clay confining layer between wells in each nest. They were calculated using a different method from the previous gradients. If there is no compelling reason, then the gradients must be calculated using consisted methods. Please rectify.

Response: Further explanation of the appropriate methods to calculate vertical gradients are added to the text in Section 2.2.3. See response to comment 14 above for description of the technical issues involved.

17. Page 5, Section 2.4; <u>Residential Well Sampling</u>.

Make mention of the prior report which discusses the local residential drinking water wells.

<u>Response:</u> Residential wells were sampled in 1996 and 1997. Text has been added to Section 2.4 to make note of these sampling results.

18. Page 5, Section 2.4; Residential Well Sampling.
Provide more details to back up this statement.
Discuss when the well was installed and the historic contamination.

Response: Trace levels of VOC contamination have been detected in samples collected from two water supply wells (PW-R and PW-H). We don't have direct information to indicate when the residential wells were installed. We don't have historic data on contamination although we have the results of the previous sampling at PW-R. Text has been added, stating that the well has been sampled twice and that the results are

similar in both sampling events. Table 2-6 in the RI report includes the best available information regarding well construction dates for a few of the wells, but we have not been able to obtain well construction dates for most of the wells. The indications are that the wells in this vicinity were constructed in the 1950's, 1960's, and 1970's.

19. Page 5, Section 2.4; Residential Well Sampling.
Provide the address of the wells which were sampled.

<u>Response:</u> Address numbers have been added to the residential wells listed in Section 2.4, as requested.

20. Page 5, Section 2.4; Residential Well Sampling.
As before, Respondents must request that preliminary residential well sampling results be reported from the laboratory on an expedited basis. Indicate this in the proposal.

Response: Section 2.4 is a report on the sampling that was conducted in September 1998. Text has been added to Section 4.4 to indicate that in future sampling events, the analytical laboratory will be asked to provide the residential well results as soon as they are available. (To clarify, the sampling analysis itself is not conducted on a rush or otherwise expedited schedule.)

21. Page 5, Section 2.4; Residential Well Sampling. Include the address number for each of the residential well sampling locations.

Response: As indicated in the response to Comment 19 above, address numbers have been added to the residential wells listed in Section 2.4.

22. Page 7, Section 3.2.1; Groundwater Flow the Upper Aquifer, fourth paragraph.

Delete "and the relative simplicity." U.S. EPA believes that the groundwater flows are not simple. For example, while the groundwater flow follows the same general pathway as the area, there is a high degree of variability in recharge and discharge on a local scale hence producing local variabilities. Free-phase liquids present at the site may not by driven by groundwater flow gradients, and have the potential to produce dramatic variability that is unrelated to the hydraulic gradient. In addition, recent additions to the site such as the barrier wall will contribute to local variability.

Response: The clause has been deleted as requested by U.S. EPA.

23. Page 7, Section 3.2.2; <u>Vertical Gradients in the Upper Aquifer</u>.

Begin the sentence with the following. "Due to the

presence of higher levels of benzene at the base of the aquifer relative to that of the surface of the upper aquifer which was determined during the tracer investigation. . "

20011

Response: The text in the revised report has been modified as requested by U.S. EPA.

24. Page 8, Section 3.2.2; <u>Vertical Gradients in the Upper Aquifer.</u>

Rephrase such as: From the accumulated data between August 1996 and September 1997, there are not consistent vertical gradients across the aquifer. While, in general the vertical gradients are upwards, which is the typical occurrence in a wetland area shelter groundwater discharges to the surface. However, there is some fluctuation between upwards and downwards. Delete the last sentence.

Response: The text has been revised to simply report the observations from the data: that out of 20 calculated gradients, 14 were upward, 3 were downward and 3 were zero. The last sentence has been deleted as requested by U.S. EPA.

25. Page 8, Section 3.2.2; <u>Vertical Gradients in the Upper Aquifer</u>, last sentence.

Remove sentence beginning with "Therefore, it will not be necessary to continue collecting water levels at these piezometers pairs in future monitoring

events."

Response: The sentence has been deleted as directed by the U.S. EPA.

26. Page 9, Section 3.2.4; <u>Vertical Gradients in the Lower Aquifer</u>.

Remove the following sentences from the text:
"There___e it will not be necessary to measure water
levels at all lower aquifer wells in each nested
location in future monitoring activities. The water
levels from just the uppermost well in each lower
aquifer nest will be sufficient to develop the lower
aquifer potentiometric maps."

Response: The sentence has been deleted as directed by the U.S. EPA.

27. Page 9, Section 3.2.5; <u>Vertical Gradient Between Upper and Lower Aquifer</u>, Second Sentence.

In the sentence, "5" feet should be "2" feet.

Response: U.S. EPA has made a similar request in a comment on a previous investigation (see Comment 21, in the U.S. EPA letter:

"Disapproval of the First Draft, Lower Aquifer Investigation Technical Memorandum; American Chemical Service NPL Superfund Site, Griffith, Indiana, dated August 5, 1996.

In our response, in a letter dated September 27, 1996, and the accompanying report, we responded by including the following text.

From the RI investigation, it was evident that the clay confining layer was greater than 20 feet thick to the south of the site and less than five feet thick at the northern side of the Site (2.5 and 4.0 feet at CB-1 and MW33, respectively).

However, even after making three boreholes to install MW10C during the RI, uncertainty remained regarding the thickness of the confining clay layer in an area 300 feet northwest of the ACS facility (Figure 2). Three boreholes were made in March and April 1990 to place a well at the MW10C location. The drillers experienced difficulty in maintaining an open hole and collecting representative samples. An additional soil boring, CB-1, was advanced to determine the clay thickness in the vicinity of MW-10C. The thickness of clay in CB-1 appeared to be approximately 2.5 feet. The boring logs for MW10A, MW10B, MW10C, and CB-1 are included in Appendix A1, and these show the uncertainty in the thickness of the clay layer that remained after the RI. Approximately 3.5 feet of lean clay was indicated between a depth of 15.5 and 19 feet at boring MW10A. Approximately four feet of silty and sandy clay were indicated between a depth of 17 and 21 feet at MW10b. Approximately four feet of clay and silty clay were indicated at a depth of 16 feet in borehole for MW10C.

To be consistent with previous reports, the following text has been added to Section 3.2.5.

"Three borings made during the RI while installing monitoring well MW-10C (MW-10A, MW-10B, and MW-C). Drilling conditions were difficult and the drillers found it difficult to keep an open hole and collect a representative sample from the clay confining layer. These borings indicated clay thicknesses of 3.5 feet, 4.0 feet, and 4.0 feet, respectively. To further investigate, a fourth boring, CB-1 was made in the vicinity of MW-10C and it indicated a clay thickness of 2.5 feet. "

28. Page 9, Section 3.2.5; <u>Vertical Gradient Between</u>
<u>Upper and Lower Aquifer</u>.

Explain why the differing clay layer thickness causes the high degree of variability in the calculated downward gradients in the lower aquifer.

Response: In this instance, the water level drop between the upper and lower aquifer occurs across the clay confining layer. As explained in the response to Comment 14 above, hydraulic gradients are calculated by dividing the change in water elevation by the distance over which that change occurred. Therefore, the calculated gradient is the quotient of two variables: the numerator (the change in water level) and the denominator (the clay thickness). The gradient will vary in direct

proportion to changes in clay thickness and of course differences in water level. From Table 4 it is apparent that both the water levels and the clay thickness vary from one location to another. As the above explanation makes clear, this variability will result variability in calculated gradients.

-

However, the key question is: "What is significant about the hydraulic gradients between the upper and lower aquifer?" It is not the variability. Therefore, Section 3.2.5 was included in the report to focus on the significant issue, which is that the vertical gradients are strongly downward between upper and lower aquifer.

Text has been added to Section 3.2.5, summarizing the above discussion.

29. Page 10, Section 3.2.5; Groundwater Flow System,

Vertical Gradient Between Upper and Lower Aquifer.

Indicate what is meant by the "strong" downward gradient. For example, state the actual calculated gradients.

<u>Response:</u> The average horizontal gradient in the upper aquifer is on the order of 0.005. The vertical gradient between upper and lower aquifer is about two orders of magnitude greater. Therefore, is reasonable to state that vertical gradients are strong. Text has been added to provide the range of calculated gradients from Table 4.

30. Page 10, Section 3.3; Indicator Contaminants and Areas of Groundwater Contamination, Identified Sources of Groundwater Contamination.

Remove the portion of the last sentence which begins with "and therefore, have been eliminated as sources of groundwater contamination for areas outside the wall."

Response: The last part of the last sentence has been deleted in the revised report as directed by U.S. EPA.

31. Page 10, Section 3.3; Indicator Contaminants and Areas of Groundwater Contamination, Identified Sources of Groundwater Contamination. There needs to be some mention of know locations of non-aqueous phase liquids (NAPLs), both light and dense, at and around the site. A figure showing this should be included and referenced here. documentation must be provided to support the Analyze the subsurface topography to determine any likely pathways for the NAPLs. Some of this information was provided to U.S. EPA subsequent to the submittal of the Technical Memorandum and must be included in the revised Technical Memorandum report.

Response: Three new figures and a table have been added to the revised report. Figure 7 is a map of the locations where NAPLs have been observed at the site. Figure 8 is a SurferTM calculated contour plot of the surface of the top of clay. Figure 9 is a C-size showing the top-of-clay elevations at each boring location where clay has been encountered. Table 9 is a listing of coordinates and clay elevation from soil borings. The table and figures are referenced in Sections 3.4 and 3.5 of the revised report.

32. Page 10, Section 3.3; <u>Identified Sources of Groundwater Contamination</u>.

Add the following to the text: There is some doubt as to the nature and extent of any non-aqueous phase liquids (NAPLs) that may be on and around the site.

Response: A statement has been added that the U.S. EPA has inquired as to the nature and extent of NAPLs. In addition, further clarification and references to the new table and figures have been added.

33. Page 10, Section 3.3; <u>Identified Sources of</u> Groundwater Contamination.

Delete the part of the last sentence starting with, and therefore. . . Add the following to the text. It is believed that further off-site migration of contaminants is limited by the barrier wall. There is some doubt as to the longevity of the barrier wall and how long it will continue to perform as an adequate containment mechanism.

Response: The last part of the sentence has been deleted as requested. However, it is inappropriate to add a statement disclaiming longevity of the barrier wall. The final construction documentation is being prepared for the barrier wall and it will show that the barrier wall was built to highest standards for permanence and chemical resistance. The construction materials used and QA/QC standards followed were equivalent or in exceedance of those used in the construction of hazardous waste containment cells such as RCRA Subtitle C landfills. Text has been added explaining this and also observing that, like a RCRA landfill, long term monitoring will be conducted to document integrity (Section 3.5 on Page 13).

34. Page 10, Section 3.3; <u>Identified Sources of Groundwater Contamination</u>.

The last sentence of this section asserts that the sources of groundwater contamination have been eliminated for areas outside the barrier wall. Provide data to support this assertion. U.S. EPA believes that the potential exists for continuing contamination remains as long as the sources remain. Multiple sources of contamination remain at the Site. Furthermore, there is some doubt as to the nature and extent of any free-phase liquids present.

282 044

Response: In response to Comment 29 above the last part of last sentence in Section 3.3 has been deleted. In addition, text has been added to Section 3.5, stating that as designed, the barrier wall was constructed outside areas that contain buried waste as it was defined by the Administrative Order.

2 m

35. Page 10, Section 3.4; Indicator Contaminants and Areas of Groundwater Contamination.

See above general comment regarding the UCLP.

Delete references throughout the section.

Response: References to a statistical approach to data analysis have been removed from the text, as agreed with U.S. EPA in the meetings we had to discuss the groundwater monitoring plan during February and March, 1998.

36. Page 11, Section 3.4.1; <u>Indicator Contaminants and Areas of Groundwater Contamination</u>, <u>Upper Aquifer</u>, 2nd sentence.

The frequency of detections as presented may be misleading because the dilutions of some samples (at MW51) for instance can mask lower levels of other organics. Please qualify the statement.

<u>Response:</u> Text has been added to state that relatively high concentrations of one or two compounds may mask detections of compounds if those compounds exist at concentrations two or more orders of magnitude lower in concentration.

37. Page 11, Section 3.4.1; <u>Indicator Contaminants and Areas of Groundwater Contamination</u>, <u>Upper Aquifer</u>, first paragraph.

Figure 6 is labeled "Spatial and Temporal Variability of Historical VOC and SVOC Detections..." is a figure concisely summarizing the historical variability of these detections is appropriate (and needed to support the argument for using indicator compounds). Unfortunately, this figure does not show temporal variability. It merely summarizes number of detections and gives the "95% UCLP" for each compound detected during the four quarters of baseline monitoring.

Response: As agreed in several meetings earlier this year with the Agencies, statistical methods will not be used as "triggers" for monitoring modification. Therefore, Figure 10 (which was Figure 6 in the earlier submittal) has be has been modified to contain the highest concentration detected of indicator parameters at each monitoring location during the baseline monitoring. The title on the figure has been modified to be consistent with the data in now shows.

No mention has been made of the TICs found in the upper aquifer. It appears that the proposed

monitoring would not monitor the TICs. A summary of TICs is needed.

<u>Response:</u> A discussion of TICs has been added to both Section 3.6.1 for the upper aquifer and Section 3.6.2 for the lower aquifer.

38. Page 11, Section 3.4.1; <u>Indicator Contaminants and Areas of Groundwater Contamination</u>, <u>Upper Aquifer</u>, second paragraph.

It is stated that analytical results at MW48, MW49, MW13, and MW6 show consistent relatively high concentrations of benzene and chloroethane. While these wells do all show elevated levels, these levels have not been particularly consistent through time. More frequent monitoring than annual will be needed until consistent trends have been established.

Response: As requested, the groundwater monitoring plan has been revised to includes a schedule for quarterly sampling of monitoring wells MW48 and MW49 (See Table 12).

39. Page 11, Section 3.4.1; <u>Indicator Contaminants and Areas of Groundwater Contamination</u>, <u>Upper Aquifer</u>, fourth paragraph.

A hypothesis is presented to explain the changing benzene concentrations at MW48 and MW49 as being due to changes in the flow patterns due to the PGCS; that contaminates are being "pulled" past these two wells. No data or analysis has been presented to support this hypothesis. While, MW49 is located fairly close to the PGCS, MW48 is located perhaps 250 feet from the PGCS. The flow maps do not show gradients sufficient to produce these rapid effects. If there is other evidence to explain the fluctuating levels, it should be presented. These wells in particular require quarterly monitoring until the flow system is stabilized and consistent trends have been established.

Response: As requested in Comment 38, the groundwater monitoring plan has been revised to include a schedule for quarterly sampling of monitoring wells MW48 and MW49 (See Table 12).

40. Page 12, Section 3.4.1; Indicator Contaminants and Areas of Groundwater Contamination, Upper Aquifer. Add the following as a bullet point: Elevated levels of Phthalate in groundwater are a health concern. This is the reason that a maximum contaminant level for bis-(2-ehtylhexyl) phthalate or di-(2-ethylhexyl) phthalate (DEPH) has been set at 6 ug/L.

Response: A bullet has been added to Section 3.6.1. It is in general agreement with the above statement and lists the remediation level at 5.8 ug/L as stated in Appendix B of the Statement of Work.

14.5

Also, add the following bullet point: since phthalates have been detected in wells where at times when no benzene or other volatile have been detected, then the volatile will not serve to be an indicator of such.

Response: A statement has been added to the text in Section 3.6.1 making the observation that benzene is not an indicator of phthalates at the ACS Site.

41. Page 13, Section 3.4.1; <u>Upper Aquifer</u>, first full paragraph.

Remove the word "likely". It is acceptable to replace with wording such as: "it is feasible that some of the phenols may be due to natural causes, produces by the decay of organic matter."

<u>Response:</u> The section on the phenol anomaly has been re-written to discuss the results of the sampling tube test and so the sentence referenced above has been deleted.

42. Page 11, Section 3.4.1; <u>Indicator Contaminants and Areas of Groundwater Contamination</u>, <u>Upper Aquifer</u>, second paragraph.

When speaking of "relatively" high levels give ranges or orders of magnitude so that it is clear what are the typical concentrations and what is considered a relatively high level.

Response: A notation regarding the magnitude of concentration has been added to the text as requested in second paragraph of Section 3.6.1.

43. Page 12, Section 3.4.1; Indicator Contaminants and Areas of Groundwater Contamination, Upper Aquifer. Phthalates are contaminants of concern at this site: that is, phthalates are contaminants which are associated with past site activities. Furthermore, phthalate detections continue to be problematic at this site; being detected with distressing frequency. While they can be field/laboratory artifacts, their continuing (though intermittent) persistence argues otherwise. The failure of the phthalate distribution to strongly correlate with the benzene and chloroethane distribution is not persuasive. They may be due to different releases than some of the other compounds. Their degradation potential differs from that of benzene or chloroethane. Consequently the distribution of the phthalate may reasonably differ from that of the

benzene and chloroethane.

No Response is requested by this comment.

44. Pages 13-14, Section 3.4.2; <u>Indicator Contaminants</u> and Areas of Groundwater Contamination, Lower Aquifer.

See General Comment #5 above.

See response to general comment #5.

45. Page 13, Section 3.4.2; Indicator Contaminants and Areas of Groundwater Contamination, Lower Aquifer. Figure 7 is referred to in this section. Figure 7 is labeled "Spatial and Temporal Variability of Historical VOC and SVOC Detections..." It is a figure concisely summarizing the historical variability of these detections is appropriate (and needed to support the argument for using indicator compounds). Unfortunately, this figure does not show temporal variability. It merely summarizes number of detections and gives the "95% UCLP" for each compound detected during the four quarters of baseline monitoring.

Response: In several meetings with the Agencies during February and March to discuss the future groundwater monitoring plan, it was agreed to discontinue the use of statistical triggers. Therefore, the Figure 10 (formerly Figure 7) has been modified to contain the highest concentrations and the number of detections of indicator parameters at each monitoring location. The title on the figure has been modified to be consistent with the data in now shows.

46. Pages 13-14, Section 3.4.2; <u>Indicator Contaminants</u> and Areas of Groundwater Contamination, Lower Aquifer.

No mencion has been made of the TICs found in the lower aquifer. A summary of TICs is needed.

Response: A summary of the TIC detections was provide to U.S. EPA in February. That summary has been included in Section 3.4.2, as requested by U.S. EPA.

47. Page 15, Section 4.0; Proposed Long Term Monitoring Plan, last paragraph.

Several objectives for the monitoring plan are listed. It is not clear what is the difference between the first objective ("monitor groundwater flow in the upper and lower aquifers") and the third objective (monitor hydrogeologic conditions (i.e., groundwater flow patterns and horizontal groundwater velocities) in the upper and lower aquifers). Clarification is needed.

<u>Response</u>: In the next comment, U.S. EPA provides six additional objectives to include in the text of the monitoring plan. Our response to both this comment and the next is to develop one single set of objectives acceptable to the Agencies and the ACS group by synthesis of the existing comments and the comments suggested below by U.S. EPA. See the response to the next comment.

48. Page 15, Section 4.0, <u>Proposed long-term groundwater</u> monitoring Plan.

Add the following objectives:

A

- to monitor groundwater quality in the upper and lower aquifer at the boundaries of the known extent of contamination to determine whether the contaminant plumes in the upper and lower aquifer are remaining constant, or are shrinking or expanding.
- to monitor groundwater quality in the interior of the plumes to determine how contaminant concentrations change with time and in response to remedial actions.
- to monitor the sources of groundwater contamination to determine any changes and how the sources may affect fate and transport of the contaminants and how the selected remedial action treatment may be affected;
- to continue to monitor how the upper aquifer contamination has affected the lower aquifer;
- to detect changes in concentrations of the sources present. Since there are still sources remaining in place on-site which in some cases hav not been clearly defined, we can not make fate and transport predictions with confidence, and hence need to track the concentrations of sources detected;
- to measure water levels in the upper and lower aquifer to monitor water flow directions and vertical and horizontal gradients, and to determine how remedial actions are affecting groundwater flow patterns at the site.

Response: Rather than simply append these six objectives to the eight that are already in the text, we recommended editing both groups to provide a single non-repetitive and concise set of objectives equally acceptable to the Agencies and the ACS Group. A set of objectives was developed from the above list and provided to U.S. EPA in May 1998. The final list is included in Section 4.1 on page 20 of the revised

document.

49. Page 15, Section 4.3; <u>Proposed Long-term Groundwater</u>
Monitoring Plan, Sampling Frequency.

Based upon the homogeneity or the upper and lower aquifers and the low flow velocities, it has been proposed that there be a lower frequency for sampling than quarterly. However, there is enough inconsistency in contaminant levels that annual sampling is not sufficient. It is proposed to sample with a frequency of every third quarter for the first 3 years; annual except with a one quarter seasonal off-set. As was discussed in the recent meetings, there is not a sufficient database for most of the wells in the proposed monitoring program to have documented the presence or absence of seasonal changes. Continued quarterly monitoring would provide the basis to determine any season patterns. If this is not done, the subsequent collection of data on a quarterly off-set schedule would not be useful.

U.S. EPA believes that sampling semiannually may be sufficient (with some specific exceptions--MW48, MW49, and MW9R that will continue to require quarterly sampling of indicator parameters.) One sampling event per year should be for full scan analysis while the other sampling event may be for the short indicator parameters list.

Response: Tables 12 and 13 have been developed to specify sampling at specific wells for the future. The table summarizes a semi-annual sampling program that collects groundwater samples during the spring of each year for full scan analysis and collects samples each fall, for analysis of indicator parameters. Three specific wells, MW48, MW49, and MW9R are scheduled for quarterly sampling and indicator parameters, as required by this comment.

It is premature to decide now to further reduce frequency in 4 years. Monitoring objectives will likely change somewhat as the remedy is fully implemented. It must be remembered that the monitoring program under consideration now is the monitoring program pending completion of the remedy, at which time, the monitoring program may need to be modified. However, monitoring shall be required until it is demonstrated, with confidence, that the remediation levels have been achieved.

<u>Response:</u> Text has been added to Section 1.0 and 4.1 stating that the groundwater monitoring plan defined therein is an interim monitoring plan for the remediation phase. It is understood, that a long term monitoring plan will be developed to monitor the site groundwater after

the remediation has been completed.

40 19 39

Monitoring Plan, 5th bullet from top of page.

Analysis of indicator parameters alone can not determine if the groundwater cleanup objectives are being met. That is why a full scan will be necessary at least once per year. Indicate this in the text.

<u>Response</u>: As required, the text and tables have been revised to indicate that full scan analyses will be conducted once annually at the monitoring wells in the upper and lower aquifer monitoring network and at up to five residential wells (see Section 4.3).

51. Page 16, Section 4.1.1; Water Level Measurements,
Upper Aquifer Gauging Points.

While it is not clear whether the proposal presented includes water levels continue to be measured quarterly as part of the groundwater treatment system monitoring. However, U.S. EPA believes it continues to be important and must be included. Reference should be made in this document to the relevant monitoring provisions of the groundwater treatment system monitoring.

Response: A new section has been added to the Monitoring Plan (Section 4.2.2) summarizing the water level measurement locations and the analytical sampling locations and parameters that are being conducted for the BWES and PGCS under the Performance Standard Verification Plan (PSVP) for the Site. Section 4.5 commits to sampling the effluent from the PGCS treatment plant

More frequent water level measurements are needed in the upper aquifer than annual until it has been established that the flow system around the barrier wall and PGCS are in steady state. In addition, there is the potential for changing flow conditions due to changes in water management at the landfill. Water levels should be measured quarterly in the upper aquifer synoptically with the water level measurements done for the groundwater treatment system monitoring.

<u>Response:</u> Table 11 is has been added to the monitoring plan to provide a complete list of all the wells, piezometers, and staff gauges to be measure on a quarterly basis.

52. Page 17, Section 4.2.1, Groundwater Sampling and Analysis; Monitoring Wells.

It is not clear how these areas were defined, for example arbitrarily, geographically, or by some other reason. It is important to know what wells

that have historically exhibited contamination along with those which do not exhibit contamination.

Response: There are four specific and discrete areas in which the groundwater has been impacted at the Site. In the upper aquifer, groundwater flow has been radially outward from the firepond. The location of contaminant sources with this groundwater flow has resulted in three specific areas of impact within the upper aquifer. One area extends north from the site toward the drainage ditch. One area extends west into the wetland from ACS facility, and the third area extends to the south-southeast from the Off Site Containment Area. These impacted areas have been called the North, West, and South Areas, respectively. Gradients are very flat just east of the site along Colfax Avenue, so the groundwater flow is very slow, and the contaminant levels are low (less than 20 ug/L). There is no distinct basis for deciding where the north area ends and the south area begins along Colfax, so the line was arbitrarily placed at about the midpoint of the Site.

The only area in the lower aquifer that has consistently shown contamination by compounds with MCLs, is the area directly associated with the faulty casing at monitoring well MW9. Therefore, the fourth area defined in this section is the MW9 impact area.

Figure 10 and 11 were prepared to provide an indication the information requested in this comment, specifically, the compounds that have been detected at each well, the highest detected concentrations of those compounds during the baseline sampling. There is some simplification in this Figure. For wells that have had historically shown groundwater impact by the indicator compounds, there may be some compounds not shown, if they have been detected intermittently and at trace levels (in comparison to the concentrations of the indicator compounds). In addition, time-trend plots have been developed for each well that has had repeated detections of compounds; these are compiled in Appendix b.

Page 17, Section 4.1.2; Groundwater Sampling and Analysis, Lower Aquifer Gauging Points.

There is a contradiction between the text in this paragraph and the contents of Table 9, Proposed Groundwater Gauging Points. Revise Table 9 and the text to be in agreement. See General Comment #2 above.

<u>Response:</u> Table 11 (previously labeled Table 9) and the text have been revised as suggested.

54. Page 18, Section 4.2.2, <u>Private Wells</u>. Explanation for sampling residential wells is too ambiguous. Clarify the procedure in more detail.

Response: The text in Section 4.4 has been revised to clarify the ACS Group commitment to collect samples from up to five residential wells annually and to analyze those samples for full scan TCL/TAL

1

parameters. As in the past, the ACS Group is committed to collect whatever data is technically justified to meet its obligations to the U.S. EPA. Also, in accordance with Comment 20, the reporting of the results will be reported immediately upon completion of analysis by the laboratory.

N.78

55. Page 18, Section 4.2.2; Groundwater Sampling and Analysis, Private Wells.

The text proposed that no private wells will be routinely monitored. U.S. EPA continues to believe that private wells must be sampled at least on an annual frequency basis and analyzed for "full scan" parameters. Given this concern by U.S. EPA, ACS Order Respondents had subsequently proposed to sample annually the 5 wells within the plume area. U.S. EPA approves of the five wells proposed to be sampled annually. In addition, any other well deemed necessary to be sampled by U.S. EPA shall also be sampled by the Order Respondents. Four weeks prior to the annual sampling event, U.S. EPA will be notified, in writing, that the sampling event will occur; the notice shall request from U.S. EPA the number and locations of residential wells to be sampled. If no response is sent by U.S. EPA within 2 weeks of the monitoring event, then an assumption can be made that only the 5 above-mentioned sampling locations need to be sampled.

Response: The ACS Group will give the U.S. EPA four weeks notice of the planned annual collection of samples from five residential wells in the ACS vicinity. If U.S. EPA requests a change in the sampling within two weeks of the event, the ACS Group will consider the technical basis provided by the U.S. EPA. As in the past, the ACS Group is committed to collect whatever data is technically justified to meet it obligations to the U.S. EPA. See Section 4.4 on Page 23 of the revised report.

56. Page 18, Section 4.2.4; Groundwater Sampling and Analysis, Analytical Parameters.

Omitted are any indicator parameters for SVOCs. Phenol and phthalates should be included in the indicator parameter list.

Response: It is understood that U.S. EPA requires additional data before agreeing to eliminate phenol and phthalates from the list of indicators for groundwater contamination. Therefore, the sampling is scheduled so that a full scan analysis, including phenol and phthalate, will be completed in June 1998, and the results will be available several months in advance of the indicator round (Tables 12 and 13). The current notes on these tables defining the indicator list include phenol and phthalates. If and when sampling results indicate that the phenol and / or phthalates are protocol or lab related rather than Site related, the case will be made to the U.S. EPA with a request to eliminate the anomalous compounds from the indicator list for appropriate wells.

When approved, Tables 12 and 13 will be modified accordingly.

57. Page 18, Section 4.2.4.1; Groundwater Sampling and Analysis, VOCs.

It is proposed to include for analysis in the monitoring program only two volatile compounds as "indicator parameters". While these two compounds are the most pervasive volatile compounds detected at the site, the argument has not been adequately made that they are adequate surrogates for all the organics (including TICs and vinyl chloride) at the At the meetings, U.S. EPA discussed adding both chloroethane and vinyl chloride as indicator parameters. Subsequently, it has been brought to U.S. EPA's attention by IDEM that chloroethane and vinyl chloride are compounds with relatively high vapor pressures. Due to the sandy lithology from ground level throughout the extent of the depth of the upper aquifer and shallow groundwater throughout the area, volatilization through the unconsolidated material of both compounds is a possibility that must be considered. Given this, it is reasonable to assume that analytical results could be biased low over time and distance. This may preclude the notion that these compounds alone could be relied upon to serve as viable indicator parameters for a long-term monitoring program. Hence, PCE, TCA, TCE, 1,2-DCA have also been added to the list of VOC indicator parameters as well as benzene, chloroethane and vinyl chloride.

Response: PCE, TCE, TCA, DCE, VC, chloroethane, benzene, arsenic, and lead are acceptable as indicator parameters for VOCs. As shown on Tables 12 and 13, an indicator sampling event will be conducted during the fall of each year, and will include these compounds.

In addition, all compounds (VOCs, SVOCs, PCBs, and metals) shall be monitored annually.

<u>Response:</u> Tables 12 and 13 show that the wells in the upper and lower aquifer monitoring network will be sampled each spring and analyzed for the full scan of TCL/TAL parameters.

58. Page 19, Section 4.2.4.2; Groundwater Sampling and Analysis, Metals.

Refer to General Comment #2 above.

To add some detail, the discussion presented in this Technical Memorandum for selecting indicator metals is confusing. There has been no discussion of the meaning or appropriateness of using a "95% UCLP". The requirement of a significant difference in concentration between interior wells and down

gradient and side gradient wells is unacceptable. It is not clear how interior wells are defined; it appears that there is no definition of "interior wells" independent of measured organic contamination levels. This is circular reasoning. Address this or delete it.

1700

Response: As agreed in meetings with the Agencies in February and March specifically to discuss the groundwater monitoring plan, the 95% UCLP will not be used to analyze monitoring results. Therefore, the text has been modified by deleting references to statistical methods.

59. Page 20, Section 4.2.4.2; Groundwater Sampling and Analysis, Metals.

Arsenic and lead will be adequate indicators for metals in the groundwater monitoring program for the "indicator" round. The other metals would be useful in showing any natural attenuation processes.

Response: Arsenic and lead are included as indicators for the groundwater monitoring plan. See the notes on Tables 12 and 13.

60. Page 20, Section 4.4.1; Sampling and Analytical Procedures, Water Level Measurements.

EPA believes that water levels should be measured more frequently than every third quarter (annual with season off-set), as proposed in the 1997 Groundwater Report.

Hence, please revise the report to indicate the following: Water levels shall continue to be measured quarterly. This effort should be coordinated with the quarterly monitoring of the groundwater treatment system and barrier wall extraction system; monitoring of P-81 throw h P-108. Along with measuring water levels at all wells indicated in general comment #2 above, water from the following piezometers/wells must be monitored on a quarterly basis: PZ-42, PZ-43, PZ-44, LW-1, LW-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9, P-10, P-11, P-12, P-13, P-15, P-16, P-17, P-18, P-22, P-23, P-24, P-25, P-26, P-27, P-28, P-29, P-30, P-31, P-32, P-35, P-36, P-37, P-38, P-39, P-40, P-41, P-46, P-50, P-51, P-52, P-53, P-54, P-55, P-56, P-59, P-60, P-61, P-62, P-63, P-64, P-65, P-66, P-67, P-68, P-69, P-70, P-71, and EW-1. Also, water from the following staff gauges must be monitored on a quarterly basis. SG-2, SG-7, SG-8R. Also inspection of the ditches must be made to determine whether any water is present; these are where the following staff gauges are located SG-1, SG-3, SG-5, SG-6, SG-11, and SG-

12.

Response: Table 11 (previously Table 9) in the Proposed Monitoring Plan has been modified to include the above listed well, piezometer and staff gage locations.

61. Page 20, Section 4.4.2, <u>Sampling and Analytical</u> <u>Procedures, Groundwater Sampling.</u>

It is proposed that there be no data validation unless "there are indications of groundwater data inconsistencies". This is unacceptable. As was discussed in recent meetings, some level of data validation is needed. While U.S. EPA may consider a reduced level of effort for data validation once sufficient data is available for a particular laboratory, that is not the case here since a new laboratory will be needed (See General Comment #4 above). Hence, full data validation continues to be required.

<u>Response:</u> A commitment to conduct data validation of 100 percent of the data for the interim sampling plan period has been added to the text in Section 4.3.3.

62. Pages 20-21, Section 4.5; Protocol to Revise Monitoring Plan.

See General Comment #1 above. Revise the Technical Memorandum. The report proposed to determine whether increases in concentration have occurred by comparing it to a "intra well 95% UCLP". The actual trigger proposed using the "intra well 95% UCLP" as the actual trigger has been inadequately explained. While U.S. EPA is not in favor of this comparison, EPA does agree with the concept of a "trigger" level (i.e., a concentration level that exceedence of would trigger an action--additional sampling, monit ring plan modification, implementation of an additional remedial action) is reasonable. believes that the trigger should be the highest detected level in the well to date. This trigger would be "frozen", and not change over time. If a level exceeds a trigger, then the conditions must be evaluated to determine what actions are necessary. Obviously many of the levels already exceed the remediation levels, so the trigger is not meant to determine when remedial actions are necessary. Record of Decision controls what remedial actions are necessary. The trigger be the "red flag" that some condition is changing and needs to be evaluated to determine the cause and if it is already addressed.

For wells located outside of the plume, wells in

which no levels over action levels (MCLS or the ROD remediation level, as applicable) have been detected, the "trigger" should be the action level. If there is an exceedence of the action level, this indicates plume expansion and warrants immediate action (additional sampling, monitoring plan modification, implementation of an additional remedial action).

July 19. 1

Delete the discussion regarding the interval for resampling. The need for resampling or other actions shall be determined once an exceedence is found during a regular sampling event. When the exceedence is confirmed, a response should be proposed within the next 90 days.

The proposal implies that when monitoring for an area indicates levels are either below the remediation level or background, a revised monitoring plan that eliminates the wells in that area will be submitted. To be clear, elimination of wells in an area from the monitoring program must be contingent upon demonstrating that levels of all compounds, not just indicator compounds, are below the remediation level (or background), and by demonstrating that these levels will continue to remain below the remediation level (or background level).

Response: As agreed with the Agencies at several meetings during February and March to discuss the groundwater monitoring plan, statistical methods will not be used to establish action triggers for the monitoring. Instead, it was agreed that the trigger level for each well, will be the highest detected concentration of any given contaminant. Furthermore, it was agreed that the response to a trigger event would depend upon the significance of the exceedance, and could range from no action, cover than reporting, to additional monitoring or remediation.

Appendix C contains a listing of the maximum concentration of each contaminant analyzed for in each monitoring well during the baseline groundwater sampling at the Site. The results from future sampling rounds will be compared to this list, and any detections that exceed the concentrations listed in the table, will be highlighted. In the analysis section of the groundwater monitoring report, each highlighted value will be evaluated for significance.

The evaluation will take a number of factors into account to determine significance. Factors will include: groundwater flow direction, concentration of the same compound in the well during previous sampling events, concentrations of the same compound at other nearby wells, and magnitude of the exceedance of the trigger. The exceedance will be considered significant if it shows that the area of groundwater contamination is increasing in area or in concentration. Trigger events

will be reported within 90 days of completion of the sample collection, and the report will include a recommendation to the Agencies for action. Actions may range from a limited action such as waiting until the next sampling event for another evaluation, to an actions such as additional sampling, modification of the sampling plan, or implementation of an additional remedial action.

63. Appendix B; Statistical Methods Summary.
The summary presented in this appendix is not understandable. See General Comment #2 above.

Response: As agreed with the Agencies at several meetings during February and March to discuss the groundwater monitoring plan, statistical methods will not be used to establish action triggers for the monitoring. Therefore, no further explanation has been included in the text or Appendices.

64. Table 8, <u>Summary of Residential Well Sampling</u>
Results, page 1 of 5.

Explain why no VOA results for ACS-PWY-02 are reported. Include resident name and address in the table.

Response:

A sample was collected from 1002 Reder Road at the request of U.S. EPA. The sample designation assigned to this well in the field was ACS-PWY-02 and a duplicate of this sample was collected and designated ACS PWY-92. Due to a laboratory error, the sample ACS PWY-02 was analyzed for multi-concentration VOCs, not the planned low-level detection limits used for the private well samples. By the time the laboratory notified Montgomery Watson of its error, the holding time for the sample had elapsed so the laboratory could not reextract the sample to run low-level detection analysis. Therefore, VOC and VOC TIC data sheets do not exist for ACS-PWY-02. The duplicate sample results ACS-PWY-92 for 1002 Reder Road are included in Appendix G.

65. Time Trend Plot for MW48.

Replace typo (MW6) in plot title with the correct well name (MW48).

Response: The plot has been corrected as requested.

66. Appendices D, E, and F.

Explain why IEA, the approved laboratory, did not analyze the inorganic samples. Discuss why American Environmental was used. This laboratory was never approved, in advance, by U.S. EPA.

<u>Response:</u> American Environmental purchased in 1997. While the ownership changed, there was no substantive change to the laboratory, staff, or procedures. The lab continued to follow the approved QAPP. Therefore, the American Environmental label on laboratory packets is

not an indication that the laboratory itself had changed or that the samples were analyzed by a different lab.

Jack 18.

67. Appendix F. The appendix is missing the inorganic and pesticide/PCB data sheets for sample ACS-PWRE-02, and the VOA and VOA TIC data sheets for sample ACS-PWY-02.

Response: The Pesticide/PCB data sheets from ACS-PWRE-02 were inadvertently left out of Appendix F. It seems likely that during reproduction, this data sheet was "grabbed" with the one in front of it and therefore was not copied. The missing information is now included in the revised report.

J:\1252\042\Sept 97 Sampling Rpt\Response to EPA Comments (July 15).doc

TECHNICAL MEMORANDUM SEPTEMBER 1997 GROUNDWATER SAMPLING RESULTS REPORT AND GROUNDWATER MONITORING PLAN

(Revised July 21, 1998)

AMERICAN CHEMICAL SERVICE, INC. NPL SITE GRIFFITH, INDIANA

Prepared For:

ACS RD/RA Executive Committee

Prepared by:

Thomas A. Blair, PE.

Senior Project Engineer

Date

Approved by:

Peter J. Vagt, Ph.D., CPG

Project Manager

July 30,1998

ate '

EXECUTIVE SUMMARY

This Technical Memorandum presents the results of the fourth quarter baseline groundwater sampling event for the American Chemical Service (ACS) NPL Site (Site) in Griffith, Indiana. It also provides a summary of the baseline sampling data in the context of previous sampling results and it includes a proposal for an interim groundwater monitoring plan (during remedial design and remedial action) on the basis of the accumulated data and future requirements.

The fourth sampling event for the baseline groundwater monitoring was initiated on September 22, 1997 with the measurement of water levels at staff gauges, piezometers, and monitoring wells on the ACS Site. During the next two weeks, groundwater samples were collected from 24 upper aquifer and 23 lower aquifer monitoring wells and submitted under standard chain-of-custody for laboratory analyses of the full scan Target Compound List (TCL) organic and Target Analyte List (TAL) parameters. The detected analytes and concentrations were generally consistent with previous sampling results. On October 2, 1997, groundwater samples were collected from five residential wells in the vicinity and submitted for laboratory analysis of TCL/TAL parameters.

Groundwater contour maps were developed for the upper and lower aquifers based on the September 1997 water level data. The interpreted groundwater flow patterns are consistent with flow patterns observed at the Site since the Remedial Investigation in 1991. Historically, the water table has been higher to the east of the ACS facility and lower to the west and south. Prior to construction of the barrier wall, there was a groundwater mound beneath the ACS Site, resulting from infiltration through the unvegetated surface of the ACS facility and from the ACS fire pond. The resulting mound created a hydraulic barrier that prevented east-to-west groundwater flow beneath the Site, and caused the groundwater to flow north and south from a divide just east of Colfax Avenue; northward flow was directed around the ACS facility and southward flow was toward an area southeast of the Site with lower water table levels.

There has been little change in the regional groundwater flow following completion of the barrier wall and perimeter groundwater containment system (PGCS) at the ACS Site. These two remedial projects, completed in June and July 1997, only resulted in small localized changes in groundwater direction and velocity in the upper aquifer, mostly related to the 1500 foot groundwater extraction trench that is integral to the PGCS. The water table map developed from the September 1997 water level data shows that groundwater flow is still from east to west, with flow being diverted north around the ACS facility and to the south. The hydraulic barrier formerly caused by surface water infiltration on the ACS Site, has been replaced by the barrier wall. There is no observable change in the groundwater flow pattern in the lower aquifer resulting from the remedial construction. The lower aquifer potentiometric map developed from the September 1997 water level data indicates that, just as in the past, groundwater flow is from south to north in the lower sand aquifer beneath the ACS NPL Site.

Four primary areas of buried waste have been identified as sources of groundwater contamination at and around the Site: the On-Site Containment Area, the Still Bottoms Area, the Off-Site Containment Area, and the Kapica-Pazmey Drum Recycling Area. Previous sampling, beginning in 1989 for the Remedial Investigation, has indicated that groundwater contamination extends southeast from the Off-Site Containment Area and north and west from the ACS facility in the upper aquifer. Monitoring wells installed in 1996 have delineated the outer extent of groundwater impacts in each area. Benzene and chloroethane are the predominant groundwater contaminants.

The only observed lower aquifer impact has been related to monitoring well MW9, which was installed in 1990 just west of the ACS facility. Soon after installation, chloroethane was detected in MW9, and then in 1995, benzene was detected in a sample from the well. A dye tracer test conducted during 1997 indicated that there is a leak between the upper and lower aquifers at MW9, probably along the well casing. MW9 was abandoned in February 1998 and replaced by MW9R constructed ten feet north (downgradient) from the MW9 location. Future sampling of the replacement well will be used to evaluate the effectiveness of the abandonment and the magnitude of the residual impact from the leakage. Ether, a volatile organic TIC (tentatively identified compound), has been detected in several lower aquifer wells located northwest of the ACS facility. Ether has been detected at a concentration of 12,000 ug/L at monitoring well MW51.

Residential wells were sampled during the remedial investigation and during 1996 and 1997. In some sampling events there were occasional traces of VOCs reported in several samples, upgradient from the Site and to the far east of the Site. None of the detections exceeded levels of concern, such as MCLs.

Construction of the PGCS and the barrier wall has isolated the primary sources of groundwater contamination. Groundwater monitoring of the upper and lower aquifers will be required at and around the Site. Section 4 of this Technical Memorandum details an Interim Monitoring Plan to be conducted during the next few years during remedial design and construction. The monitoring plan addresses: 1) sampling locations, 2) sampling parameters, 3) sampling frequency and 4), a protocol to modify the sampling or take other action, if necessary.

The upper aquifer network of monitoring wells will monitor groundwater quality in three areas of groundwater contamination identified in the upper aquifer: one to the north, one to the west, and the other to the southeast of the ACS NPL Site. Perimeter and internal monitoring wells have been defined for each of these areas. Future monitoring at these locations will allow the boundaries of groundwater impacts to be closely monitored. and provide early warning if it may be expanding Internal wells have been identified in the north and southeast areas. Results of periodic samples from these wells will provide an indication of the performance of the PGCS and barrier wall, show changes in groundwater quality over time, and provide a warning if groundwater impacts are becoming more significant.

The lower aquifer monitoring network wells will be used to: 1) document background groundwater quality, 2) monitor the behavior of the area of contamination associated with groundwater leakage between the upper and lower aquifer at MW9, and 3), monitor the point of compliance at the downgradient boundary (north side) of the Site.

250 00

Groundwater monitoring will be conducted on a semi-annual basis as remedial design and remedial action proceed. The upper and lower aquifer network will be sampled and analyzed for full scan TCL/TAL each spring. The second annual sampling event will be conducted each fall, with the samples analyzed for indicator parameters: PCE, TCE, TCA, DCE, 1,2-DCA, VC, chloroethane, benzene phenol, phthalates, arsenic, and lead. Because of recent fluctuations in the concentrations of VOCs at upper aquifer wells MW48 and MW49 and because MW9R is a new well, these will be sampled on a quarterly basis and analyzed for indicator parameters. In addition, the water levels will be measured at the level monitoring network locations, analyzed, and reported on a quarterly basis.

J:\1252\042\Sept 97 Sampling Rpt\Final Draft\Exec Sum-GWBL(July 15).doc

1. 1. 1. 1. 1.

TABLE OF CONTENTS

<u>Section</u>					
1.0	INT	RODU	CTION	1	
2.0	SEPTEMBER 1997 SAMPLING				
	2.1	Purpo	se and Scope	2 2	
	2.2		Levels		
			Plots of Water Table and Lower Aquifer Potentiometric Surface		
			Vertical Gradients Calculated for the Upper and Lower Aquifers		
		2.2.3	Calculated Vertical Gradients Between the Upper and		
			Lower Aquifers	4	
	2.3	Groun	ndwater Sampling	5	
		2.3.1	Upper Aquifer Analytical Results		
		2.3.2	Lower Aquifer Analytical Results		
	2.4	Reside	ential Well Sampling	6	
3.0	EVALUATION OF BASELINE SAMPLING DATA				
	3.1	Summ	nary of Available Groundwater Data		
	3.2		ndwater Flow System		
			Groundwater Flow in the Upper Aquifer		
			Vertical Gradients in the Upper Aquifer		
			Groundwater Flow in the Lower Aquifer		
			Vertical Gradients in the Lower Aquifer		
			Vertical Gradient Between Upper and Lower Aquifer		
	3.3		fied Sources of Groundwater Contamination		
	3.4		nary of NAPL Observations		
			A - Area West of the Fire pond		
			B – Still Bottoms Pond		
			C - Area South of ACS Rail Spur		
			D – Off-Site Containment Area		
			ellaneous Observations of NAPL		
	3.5				
	3.6		ator Contaminants and Areas of Groundwater Contamination		
		3.6.1	Upper Aquifer		
		3.6.2			
	3.7	Tenta	tively Identified Compounds (TICs)	19	

TABLE OF CONTENTS (Continued)

Section				
4.0	GRO	DUNDWATER MONITORING PLAN	20	
	4.1	Scope and Objectives	20	
	4.2	Water Level Monitoring	21	
		4.2.1 Upper Aquifer Gauging Points	22	
		4.2.2 Remediation Component Gauging Points		
		4.2.3 Lower Aquifer Gauging Points		
	4.3	Monitoring Well Sampling		
		4.3.1 Semi-Annual Sampling		
		4.3.2 Quarterly Sampling		
		4.3.3 Sampling Protocols		
	4.4	Private Well Sampling		
	4.5	Other Monitoring	24	
	4.6	Reporting		
		4.6.1 Tabulation of Data	25	
		4.6.2 Evaluation of Changes	25	
		4.6.3 Recommendations for Action	25	
		LIST OF TABLES		
Tabl	le 1	Groundwater Elevations – September 22, 1997		
Tabl	le 2	Vertical Gradients in Wetlands – September 1997		
Tabl	le 3	Vertical Gradients in Lower Aquifer – September 1997		
Table 4		Vertical Gradients Between Upper and Lower Aquifers - September	1997	
Tabl	le 5	Summary of Field Parameter Measurements		
Tabl	le 6	Upper Aquifer Detections – September 1997		
Tabl	le 7	Low Aquifer Detections - September 1997		
Tabl	le 8	Summary of Residential Well Sampling Results - October 1997		
Tabl	le 9	Top of Clay Elevation Data		
Tabl	le 10	Monitoring Wells and TICs with Two or More Occurrences		
Tabl	le 11	Groundwater Level Gauging Points		
Tabl	le 12	Upper Aquifer Monitoring Program Wells		
Tabl	le 13	Lower Aquifer Monitoring Program Wells		

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure 1	Upper Aquifer Potentiometric Surface – September 22, 1997
Figure 2	Upper Aquifer Water Table Elevations - November 4, 1996
Figure 3	Lower Aquifer Potentiometric Surface - September 22, 1997
Figure 4	VOCs Detected in Upper Aquifer Monitoring Wells
Figure 5	VOCs Detected in Lower Aquifer Monitoring Wells
Figure 6	Residential Well Locations
Figure 7	Observed NAPL Locations
Figure 8	Contour Plot of the Top-of-Clay Surface
Figure 9	Top of Clay Elevation Map
Figure 10	Upper Aquifer, Highest Detections
Figure 11	Lower Aquifer, Highest Detections
Figure 12	Interim Upper Aquifer Monitoring Network
Figure 13	Interim Lower Aquifer Monitoring Network

LIST OF APPENDICES

Appendix A	Groundwater Flow Velocity Calculations
Appendix B	Time Trend Plots
Appendix C	List of Highest Detected Concentrations for Each Parameter and Well
Appendix D	Upper Aquifer and Field and Trip Blank Laboratory Data
Appendix E	Lower Aguifer Laboratory Data
Appendix F	Residential Well Laboratory Data
Appendix G	Data Validation Summaries

J:\1252\042\Sept 97 Sampling Rpt\Final Draft\Sept GW Report TOC.doc

1.0 INTRODUCTION

This Technical Memorandum provides a summary of the Baseline Groundwater sampling conducted at the American Chemical Service (ACS) NPL Site (Site) in Griffith, Indiana during 1996 and 1997. The baseline sampling consisted of four consecutive quarterly sampling rounds of groundwater monitoring at approximately 48 monitoring wells. These rounds included samples collected at the monitoring network wells in: 1) March, August, and November 1996, 2) April and March 1997, 3) June 1997, and 4) September 1997. The monitoring included: the measurement of water levels at monitoring wells, piezometers and staff gauges; the measurement of field parameters, and the collection and submittal of water samples for analysis of Target Compound List (TCL) organic and Target Analyte List (TAL) inorganic parameters.

The remainder of this Technical Memorandum includes three sections: Section 2 provides a listing of the September 1997 sampling event, Section 3 presents a summary and evaluation of the four quarterly events of Baseline Sampling, and Section 4 presents a proposed interim groundwater monitoring plan to be in effect during the remedial design and remedial action phases at the Site. In addition, many of the monitoring wells were sampled four or five times prior the baseline sampling, including sampling during and following the remedial investigation.

2.0 SEPTEMBER 1997 SAMPLING

2.1 PURPOSE AND SCOPE

The fourth round of the Baseline Groundwater Sampling Program, conducted in September 1997, consisted of measuring water levels and collecting groundwater samples.

- Water levels were measured at staff gauges and upper and lower aquifer wells and piezometers on September 22, 1997.
- Groundwater samples were collected from 24 monitoring wells screened in the upper aquifer and 23 monitoring wells screened in the lower aquifer during the weeks of September 22, 1997 and September 29, 1997 and analyzed for TCL/TAL parameters.

In addition, and at the request of U.S. EPA, water samples were collected at five nearby residences and analyzed for full scan TCL/TAL parameters.

As defined in the October 1996 Phase 2 Upper Aquifer Technical Memorandum (revised June 1997), the objectives of monitoring the upper aquifer are to:

- Monitor groundwater quality at the boundaries of the known extent of contamination to determine whether the contaminant plume in the upper aquifer is stable or expanding.
- Measure water levels in the upper aquifer to determine how remedial actions affect groundwater flow patterns at the Site.
- Monitor groundwater quality in the plume interior to determine how contaminant concentrations change in response to remedial actions.

The objectives of monitoring of the lower aquifer (listed in the September 1996 Lower Aquifer Investigation Report (revised June 1997), are to:

- Verify the historic northerly horizontal groundwater gradient;
- Monitor the effect of the remedial actions consisting of the barrier wall, the northside perimeter groundwater containment system and other remedial actions at and around the Site, on groundwater flow patterns; and
- Monitor for the presence of contaminants, if any, that may migrate from the upper aquifer to the lower aquifer.

Monitoring well locations and sampling parameters for the September 1997 upper aquifer monitoring activities are described in the Phase II Upper Aquifer Investigation Technical Memorandum, revised June 1997. Well locations and sampling parameters for the September 1997 lower aquifer monitoring activities are described in the Lower Aquifer Investigation Report Technical Memorandum, revised June 1997.

.. 5.

As in previous sampling events, the September sampling was conducted in accordance with U.S. EPA-approved Specific Operating Procedures (SOPs), and the approved Quality Assurance Project Plan (QAPP).

2.2 WATER LEVELS

Water levels were measured at the monitoring wells, piezometers, and staff gauges on September 22, 1997. Three additional sets of paired piezometers (P101-P106) were installed on September 25, 1997. These piezometer pairs were installed to complete the level monitoring system for the barrier wall built around the waste areas at the Site during 1997. In addition, piezometers P1, P20, P40, P41, and P49, which were damaged during barrier wall construction, were replaced. The new piezometers were surveyed, but because they were installed after the September 22, 1997 gauging event, these piezometers are not included in the tables and figures accompanying this Technical Memorandum.

2.2.1 Plots of Water Table and Lower Aquifer Potentiometric Surface

Water level measurements are presented in Table 1, which also includes map coordinates (reference points), top of inside the well casing elevations, and calculated groundwater elevations for the measurement points. Figure 1 is a water table contour map prepared from the calculated groundwater elevations (ptotted adjacent to the well, piezometer, and staff gauge symbol). Figure 2 is a water table contour plot for November 1996 before the barrier wall and perimeter groundwater containment system were constructed. Figure 3 shows the potentiometric surface for the lower aquifer based on the groundwater elevations at the uppermost well at each lower aquifer well nest (calculated groundwater elevations are plotted adjacent to well and piezometer symbols).

2.2.2 Vertical Gradients Calculated for the Upper and Lower Aquifers

Vertical gradients were calculated for both the upper and lower aquifers on the basis of water level measurement data from adjacent wells and piezometers screened at different depths in each aquifer.

A summary of vertical hydraulic gradients calculated for nested piezometers in the wetland area is presented in Table 2. Vertical gradients were calculated by dividing the difference in head between nested piezometers by the distance between the screen midpoints. (Piezometers screened at the base of the upper aquifer have screens that are two feet long. Piezometers placed to measure the water table are constructed with ten-foot long screens placed to intersect the water table. Therefore, the distance between screen midpoints is an accurate representation of the screen separation, and is appropriate for making the vertical

gradient calculation). Vertical gradients in the wetland area appear to be upward, but low in magnitude.

Vertical gradients calculated for nested wells screened within the lower aquifer during the September 1997 water level monitoring event are presented in Table 3. The gradients were calculated by dividing the difference in head between nested wells by the distance between the bottom of the upper screen and the top of the lower screen at each well location. These reference points were selected rather than screen centers in order to provide the most accurate vertical gradient calculations. Most of the lower aquifer wells have ten foot long screens, the differences in water levels at adjacent lower aquifer wells are generally quite small (most less than 0.02 feet), and the vertical separation between screens is 20 feet or less in most cases. In order to avoid biasing the calculated gradients low, it was appropriate to use the bottom and top of adjacent well screens rather than screen centers.

Four of the gradients calculated between upper, middle, and lower zones were downward, two were upward, and four were within the margin of potential error in the water level measurements. The largest downward gradient was calculated for MW8/MW31, where a difference of one foot was recorded between MW8 and MW31. This is clearly a measurement error at MW8, since previously, MW8 and MW31 have shown water elevations that are within several hundredths of a foot of each other. The error was not discovered until the actual groundwater elevations were calculated from the water depth measurements. Since the calculation was made several days after measurement, it was too late to collect another contemporaneous, accurate measurement. The largest upward gradient was observed at the MW29/MW34/MW9 well nest, where an upward gradient of 0.0013 was calculated between wells MW29 and MW34. Where gradients are measurable, there seems to be a general downward gradient from the upper to the middle part of the lower aquifer and an upward gradient from the bottom to the middle of the lower aquifer. As a result, there is little overall gradient between the top and bottom of the lower aquifer.

2.2.3 Calculated Vertical Gradients Between the Upper and Lower Aquifers

Calculated vertical gradients between wells screened in the upper aquifer and lower aquifer are presented in Table 4. In general head levels are more than ten feet higher in the upper aquifer than in the lower aquifer. It is clear that the water level drop occurs across the clay layer between the upper and lower aquifer rather than across the entire distance between well screens in the upper and lower aquifer. Therefore, vertical gradients were calculated by dividing the difference in head between the upper and lower aquifer wells by the thickness of the clay confining layer between the two wells. Strong downward vertical gradients ranged from -0.37 calculated between MW17 and MW28 to -0.82 between P27 and MW9.

2.3 GROUNDWATER SAMPLING

Prior to sampling, monitoring wells were purged using low-flow methods in accordance with the approved Monitoring Well Sampling SOP for the Upper Aquifer Investigation (revision: March 21, 1997). Field parameters, pH, specific conductivity, temperature, and turbidity, were measured and recorded during well purging activities (Table 5).

2.3.1 Upper Aquifer Analytical Results

Laboratory analytical reports for VOC, SVOC, PCB, and inorganic compound analyses of samples from upper aquifer monitoring wells are compiled in Appendix D. Compounds detected in samples are summarized in Table 6. The detections of primary contaminants of concern (as identified in previous sampling rounds) are summarized for each upper aquifer well on Figure 4. The results are consistent with previous sampling data and are discussed in the context of all four quarters of baseline sampling in Section 3. Appendix C contains time trend plots for benzene and chloroethane in upper wells and also a listing of all analytical detections in each upper aquifer well.

2.3.2 Lower Aquifer Analytical Results

Laboratory analytical reports for VOC, SVOC, PCB, and inorganic compound analyses of samples from the lower aquifer monitoring wells are compiled in Appendix E. Compounds detected in samples are summarized in Table 7 for each lower aquifer well and shown on Figure 5. The results of the sampling are consistent with previous results and are discussed in the context of all four quarters of baseline sampling in Section 3. Appendix C contains time trend plots for benzene and chloroethane in lower wells and also a listing of all analytical detections in each lower aquifer well.

Monitoring Well MW9 is a lower aquifer monitoring well that has a history of groundwater contamination. The well was installed in March 1990 using a double casing method. Within six months, low levels of chloroethane were detected in samples collected from the well. Benzene was detected in a sample from the well in January 1995 and chloroethane and benzene have been detected at generally increasing concentrations in samples since that time. Although a review of the construction report for the well did not provide any indication of irregularities in the well construction, the sudden appearance and quick increase in concentrations seemed to suggest that the benzene and chloroethane were migrating down the well casing rather than coming from some other more diffuse or distant source.

Therefore, Montgomery Watson developed a tracer test procedure to evaluate whether or not groundwater was migrating from the upper to lower aquifer in the immediate vicinity of MW9. After U.S. EPA approved the procedure, the tracer test was conducted. Dye and ionic tracers were injected in the upper aquifer in the vicinity of MW9. After 60 days, the dye tracer was detected in groundwater taken from MW9, confirming that there is a leak between the upper and lower aquifers at this location, probably along the well casing. Following the U.S. EPA approved plan, MW9 was abandoned in February 1998 and replaced by MW9R, located approximately ten feet north (downgradient) from the original

MW9 location. The results of future sampling of the new well and MW10C, which is downgradient, will be used to evaluate the effectiveness of the abandonment.

2.4 RESIDENTIAL WELL SAMPLING

Samples were collected at 18 residential wells in March 1997. The samples were analyzed for full scan TCL/TAL compounds. Trace levels of VOCs were detected in several of the wells, but none of the detections was above an MCL. Wells at the following five addresses were re-sampled concurrent with the September 1997 groundwater sampling event: 938 South Arbogast, 1014 South Arbogast, 1033 Reder Road, 1130 Reder Road (two houses served by the same well), and 430 East Avenue H.

The sample to be collected from 938 S. Arbogast was not collected because this address had previously been connected to the City of Griffith water and sewer utilities. Therefore, U.S. EPA instructed Montgomery Watson to collect a sample from 1002 Reder Rd. The sample designation assigned to this well in the field was ACS-PWY-02 and a duplicate of this sample was collected and designated ACS-PWY-92. Due to a laboratory error, the sample from ACS-PWY-02 was analyzed for multi-concentration VOCs, not the required low-level detection limits used for the private well samples. By the time the laboratory notified Montgomery Watson of this mistake, the sample was beyond the allowable holding time, and the laboratory could not re-extract the sample to run low-level detection limit VOCs. Therefore, the VOC and VOC TIC data sheets for ACS-PWY-02 are not available. However, because sample ACS-PWY92-02 was a duplicate of ACS-PWY-02, low-level detection limit VOCs and VOC TICs are available from 1002 Reder Rd., and are included in Appendix F.

<u>Address</u>
1002 Reder Road
1033 Reder Road
1130 Reder Road (Center House)
1130 Reder Road (East House)
1014 South Arbogast
430 East Avenue H

The locations of the residential wells east and south of the Site are shown on Figure 6. Each residential well sample was analyzed for TCL and TAL parameters using low detection limit analytical methods. The sampling results are tabulated in Appendix F and the analytical detections are summarized in Table 8.

The September 1997 sampling results (the sampling date was actually October 2, 1997) were similar to the March 1997 sampling. In sample from residential well PWK, TCE was detected at 0.3 parts per billion in March and at 0.2 parts per billion in September. PWK is screened in the lower aquifer, upgradient (south of the Site) and outside the footprint of the upper aquifer impacted groundwater. The samples from PWRE and PWRC again showed

Fourth Quarter Results

trace levels of VOCs, as they did in the March sampling. However, in March the detected VOCs were 2-butanone detected at 3 parts per billion and vinyl chloride detected at 0.3 and 0.2 parts per billion. In the samples collected in September, only one VOC was detected: methylene chloride at 0.2 parts billion.

3.0 EVALUATION OF BASELINE SAMPLING DATA

3.1 SUMMARY OF AVAILABLE GROUNDWATER DATA

The Remedial Investigation for the ACS NPL Site was initiated in 1988. Since that time 28 upper aquifer and 25 lower aquifer monitoring wells have been installed and sampled numerous times. In addition, more than 100 upper aquifer piezometers, three lower aquifer piezometers, and 12 surface water staff gauges have been installed and used to develop groundwater elevation maps on numerous occasions. Water levels and samples from these points have been used to complete a number of hydrogeologic evaluations starting with the Hydrogeologic Technical Memorandum and continuing with the Remedial Investigation Report and subsequent monitoring reports. The following evaluation of the groundwater flow system, aquifer geochemistry, and contaminant distributions is based on previous reports and the Baseline Groundwater monitoring conducted in 1996 and 1997.

3.2 GROUNDWATER FLOW SYSTEM

3.2.1 Groundwater Flow in the Upper Aquifer

Following the collection of water level information in June 1997, two remedial construction projects have been completed: the Perimeter Groundwater Containment System (PGCS) and the Barrier Wall and Extraction System (BWES). The effect of these structures on the upper aquifer groundwater flow system is evident in comparing Figures 1 and 2. Figure 2 illustrates the water table configuration prior to construction and Figure 1 illustrates the water table configuration after construction. Comparison of the contour patterns on these two figures indicates that changes have occurred locally in the flow pattern, but that the general regional groundwater flow paths are unchanged.

The highest groundwater levels in the upper aquifer (other than inside the barrier wall) are located east of the ACS facility as indicated by MW18 and P60 (Figure 1). These high water levels suggest the presence of a groundwater mound approximately along Reder Road. Groundwater flows to the north and south from this mound. The lowest groundwater elevations are to the west and south of the ACS facility. To the west, the groundwater sinks are the drainage ditch between SG11, SG5, SG6 and SG3, and the Griffith Landfill leachate collection system (shown by SG2 and P22). The water table is also lower to the south at locations such as MW43 and MW44. In general, groundwater flow in the vicinity of the Site is from the groundwater mound along Reder road, toward the groundwater lows in the west and south. In addition, the collection trench for the PGCS is a groundwater sink to the northwest and west of the ACS facility, as shown by the water table depression between P82 and P91.

The barrier wall prevents groundwater flow directly to the west from Colfax Avenue. Groundwater flows both north and south from the Reder Road mound. The flow to the north curves around the north end of the barrier wall and is collected in the PGCS

extraction trench (P83) or discharged to the drainage ditch (just beyond MW48). Groundwater also flows south from the Reder Road mound toward the south/southwest.

The effect of the PGCS extraction system and effluent discharge is evident in the wetland to the west of the ACS facility. The 629 and 630 contour lines west of the ACS facility illustrate this effect. The 629 foot elevation contour line wraps around most of the PGCS extraction trench due to lower water levels at P91, P88, and P85. A few hundred feet further to the west, the 630 foot contour line outlines a local groundwater high caused by treated water discharges into the wetlands from the PGCS.

While the barrier wall now prevents groundwater flow west across Colfax Avenue, westerly flow across Colfax Avenue was previously limited by a hydraulic barrier. Figure 2 (the November 1996 water table plot) shows similar general groundwater flow from east of Colfax toward the groundwater lows at the drainage ditch, the landfill leachate collection system or the far south part of the Site. Prior to construction of the barrier wall, surface water infiltration to the water table on the ACS Site and through the ACS facility fire pond (shown by SG7) caused a groundwater high near the center of the Site, resulting in radial groundwater flow from the ACS Site, and a hydraulic barrier to westerly flow across Colfax Avenue.

The upper aquifer matrix is a homogeneous silty sand with no evidence of interlayering or bedding complexities. Since the water table maps are based on water levels collected at 12 staff gauges, 28 wells, and more than 100 piezometers, very little interpolation has been required to develop detailed contour plots. All water table maps developed for the ACS Site since the remedial investigation in 1991 have consistently shown the same general groundwater flow patterns. While the contour lines defining the water table are curved, they clearly show consistent groundwater flow pathways from recharge to discharge areas. The average calculated groundwater flow velocity in the upper aquifer is on the order of 50 feet per year, but the rate probably ranges from a minimum rate of less than 10 feet per year to greater than 200 feet per year. The only locations where the groundwater velocity may exceed 100 feet per year are in the vicinity of the PGCS extraction trench and the Griffith Landfill leachate collection system. (Detailed groundwater velocity calculations, based on the RI aquifer tests and the pumping test conducted in March 1995, are summarized in Appendix A.)

Because of the homogeneity of the upper aquifer, the total number of staff gauges, wells, and piezometers can be reduced for future monitoring events. The level measurement locations necessary to develop accurate water table maps are presented in Section 4.2.1.

3.2.2 Vertical Gradients in the Upper Aquifer

Due to the presence of elevated levels of benzene at the base of the upper aquifer relative to that of the surface of the upper aquifer which was determined during the tracer investigation, U.S. EPA was concerned that there might be downward gradients in the upper aquifer in the wetland, and so required the installation of four sets of nested piezometers in the wetland to the west of the ACS facility. Table 2 shows the upper aquifer vertical gradient calculations based on the September 1997 water level measurements. The

Fourth Quarter Results

July 21, 1998

ACS NPL Site

vertical gradients recorded at each of the four nested piezometer locations for the past five quarters are tabulated below.

Piezometer Nest	August 1996	November 1996	March 1997	June 1997	September 1997
P64/P65	0.009	0.000	0.016	-0.062	0.022
P66/P67	0.005	0.005	-0.003	0.013	0.007
P68/P69	0.000	0.000	0.010	0.002	0.003
P70/P71	-0.020	0.006	0.030	0.042	0.035

Out of the 20 vertical gradients calculated from these four dual piezometer locations in the upper aquifer in the wetland, three were downward, three were zero, and 14 gradients were upward. From these accumulated data, it is apparent that the general vertical gradients are upward, which is the typical occurrence in a wetland area where groundwater discharges to the surface.

3.2.3 Groundwater Flow in the Lower Aquifer

Water levels were measured at staff gauges and the lower aquifer monitoring wells and piezometers on September 22, 1997. The measurements are recorded in Table 1 which also includes the map coordinates and the calculated water elevation for each measurement point. Figure 3 is a plot of the potentiometric surface for the lower aquifer based on the water levels measured at the uppermost well at each lower aquifer well nest. The calculated water elevations are plotted adjacent to the well, piezometer, or staff gauge symbol.

Consistent with the historical groundwater data, the groundwater flow in the lower aquifer is essentially northward. The horizontal hydraulic gradient in the lower aquifer was calculated using the measured difference in head between MW22, located in the southern portion of the Site, and MW10, located at the northern Site boundary. This difference, 1.0 foot on September 22, 1997, was then divided by the lateral distance between the two wells (2,850 feet). Based on this calculation, the horizontal hydraulic gradient in the lower aquifer is 0.00035. As illustrated in the following table, the September 22, 1997 lower aquifer horizontal hydraulic gradient is consistent with previously calculated gradients.

Report of Hydraulic Gradient is	Horizontal Hydraulic Gradient	
Remedial Investigation Report	(June 1991)	0.0006
Technical Memorandum	(October 1995)	0.00041
Lower Aquifer Tech Memo	(September 1996)	0.00047
Groundwater Monitoring Report	(August 1996)	0.00047
Groundwater Monitoring Report	(November 1996)	0.00049
Groundwater Monitoring Report	(March 1997)	0.00040
Groundwater Monitoring Report	(June 1997)	0.00044
This Groundwater Monitoring Re	0.00035	

These accumulated data show a relatively low horizontal hydraulic gradient in the lower aquifer that may be decreasing with time. The lower aquifer is homogeneous like the upper aquifer. It also consists of sand, although it contains more gravel than the upper aquifer.

Potentiometric maps developed since the remedial investigation in 1991 have shown a consistent gradient from south to north. Based on these hydraulic gradients and the hydraulic conductivity values calculated from slug test results during the RI, the groundwater flow rate in the lower aquifer is on the order of 50 feet per year. (Appendix A contains the lower aquifer groundwater velocity calculations.) If the hydraulic gradient is decreasing, the groundwater velocity would be decreasing proportionately.

3.2.4 Vertical Gradients in the Lower Aquifer

Seven nested well sets have been installed in the lower aquifer. At each location, there are two or three monitoring wells and/or piezometers, each screened at a different depth within the lower aquifer. The water levels recorded for each of these wells are summarized in Table 1 and were used to calculate vertical hydraulic gradients between well screen intervals and the top and bottom of the lower aquifer at each location. Table 3 summarizes these calculated vertical gradients. Vertical gradients in the lower aquifer have been similarly calculated for each of the past five quarters. Tabulated below are the vertical gradients calculated between the top and bottom of the lower aquifer during that time period.

Well/Piezo Nest	August 1996	November 1996	March 1997	June 1997	September 1997
MW7/MW36	0.0	0.0004	-0.0006	-0.0010	0.0
MW8/MW32	0.0002	0.0002	0.0	0.0	NA
MW9/MW34	-0.0002	-0.0002	0.0005	0.0	0.0
MW51/MW33	NA	-0.0004	0.0	0.0	0.0
MW28/PZ43	-0.0006	0.0028	0.0	0.0	0.0
MW52/MW53	NA	NA	-0.0008	-0.0004	-0.0004
MW54/MW55	NA	NA	800 0.0	0.0	0.0

<u>Note</u>

Value of "0.0" indicates that the vertical gradient was not measurable.

NA = A water level necessary for the calculation was not available

From a review of the accumulated data between August 1996 and September 1997, it is apparent that there are not consistent or significant vertical gradients across the lower aquifer. The water level measurement locations necessary to develop accurate lower aquifer potentiometric maps are presented in Section 4.1.2.

3.2.5 Vertical Gradient Between Upper and Lower Aquifer

The average groundwater elevations in the upper and lower aquifers are approximately 632 and 621 feet amsl, respectively. The confining clay layer between the upper and lower aquifer varies in thickness from greater than 30 feet to the south to less than 5 feet in the wetland to the northwest (MW-10C area). Three borings were advanced during the RI while installing monitoring well MW-10C (MW-10A, MW-10B, and MW-C). Drilling conditions were difficult and the drillers found it difficult to keep an open hole and collect a representative sample from the clay confining layer. These borings indicated clay thicknesses of 3.5 feet, 4.0 feet, and 4.0 feet, respectively. To further investigate, a fourth

Fourth Quarter Results

boring, CB-1 was made in the vicinity of MW-10C and it indicated a clay thickness of 2.5 feet.

Vertical gradients were calculated between the upper and lower aquifer at four locations where there are nearby wells screened in both aquifers. The results are summarized in Table 4, showing strong downward vertical gradients. The vertical gradients are calculated by dividing the difference in water levels by the thickness of the clay layer. The gradient values range from -0.37 calculated between MW17 and MW28 to -0.82 between P27 and MW9. However, the water level is consistently 8 to 12 feet higher in the upper aquifer, as compared to the water level in the lower aquifer. Therefore, while the calculated downward gradients show a high degree of variability, that variability is primarily due to the differing clay confining layer thickness.

3.3 IDENTIFIED SOURCES OF GROUNDWATER CONTAMINATION

The source areas for the groundwater contamination are located in the upper aquifer at the ACS Site. Prior to the Remedial Investigation, a number of sources were identified within the ACS facility (On-Site Area) and the "Off-Site" area as they were labeled. Further investigations have defined the vertical and horizontal extent of buried waste.

From its incorporation in 1955 until 1990, ACS's primary business was reclaiming spent solvents from a variety of users. The general process was to accept spent hydrocarbon solvents in drums or tanker trucks, distill them and either sell or return the reclaimed product to the user. Between 1955 and 1975, the still bottoms and residues were buried within the ACS NPL Site. In addition, any uncontained spills of spent or reclaimed solvents would have remained on the Site. The following areas have been identified by Site investigations as containing organic contaminants:

- Within the Operating ACS Facility
 - Treatment Lagoon #1
 - Still Bottoms Area
 - On-Site Containment Area
- In the Off-Site Area
 - Off-Site Containment Area
 - Kapica-Pazmey Area

3.4 SUMMARY OF NAPL OBSERVATIONS

During investigations at the ACS NPL Site over the past ten years, non-aqueous phase liquids (NAPLs) have been observed at several locations and U.S. EPA has inquired as to the nature and extent. The locations where NAPLs have been observed are now enclosed within the barrier wall. Four areas labeled A. B, C, and D that appear to contain persistent indications of NAPLs are plotted on Figure 7.

Fourth Quarter Results

July 21, 1998

Area A - Area West of the Fire Pond

During the Remedial Investigation (RI), floating NAPLs were observed in piezometer P-37. The piezometer was destroyed in the interim between the RI and pre-design investigation and was not replaced. However, the NAPLs were found in the piezometer at each measurement event before the piezometer was destroyed.

Area B - Still Bottoms Pond

During the RI, floating NAPL was observed in several soil borings in the vicinity of the closed Still Bottoms Pond.

Area C - Area South of ACS Rail Spur

Borings were made from ground surface to the confining clay layer along the proposed and final barrier wall alignment during the Dewatering Barrier Wall Alignment Investigation in February 1996. Samples were field evaluated for the presence of oil with hydrophobic dye tests. In the area between the ACS rail spur and the ACS rail tracks, a thin layer of oily soil (less than 1 inch thick) was detected at the base of the upper aquifer and the top of the confining clay at several boring locations in the area labeled C. No layer was observed in any of the perimeter borings.

Area D - Off-Site Containment Area

A number of test pits were excavated during the Pretreatment / Materials Handling Treatability Study in July 1997. Floating NAPLs were observed on the water table in Test Pits SA-01, SA-02, and SA-04. These are inside the area marked D on the attached map.

Miscellaneous Observations of NAPL

Figure 7 shows four piezometers where floating NAPLs have been detected. As mentioned above, P-37 contained NAPL each time the water level was measured. Three other piezometers (P-12, P-29, and P-35) which had not previously been found to contain NAPLs, did show an indication of floating NAPL during the September 1997 groundwater monitoring event. (The water level probe had an oily sheen after measurement). These are locations where the water table has been depressed by operation of t¹, barrier wall extraction system (BWES). It is possible that this depression has caused the accumulation of NAPLs. All locations are inside the barrier wall.

3.5 ELEVATIONS OF THE TOP OF THE CLAY CONFINING LAYER

U.S. EPA has inquired as to the nature and extent of NAPLs that may be on and around the Site. Where there are DNAPLs, there is the concern that they may seep to the bottom of the aquifer containing them and then flow by gravity along low areas. Several figures have been developed to evaluate the surface contours and elevation of the top of the clay layer, and evaluate the potential that there might be preferential DNAPL flow paths. The 140 soil borings made at the Site which have made contact with the clay layer are collated on Table 9. The values on this table were used with SurferTM contouring software to develop an

interpolated "Top of Clay" surface contour map (Figure 8). The individual boring locations and top of clay elevations are plotted on Figure 9.

One of the objectives of the Dewatering / Barrier Wall Alignment Investigation, conducted early in 1996, was to select an alignment for the barrier wall that would be outside the buried waste, as defined by the ROD and potential NAPL areas. Fifty-two borings were made in the On-Site Area and 29 borings were made in the Off-Site Area during the investigation. Each of the boreholes was advanced to the depth at which it encountered the clay layer, and continuous split spoon samples were collected at each location. Each split spoon sample was visually inspected for evidence of contamination, and samples at the aquifer clay interface were evaluated for the presence of DNAPL by using an oil-indicating field screening dye. No evidence was found of DNAPLs or LNAPLs in any of the borings located along the final alignment of the barrier wall.

Observation of the top-of-clay elevations on Figure 9 and examination of the contour plot in Figure 8 show that the top of clay elevation varies about the elevation 620 feet amsl. It appears that there may be a slight upward slope to the clay surface going from the ACS facility, south toward the landfill. The top of clay beneath the active ACS facility and On-Site Containment Area appears to be about 619 feet amsl. In the Off-Site Containment Area, the average top of clay elevation is 620 feet amsl, and at the Kapica-Pazmey Area, it is about 621 feet amsl. There is no evidence of channeling or a low area that might have resulted in gravity flow from the internal contaminant source areas, to an area now outside the barrier wall.

Prior to construction of the barrier wall in 1997, it is likely that the areas of buried waste and perhaps the areas containing NAPLs were the source of groundwater contamination. However, Figure 10 shows that these areas are now contained inside the Barrier Wall The barrier wall is built to the highest current industry standards for permanence and chemical resistance. The construction materials used and QA/QC standards followed were equivalent to or in excess of those used in the construction of hazardous waste containment cells such as RCRA Subtitle C landfills. However, since waste materials remain buried inside the barrier wall, there will be long term monitoring. The monitoring will include collection and evaluation of water levels on the inside and outside of the wall to watch for leakage through or under the wall. In addition, there will be ongoing groundwater sampling of monitoring wells in all directions down gradient from the barrier wall to provide evidence if there is a change in groundwater quality due to leakage.

3.6 INDICATOR CONTAMINANTS AND AREAS OF GROUNDWATER CONTAMINATION

3.6.1 Upper Aquifer

Figure 10 provides a spatial summary of the highest detections of VOCs, SVOCs, and metals in upper aquifer monitoring wells during the four consecutive quarterly sampling events of the baseline monitoring. The frequency of detection of each compound in the four sampling events is also indicated on the figure. It is worth noting that the sensitivity

Fourth Quarter Results

July 21, 1998

ACS NPL Site

of the analytical instrumentation performing the VOC analyses has a "detection window" of approximately two orders of magnitude. Therefore, if there is a variability in the concentrations of different compounds that is greater than two orders of magnitude, the compound that is present at the lower concentration may not be detected. For example, if the toluene concentration in a certain sample is 1,000 ug/L, the analysis may not report a benzene concentration of 10 mg/L, because it falls outside the sensitivity of the instrumentation.

1. 100

Time trend plots for benzene and chloroethane, the primary indicators of VOC contamination wells are included in Appendix C. Analytical results for samples from wells such as MW48, MW49, MW13 and MW6 that are near identified groundwater contaminant source areas show consistent, relatively high concentrations (greater than 100 ug/L) of benzene and chloroethane and lower concentrations of several other VOCs and/or SVOCs; the other VOCs and SVOCs were typically not detected consistently in all sampling events. Based on these results, benzene and chloroethane are indicators of groundwater impacts from the Site. These contaminants would also be good indicators of downgradient impacts because they are both relatively soluble and mobile in groundwater.

The distribution of benzene and/or chloroethane relative to identified Site source areas is consistent with the groundwater flow pattern in the upper aquifer. For example, based on the water table configurations shown on Figures 1 and 2, transport from a source or sources near MW6 would be expected to the south and southeast in the direction of wells such as MW19 and MW45; both benzene and chloroethane are present in groundwater at MW19 and MW45. Benzene at relatively low concentrations is also present at MW15 in this southern area.

Samples from several other monitoring wells located in the north and west part of the Site show detections of chloroethane and/or benzene. Groundwater flow in the north part of the Site appears to be to the northwest and west, controlled by regionally higher groundwater to the east and local discharge to the drainage ditch which enters the Site between wells MW13 and MW49. Recent changes in benzene concentrations at MW48 and MW49 between the June and September 1997 sampling events are probably attributable to changes in local groundwater flow patterns as a result of construction and operation of the PGCS. In other words, contaminants near the north port of the ACS facility are being "pulled" past these two wells and into the PGCS trench. Although high benzene concentrations are found at MW48, benzene is not detected at MW37, about 300 feet further to the west. This is strong evidence that the benzene impact ends in the vicinity of the drainage ditch. There is a strong gradient directly to the west from the ACS facility, where groundwater discharges to the PGCS. Samples from MW46, which is furthest to the west, have consistently contained benzene but only at low concentrations, indicating that the impacted area ends about 500 feet from the western ACS fence line.

To the east, only well MW12 has shown either of the indicator contaminants; one of the four samples from this well contained benzene at a low concentration. In this area, groundwater flow appears to be westerly toward the Site but the gradient is very low. Due

to the low gradient, it is possible that there have been temporary flow reversals in the past that resulted in the temporary transport of benzene to this location.

Analytical results for a number of wells that are either farther from the identified sources than those where indicator contaminants are present or are upgradient of the sources, show phenol and, in some cases, bis(2-ethylhexyl)phthalate and dimethylphthalate detections. These wells include MW18, MW37, MW38, MW40, MW41, MW42, MW43, MW44 and MW47. The phthalate detections at these locations appear to reflect field or laboratory artifacts rather than site impacts for the following reasons. (This concept is further supported by lower aquifer results in section 3.5.2.)

- Elevated levels of phthalate in groundwater may be a health concern under certain conditions as indicated by the remediation level of 5.8 ug/L listed in Appendix B of the Statement of Work.
- Phthalates are recognized common field and laboratory artifacts because they may be associated with plastics.
- Phthalates are relatively immobile in groundwater and are not likely to be the first compounds to arrive at a location downgradient from a source.
- Phthalates are only reported at a few wells (MW37, MW42, MW43 and MW44) and at all these locations they were not detected consistently in samples (i.e., only in one of the four sampling events).
- Phthalates are not reported consistently at the same locations as indicator contaminants, and hence Site impacts, are present. For example, bis(2-ethylhexyl)phthalate is reported at 8, and dimethylphthalate at 1, of the 11 locations where benzene and/or chloroethane were detected. At all these locations, the phthalate compound was detected in only one sampling event. This pattern also suggests that the phthalate detections at Site-impacted wells are field or laboratory artifacts.
- Since phthalates have been detected in samples from monitoring wells where no benzene or other VOC has been detected, it is apparent that VOCs such as benzene are not reliable indicators of phthalate occurrence. This would be true if phthalates are concluded to be a laboratory artifact.
- When bis(2-ethylhexyl)phthalate or dimethylphthalate were detected at wells with benzene and/or chloroethane, the concentrations were generally lower than those in the wells where indicator contaminants are absent. This concentration pattern is strong evidence that the phthalates are artifacts rather than a result of Site activities.

Phenol has been reported at all monitoring wells, but generally not for all sampling events. Most of these detections do not appear to be Site-related for the following reasons. The

distributions and concentrations of phenols are anomalous because they do not correlate with the distribution of known organic contaminants at the Sites, which have well defined plumes of contamination and which follow well document flow paths outward from defined source areas. Phthalates and phenols were detected in samples collected both upgradient and downgradient locations at the Sites. In addition, the highest detected phenols concentrations were found in samples collected from the deepest wells (as high as 340 ppb), while concentrations in shallow wells were much lower, and were not detected in field blanks.

 $f' \in \mathcal{G}_i$

It was noted that the approved sampling SOP required replacing the PVC tubing with a new length of tubing between each well. It was also noted that the water flows through the tubing at a rate of about ten feet per minute when pumped at the rates specified by the low flow sampling protocol. It was evident that water drawn from deeper wells has a longer contact time with the tubing than water drawn from shallow wells. Furthermore, it was noted that when collecting the field blank, the field technician used a very short piece of tubing, generally one to two feet in length. Therefore, a test was developed and conducted to evaluate whether the 0.5 ID., flexible, reinforced PVC, Grundfos tubing used for Low Flow Sampling could be introducing the phenols (and other compounds) into the sample volume. A proposed testing procedure was submitted to U.S. EPA and IDEM on March 13th, 1998 and the full details of the tests and results were provide to the Agencies in a letter report. "Results of Analytical Testing of PVC Tubing," dated April 9, 1998.

In summary, the test demonstrated that phenols, phthalates, and some tentatively identified compounds (TICs) can be added to groundwater samples when using the Grundfos PVC tubing and following a low flow sampling protocol. Phenol was reported in the test sample at concentrations in the range of 400 ug/L in samples drawn through PVC tubing while replicating low flow sampling from a deep monitoring well. Furthermore, bis(2-ethylhexyl)phthalate was reported at concentrations in the range of 75 ug/L in the same sample. TICs found in the sample included (2-butoxyethoxy)-ethanol and dehydroacetic acid, with estimated concentrations of 200 and 56 µg/L, respectively.

The concentrations of phenol and bis(2-ethylhexyl)phthalate measured in the investigative and MS/MSD samples from PVC Grundfos tubing are higher than the levels of these compounds reported during routine sampling of groundwater at the ACS site. For example, during the September 1997 sampling event, phenol and bis(2-ethylhexyl)phthalate were measured at concentrations up to 340 and 76 μ g/L, respectively. These concentration relationships indicate that leaching from PVC Grundfos tubing during routine sampling can account for the detections of phenol and bis(2-ethylhexyl)phthalate in monitoring well samples from the ACS Site. The typical pattern of higher concentrations of both of these compounds in the deep wells also suggests that PVC Grundfos tubing is the source. Again as an example, during the September 1997 sampling event, phenol was measured at concentrations up to 130 μ g/L in shallow wells and 340 μ g/L in deep wells; bis(2-ethylhexyl)phthalate was measured at concentrations up to 15 μ g/L in shallow wells and 76 μ g/L in deep wells. Higher concentrations in deeper wells are consistent with a source in

the tubing because longer sections of new PVC Grundfos tubing are used in these wells during routine sampling.

Assuming that detections of phenol (and possibly phthalates) are unrelated to Site contamination, three areas of groundwater contamination have been designated in the upper aquifer: south, north, and west. Each area includes wells where groundwater in the upper aquifer has been affected by site activities. The south area includes wells MW6, MW19 and MW45. Based on the pattern of groundwater flow in this area, well MW18 is upgradient with respect to the area of groundwater contamination, wells MW42 and MW43 are downgradient, and wells MW15, MW41, MW44 and MW47 are sidegradient. The low levels of benzene reported at MW15 suggest that this well is located at the boundary of the south area.

The north area includes wells MW48 and MW49. Based on the pattern of groundwater flow in the north part of the Site, MW40 is upgradient from the area of groundwater contamination, MW37 is downgradient and MW38 and MW39 are sidegradient. Well MW11 may also be sidegradient based on the one reported detection of tetrachloroethene.

The west area includes wells MW13 and MW14. Prior to the time when the PGCS began discharging to the wetlands, MW46 was downgradient from the source area at the ACS plant. However, the continuous PGCS discharge since June 1997 introduces a mound of clean groundwater between the site and MW46. Future sampling at MW46 will collect primarily the treated water that is discharged into the wetland and infiltrates into the ground.

3.6.2 Lower Aquifer

Figure 11 provides a spatial summary of the highest detections of VOCs, SVOCs, metals in upper aquifer monitoring wells during the four consecutive quarterly sampling events of the baseline monitoring. The frequency of detection of each compound in the four sampling events is also indicated on the figure (See comment in Section 3.5.1 regarding potential to mask low level VOC detections if one or more compounds in a sample has a concentration two orders of magnitude higher than another compound).

Time trend plots for benezene and chloroethane in lower aquifer wells MW9 and MW10C are included in Appendix C. Benzene and/or chloroethane have been reported in the lower aquifer at only a few locations. Chloroethane was detected at MW9 (soon to be replaced by MW9R), MW10C and MW29, and benzene at MW9, MW29, MW33 and MW53. The presence of indicator contaminants at MW9 is attributable to downward leakage along the well casing from the upper to the lower aquifer. A tracer test conducted at this location, as discussed in Section 2, documented that leakage. MW29 is located adjacent to MW9, but it is screened 15 feet lower. The concentrations of benzene at MW29, MW33 and MW53 are much lower than at MW9. The detections at MW29 indicate that the benzene extends approximately 15 feet below MW9. The other detections at MW10C, MW33 and MW53 likely represent transport through the lower aquifer from MW9, which is directly upgradient.

Bis(2-ethylhexyl)phthalate was reported in samples from many lower aquifer wells; dimethylphthalate was detected at only one well. As in the upper aquifer, the occurrence of these compounds does not correlate with benzene and/or chloroethane, providing further evidence that the phthalate detections at the Site are due to field or laboratory artifacts. (See Section 3.6.1 on Pages 15 and 16 for further details.

1.0

Phenol was reported for most of the lower aquifer wells, including wells such as MW22 and MW50, that are upgradient from the Site. Moreover, the phenol levels at some of the lower aquifer wells, including upgradient wells, were higher than those measured in the shallow aquifer, even near identified source areas. These distribution and concentration patterns strongly support the earlier conclusion that phenols are present in groundwater throughout the area and are not derived from site activities.

Based on the baseline groundwater sampling results, only one area of groundwater contamination is present in the lower aquifer. This area includes MW9/MW29 and the downgradient wells MW10C, MW33 and MW53.

3.7 TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

Tentatively Identified Compounds (TICs) were detected in several upper and lower aquifer monitoring wells. Four TICs were reported in two or more monitoring wells in the September 1997 sampling results. The following is a tabulation of tentatively identified compounds, number of detections, and highest detected concentrations.

Tentatively Identified	Number of	Maximum
Compound	Detections	Concentration
Chlorodiflouro-methane	4	95 ug/L
Ether	7	12,000 ug/L
Tetrahydrofuran	5	170 ug/L
2-ethyl-1-hexanol	9	28 ug/L

Table 10 contains a more detailed listing of these TICs and monitoring well locations. The complete listing of TICs for individual monitoring wells is compiled in Appendix C and D.

ACS NPL Site

GROUNDWATER MONITORING PLAN

4.1 SCOPE AND OBJECTIVES

The Statement of Work (SOW) included as Attachment 2 of the September 30, 1994 Administrative Order for the American Chemical Service Superfund Site states that the respondents shall implement:

"...a groundwater monitoring program designed to detect changes in water quality or concentrations of hazardous substances, contaminants, or pollutants in the groundwater at and beyond the point of compliance and shall include upgradient, downgradient and transgradient monitoring. The groundwater monitoring program shall provide for verification sampling and updating of the current local hydrogeological setting and associated conditions. The program shall consist of summarizing currently available information; installing additional monitoring wells, piezometers, and soil borings; and performing in field measurements or analysis of water levels, pH, temperature, specific conductance, hydraulic conductivity, and other measurements or analyses as approved by EPA, after reasonable opportunity for review and comment by the state. The results of this investigation shall be submitted in report form to EPA for review and approval and shall be incorporated into the work plans."

As discussed in Section 3.2, construction work conducted recently at the ACS Site has modified groundwater flow patterns locally. A barrier wall with internal extraction trenches (BWES) has been constructed around the areas of buried waste and a series of piezometers has been installed to allow documentation of the water levels inside and outside the barrier wall. A perimeter groundwater containment system (PGCS) that includes a 1,500 foot extraction trench has also been installed to prevent further off-site migration of contaminated groundwater to the north and west of the ACS facility. Piezometers have been installed along the trench to allow documentation of gradients induced by pumping. A water treatment plant has been constructed to treat the groundwater extracted from inside the barrier wall and from the PGCS. Influent and effluent samples will be collected to document the quality of the untreated and treated water, as part of the Site monitoring.

Remedial activities will be conducted at the Site for the next several years and so it is premature to develop the long term monitoring Plan at this time. On the basis of the results of the Baseline Groundwater Sampling, an interim groundwater monitoring plan has been developed. In general, groundwater sampling will be conducted semi-annually at the majority of the wells in the monitoring network. One annual sampling event will be conducted for full scan analyses of the samples and the other will be conducted for a reduced list of indicator parameters. The following site-specific objectives have been

developed for the Interim Monitoring Plan at the ACS NPL Site during remedial design and remedial action activities:

- Collect water level data to monitor groundwater flow in the upper and lower aquifers and calculate the hydraulic gradients between the aquifers
- Collect water level data to document the performance of the PGCS and BWES and to evaluate changes in the groundwater flow system resulting from the remedial actions (these activities are outlined in the Performance Standard Verification Plan, April 1997)
- Collect and analyze samples of the untreated groundwater to provide characterization of the water quality inside the barrier wall
- Collect and analyze samples of treated water to document compliance with the effluent standards
- Collect and analyze groundwater samples from upgradient monitoring wells in the upper and lower aquifer to document background groundwater quality
- Collect and analyze groundwater samples from the monitoring wells at the downgradient boundaries of the site to closely monitor the status of the boundaries of groundwater impacts
- Collect and analyze groundwater samples from the interior of the areas of contaminated groundwater to document how concentrations change with time and in response to the remedial actions
- Assess progress toward attaining cleanup objectives in contaminated areas.

The proposed monitoring plan has been developed to meet these objectives, in the context of the groundwater flow system and the nature and extent of the contaminated groundwater.

As additional information becomes available, it will be analyzed with respect to the above objectives. If the new information indicates that changes to the monitoring program (either additions or deletions) are needed to meet the objectives, these changes will be proposed to U.S. EPA for approval. Similarly, U.S. EPA may seek additional groundwater monitoring wells or laboratory analyses based on the need to meet the monitoring objectives.

4.2 WATER LEVEL MEASUREMENTS

Water level measurements will be made quarterly at upper and lower aquifer monitoring wells and piezometers. Field time to collect water level data at all points on Table 11 will be scheduled to be completed in no more than two days, in order to minimize the effects of changes in water levels with time. The water levels will be tabulated and used to calculate

Fourth Quarter Results

July 21, 1998

groundwater elevations, gradients and develop contour plots of the water table and lower aquifer potentiometric surface. The proposed water level measurement program includes the upper and lower aquifer wells and the staff gauge listed in Table 11 (this table is designed to serve as a field work sheet). The proposed networks of upper and lower aquifer gauging points are described below.

4.2.1 Upper Aquifer Gauging Points

Proposed upper aquifer gauging points include:

- Those wells that are to be sampled as part of the upper aquifer sampling program (See Section 4.3)
- Those wells and piezometers that are already included as part of the PGCS and BWES gauging activities
- Wells or piezometers that fill remaining gaps in the gauging network
- A staff gauge in the pond to the southeast of the Site

The proposed upper aquifer wells and staff gauge in the water level measurement program are shown on Figure 12. This figure shows that the distribution of gauging locations is adequate to prepare a representative water table map. Water levels will be measured at these wells, piezometers and staff gauge during each sampling event, and a water table map will be developed using the data collected.

4.2.2 Remediation Component Gauging Points

Piezometers have been installed to provide water level information in the vicinity of the Perimeter Groundwater Containment System (PGCS) and the Barrier Wall and Extraction System (BWES).

The PGCS consists of a 1,500 foot long groundwater extraction trench located north and west of the ACS tacility (Figure 12). Five arrays of three piezometers each have been constructed across the extraction system. At each location, one piezometer is located in the center of the extraction trench, one piezometer is located on the inside (south or east) of the trench and one piezometer is located outside (north or west) of the trench. The piezometer groups are shown on Table 11, numbers P81 through P92.

The Barrier Wall is a 4,500 foot vertical containment wall constructed from combined 60 mil high density polyethylene (HDPE) and 16 inch bentonite slurry mixture. The wall is keyed two feet into the confining clay layer, located at an approximate elevation of 620 feet above mean sea level, which is between 20 and 35 feet below ground surface. The wall was constructed to completely surround the active ACS Facility, the Off-Site Containment Area, and the Kapica-Pazmey Area. Eight 100 foot long extraction trenches were constructed inside the wall to extract groundwater and pipe it to the PGCS plant for treatment and release. Eight pairs of piezometers, numbered P93 through P108 were installed around the circumference of the barrier wall (Figure 12). In each pair, one

piezometer is screened just outside the barrier wall and the other is just inside the barrier wall.

وه ريون د

Water levels will be measured at each of these piezometers each quarter and compiled and evaluated with the overall Site Monitoring Reports.

4.2.3 Lower Aquifer Gauging Points

Because groundwater flow in the lower aquifer is simpler (north with a small northwest flow component), fewer gauging points are necessary to depict the potentiometric surface. Therefore, the wells listed in Table 11 are proposed to be gauged during each sampling event. At clustered locations along the northern boundary of the Site (Figure 13) only the upper most lower aquifer wells are proposed for gauging, because water levels from the middle or lower, lower aquifer wells does not yield additional useful information. These wells will provide adequate data to prepare a potentiometric surface map for the lower aquifer.

4.3 MONITORING WELL SAMPLING

4.3.1 Semi-Annual Sampling

The sampling schedule for the interim groundwater monitoring plan is summarized in Table 12 for the upper aquifer wells and Table 13 for the lower aquifer wells. In general, there will be two major sampling events each year and two minor sampling events. The major sampling events will be conducted in the spring and fall. Each spring all the up gradient and down gradient wells in both aquifers will be sampled for full scan TCL/TAL parameters. An indicator event will be conducted each fall. In this event, all wells in the monitoring network, including upgradient, downgradient and side gradient wells will be sampled and analyzed for indicator parameters. The indicator parameters will be:

VOCs: PCE, TCE, TCA, DCE, 1,2-DCA, VC, Chloroethane, and Benzene

SVOCs: Phe ol, Phthalates
Metals: Arsenic and Lead

4.3.2 Quarterly Sampling

Three monitoring wells will also be sampled during the other quarters, summer and winter. These include upper aquifer monitoring wells MW48 and MW49 and lower aquifer monitoring well MW9R. As shown in Tables 12 and 13, these three wells will be sampled once each year for the full TCL/TAL parameter list (along with all the other wells) and for indicator parameters in the other three quarters of the year.

4.3.3 Sampling Protocols

All monitoring wells will be purged and sampled using low-flow methods in accordance with the approved Monitoring Well Sampling Proposal and Protocol SOP for the Upper Aquifer Investigation (revision: July 25, 1996) and other Agency-approved SOPs. Field parameters, pH, specific conductance, temperature, and turbidity, will be measured and

Fourth Quarter Results

July 21, 1998

ACS NPL Site

recorded during well purging. Sampling activities are expected to be conducted over a two week period. Standard SW-846 methods will be used for laboratory analyses. Data validation will be conducted on all samples collected.

As indicated in Section 4.1, water levels will be measured at the upper and lower aquifer monitoring wells, piezometers, and staff gauges listed in Table 11 once each quarter, coinciding with the sampling that is conducted. A sufficient number of field technicians will be used so that all the water level locations can be covered in one working day, to minimize potential water level variability with time.

4.4 PRIVATE WELL SAMPLING

The ACS Group will give U.S. EPA four weeks notice of the planned annual collection of samples from five residential wells in the ACS vicinity. If U.S. EPA requests a change in the sampling within two weeks of the event, the ACS group will consider the technical basis provided by the U.S. EPA and schedule the necessary sampling to coincide with one of the groundwater monitoring events. As in the past, the ACS group is committed to collect whatever data is technically justified to meet its obligations to the U.S. EPA.

The following private wells are proposed for sampling (assuming owners will provide access):

Well Identifier	Street Address
PW-Y	1000 Reder Road
PW-A	1007 Reder Road
PW-B	1009 Reder Road
PW-C	1029 Reder Road
PW-I	739 S. Arbogast

The well locations are shown on Figure 6. If the U.S. EPA notifies the ACS group prior to the sampling date, one or more of those five samples can be assigned to alternate locations selected by U.S. EPA. Each well will be sampled following the approved private well sampling protocol, and the samples will be analyzed for full scan TCL/TAL parameters. To eliminate delays in reporting, the analytical laboratory will be asked to provide the analytical results as soon as they are available, rather than waiting and providing the results to the ACS Group along with the results of all other sampling.

4.5 OTHER MONITORING

In accordance with the Performance Standard Verification Plan (PSVP) for the PGCS, the effluent of the groundwater treatment system will be sampled during each of the periodic sampling events. Results for these samples will provide information to document the performance of the PGCS.

Fourth Quarter Results	July 21, 1998	ACS NPL Site
------------------------	---------------	--------------

4.6 REPORTING

A report will be produced each quarter to provide the collected data and analysis to the Agencies. The reports will be submitted to the Agencies, not more than ten weeks after the completion of the sampling event. Each report will include tabulations of data, evaluation of any changes in groundwater flow and analytical data, and recommendations for actions, if necessary, for the next sampling event.

4.6.1 Tabulation of Data

Water level data, field observations, and analytical results will be tabulated each quarter for each well sampled.

4.6.2 Evaluation of Changes

The calculated groundwater elevations will be used to develop contour plots of the upper aquifer and lower aquifer, as well as to calculate vertical gradients between the upper and lower aquifer. These will be compared to the previous maps and gradients.

Appendix C has been included in the report, and it lists the maximum concentration of each contaminant detected in each monitoring well during the groundwater sampling at the Site. The results from future sampling rounds will be compared to this list, and any detections that exceed the concentrations listed in the table will be highlighted. Each highlighted value will be evaluated for significance, in the analysis section of the corresponding groundwater monitoring report.

The evaluation will take a number of factors into account to determine significance. Factors will include: groundwater flow direction, concentration of the same compound in the well during previous sampling events, concentrations of the same compound at other nearby wells, and magnitude of the exceedance of the trigger. The exceedance will be considered significant if it shows that the area of groundwater contamination is increasing in area or increasing in concentration. Trigger events will be reported within 90 days of completion of the sample collection, and the report will include a recommendation to the Agencies for action.

4.6.3 Recommendations for Action

Actions may range from a limited action such as waiting until the next sampling event for another evaluation, to actions such as additional sampling, modification of the interim monitoring program, or implementation of additional remedial or corrective actions.

J:\1252\042\Sept 97 Sampling Rpt\Final Draft\Sept GW Report (July 15).doc

£3)

Table 1 Groundwater Elevations - September 22, 1997 American Chemical Service, Inc. NPL Site

Lower Aquifer Wells

Lower Aquifer					0.007	
Well	Refe	rence P	oints	9/22/97		
Designation	East	East North TOIC		Depth Elevation		Notes
MW-7	6113	6732	641.46	19.92	621.54	
MW36	6164	6768	637.85	16.32	621.53	
MW-8	5934	7506	640.43	18.23	622.20	Apparent Measurement Error: Depth should be 19.23
MW31	5907	7505	641.64	20.45	621.19	
MW32	5902	7507	641.84	20.64	621.20	
MW-9	4893	6990	639.05	17.45	621.60	
MW29	4886	7012	638.06	16.48	621.58	
MW34	4880	7002	638.14	16.53	621.61	
MW-10	5200	7784	635.49	14.27	621.22	
MW30	5194	7774	634.25	13.19	621.06	
MW33	5189	7774	634.13	13.07	621.06	
MW51	5198	7767	634.16	13.09	621.07	
MW-10C	5229	7554	637.45	16.10	621.35	In Sand Seam in Confining Layer
MW-21	4546	7067	633.76	12.24	621.52	
MW-22	5208	4898	636.48	14.26	622.22	
MW-23	4717	7404	633.31		633.31	
MW-24	4596	8033	635.22	14.06	621.16	
MW28	5657	5696	648.77	26.72	622.05	
MW50	5269	5383	649.43	27.42	622.01	
ATMW-4D	5297	7311	637.99	NM	NM	ACS facility Well - Hornet's Nes
W-2	5292	7307	638.46	9.35	629.11	Lower Aquifer Well
M-1D	4359	5747	638.32	16.36	621.96	Griffith Landfill Well
M-2D	3997	6495	637.11	15.31	6280	Criffith Landfill Well
M-3D	4144	6821	632.19	10.46	621.73	Griffith Landfill Well
M-4D	4949	6538	633.32	11.71	621.61	Griffith Landfill Well
MW35	4934	6542	634.50		NM	Discovered Damaged 3/97
M-5D	4171	7094	634.18	12.64	621.54	Griffith Landfill Well
MW52	4996	7814	632.74	11.56	621.18	
MW53	4977	7833	632.87	11.71	621.16	
MW54	5590	7592	636.05	15.06	620.99	
MW55	5595	7604	636.63	15.63	621.00	

Lower Aquifer Piezometers

	Refe	rence P	oints	9/22/97		
Well Designation	East	North	TOIC	Depth	Elevation	Notes
PZ44	6170	6766	638.47	16.96	621.51	
PZ42	5662	5696	648.44	26.39	622.05	
PZ43	5662	5702	648.69	26.64	622.05	

Table 1 Groundwater Elevations - September 22, 1997 American Chemical Service, Inc. NPL Site

Upper Aquifer Wells

Well		rence P		9/	22/97	
Designation	East	North	TOIC	Depth	Elevation	Notes
MW-2	5033	6839	638.05	9.26	628.79	Functional for water levels only
MW-3	5299	7314	636.62	8.56	628.06	
MW-4	6112	7126	641.05	8.28	632.77	
MW-5	5788	6482	642.13	9.01	633.12	
MW-6	5298	5520	655.28		655.28	
MW-11	6377	7329	640.47	7.69	632.78	
MW-12	6019	6352	642.74	9.54	633.20	
MW-13	5050	7814	634.08	3.96	630.12	
MW-14	4882	6995	638.56	9.39	629.17	
MW-15	4721	5003	637.89	6.47	631.42	
MW-16	5065	6596	638.52		NM	Not found - lost due to barrier well construction
MW-17	5656	5677	647.14	14.62	632.52	
MW-18	5836	5746	644.89	10.39	634.50	
MW-19	5231	4943	635.78	4.41	631.37	
MW-20	5095	5028	642.98	11.52	631.46	
AM-05	5224	6360	637.28	1.30	635.98	Labeled "Test Well"; Not shown on potentiometric map
Red Well	5204	6466	639.01	3.39	635.62	Not shown on potentiometric map
W-1	5305	7323	637.33	15.93	621.40	Not shown on potentiometric map
MW37	5395	7976	636.78	6.37	630.41	
MW38	5903	8216	636.51	6.72	629.79	
MW39	6253	7947	637.77	6.69	631.08	
MW40	63/9	6831	639.46	6.73	632.73	
MW41	6242	4517	632.74	8.03	624.71	
MW42	6264	3808	632.32	7.29	625.03	
MW43	5880	3719	633.56	7.63	625.93	
MW44	5390	4303	633.04	4.60	628.44	
MW45	5830	4388	635.35	6.98	628.37	
MW46	4526	7424	633.32	3.07	630.25	
MW47	5958	5084	640.54	7.63	632.91	
MW48	5669	7814	636.36	6.30	630.06	
MW49	5551	7650	637.00	7.15	629.85	

Upper Aquifer Landfill Wells

Well	Refe	rence P	oints	9/22/97		
Designation	East	North	TOIC	Depth	Elevation	Notes
M-1S	4362	5743	639.09	8.21	630.88	
M-2S	3999	6491	637.12	7.89	629.23	
M-3S	4142	6819	631.88	4.71	627.17	
M-4S	4953	6537	633.42	6.31	627.11	
M-5S	4170	7089	634.17		634.17	

Table 1
Groundwater Elevations - September 22, 1997
American Chemical Service, Inc. NPL Site

Staff Gauges

Well	Reference Poin	ts	9/22/97	
Designation	East North To	OSG	Depth Elevation	Notes
SG-1	5023 6196 63	3.50	NM 633.50	Dry
SG-2	4423 6864 62	2.84	2.74 620.10	
SG-3	4180 7123 63	1.17	1.97 629.20	
SG-4	5228 6611 63	5.73	0.20 635.53	
SG-5	5464 7713 63	3.36	NM 633.36	Dry
SG-6	4495 8075 63	2.97	2.68 630.29	
SG-7	5403 6889 63	7.01	1.33 635.68	
SG-9	3846 6336 63	2.42	NM	Not Found
SG-10	6748 7238 63	7.29	3.05 634.24	
SG-8R	5409 5252 63	4.70	2.75 631.95	
SG-11	5859 8245 63	4.62	NM 634.62	Dry
SG-12	5596 7867 63	4.12	NM 634.12	Dry

Table 1 Groundwater Elevations - September 22, 1997 American Chemical Service, Inc. NPL Site

Piezometers

Well	Refe	erence P	oints	9/	22/97	
Designation		North	TOC	Depth	Elevation	Notes
LW-1	4807	5070	644.57		644.57	
LW-2	4662	5465	649.70	17.88	631.82	
P-1	5696	6388	643.49	l		New 9/97 - Installed after water level monitoring
P-2	5577	6165	645.57	NM	NM	Destroyed 6/97
P-3	5453	6470	639.87	4.13	635.74	
P-4	5432	6228	639.25	NM	NM	Not Found
P-5	5285	6510	636.70	1.33	635.37	Buried in Brush
P-6	5150	6551	638.75	NM	NM	Not Found 6/97
P-7	5950	6630	643.63	10.43	633.20	
P-8	6156	6734	639.27	6.20	633.07	
P-9	6134	6994	638.88	5.91	632.97	
P-10	5413	5852	649.32	13.25	636.07	Top of inner casing cracked 3/97 & 6/97
P-11	5199	5900	649.14	12.72	636.42	Bent, free product present 3/97 & 6/97
P-12	5076	5723	650.08	13.63		Free Product in Piezometer 3/97 & 6/97
P-13	4878	5735	651.20	18.80	632.40	
P-14	5014	5914	645.33	13.34	631.99	
P-15	5003	6187	639.93	9.90	630.03	
P-16	4673	5749	648.80	16.08	632.72	
P-17	4584	6006	654.64	22.65	631.99	Inside Griffith Landfill
P-18	4623	6224	649.84	5.18	644.66	Inside Griffith Landfill
P-19	4977	5043	639.71	NM	NM	Not Found
P-20	5087	6212	641.13	1		New 9/97 - Installed after water level monitoring
P-21	4569		632.82	NM	NM	Not Found
P-22	4636		634.30	8.53	625.77	
P-23	4689	7018	636.18	7.74	628.44	
P-24	5002	7178	636.06	7.22	628.84	
P-25	5131	7510		6.62	628.39	
P-26	4764	7309		4.73	629.50	
P-27	4904			11.04	628.66	
P-28	55 `	7486		13.99	630.54	
P-29	5738	6619		6.63	635.74	Free Product in piezometer 9/97
P-30	5626	6793	642.42	NM	NM	Not Found
P-31	5480		641.03	5.25	635.78	
P-32	5746	7026	642.32	6.63	635.69	
P-33	5226	7129	640.20	5.30	634.90	
P-34	5279	6692	639.46	4.13	635.33	

Table 1
Groundwater Elevations - September 22, 1997
American Chemical Service, Inc. NPL Site

100

Piezometers Cont.

T ICEOINCECES CO				
P-35	5515 6572 641.44	5.66	635.78	Free Product in piezometer 9/97
P-36	5410 6851 645.89	10.19	635.70	
P-37	5330 6949 641.37	NM	NM	Destroyed 3/97
P-38	5149 6992 639.87	NM	NM	Destroyed 3/97
P-39	5940 6902 642.00	6.32	635.68	
P-40	5931 7241 638.77			New 9/97 - Installed after water level monitoring
P-41	5663 7377 637.23			New 9/97 - Installed after water level monitoring
P-49	5145 6949 638.98			New 9/97 - Installed after water level monitoring
P-50	5129 6964 639.59	•	NM	Not Found
P-51	3876 6859 635.07		NM	Not Found
P-52	4100 7845 636.66	7.32	629.34	
P-53	4597 8015 636.18	5.92	630.26	
P-54	4936 8081 638.28	7.89	630.39	
P-55	5628 7979 636.08	6.38	629.70	
P-56	6405 7665 639.46	7.20	632.26	
P-57	6783 7573 638.05	5.12	632.93	
P-58	6454 6932 638.30	5.73	632.57	
P-59	6389 6590 639.22	6.13	633.09	
P-60	6111 6051 640.23	6.88	633.35	
P-61	5533 5284 638.58	6.97	631.61	
P-62	5665 4945 637.06	6.26	630.80	
P-63	5483 7689 637.70	8.08	629.62	
EW-1	5113 6942 639.50		NM	Not Found
P-64	4617 7065 634.87	6.14	628.73	
P-65	4615 7063 634.77	5.93	628.84	
P-66	4729 7034 636.02	7.56	628.46	
P-67	4732 7034 636.06	7.54	628.52	
P-68	4743 7752 634.48	3.81	630.67	
P-69	4741 7751 634.66	3.97	630.69	
P-70	4880 7680 635.38	5.11	630.27	
P-71	4876 7682 635.32	4.84	630.48	

Table 1 Groundwater Elevations - September 22, 1997 American Chemical Service, Inc. NPL Site

New Piezometers - Upper Aquifer

Well	Reference P	oints	9/22/97	
Designation	East North	TOC	Depth Elevat	ion Notes
P-81	5577 7581	636.19	7.05 629.1	4 New 6/97
P-82	5577 7572	635.77	6.78 628.9	9 New 6/97
P-83	5577 7562	635.95	6.84 629.1	1 New 6/97
P-84	5322 7603	634.35	5.35 629.0	0 New 6/97
P-85	5326 7594	634.08	5.14 628.9	4 New 6/97
P-86	5329 7585	634.41	5.57 628.8	4 New 6/97
P-87	5121 7466	633.88	5.63 628.2	5 New 6/97
P-88	5130 : 7460	633.90	5.96 627.9	4 New 6/97
P-89	5137 7454	634.02	6.09 627.9	3 New 6/97
P-90	4881 7152	632.59	4.84 627.7	5 New 6/97
P-91	4889 7145	632.97	5.58 627.3	9 New 6/97
P-92	4896 7138	633.63	6.05 627.5	8 New 6/97
P-93	5136 7067	638.79	NM NM	Not Found 9/97
P-94	5146 7061	638.98	NM NM	Not Found 9/97
P-95	5146 6532	638.58	10.29 628.2	9 New 6/97
P-96	5156 ; 6537	638.39	2.96 : 635.4	3 New 6/97
P-97	5098 6283	638.39	9.05 629.3	4 New 6/97
P-98	5130 6279	639.35	2.79 636.5	6 New 6/97
P-99	5020 5945	644.35	12.37 631.9	8 New 6/9':
P-100	5031 , 5948	643.93	7.04 636.8	9 New 6/97
P-101	5550 5979	650.08		New 9/97 - Installed after water level monitoring
P-102	5517 5996	647.18		New 9/97 - Installed after water level monitoring
P-103	5672 6248	644.97		New 9/97 - Installed after water level monitoring
P-104	6267 5639	646.68		New 9/97 - Installed after water level monitoring
P-105	6678 : 5885	638.86		New 9/97 - Installed after water level monitoring
P-106	6685 5871	638.10		New 9/97 - Installed after water level monitoring
P-107	5766 7339	637.42	5.80 631.6	62 New 6/97
P-108	5757 7324	638.13	2.75 635.3	8 New 6/97

Note

All depth measurements and elevations are in units of feet.

Table 2
Vertical Gradients in Wetlands - September 1997
American Chemical Service, Inc. NPL Site
Griffith, Indiana

Piezometer	Screen	Interval	Screen	Separation	Groun	dwater Ele	evation	Hydraulic
Nest	Top	Bottom	Midpoint	(feet)	Upper	Lower	delta	Gradient
P64	629.05	624.10	626.58	5	628.73			
P65	622.20	620.20	621.20			628.84	0.11	0.022
P66	629.45	625.10	627.28	8	628.46			
P67	620.50	618.50	619.50			628.52	0.06	0.007
P68	628.15	623.80	625.98	6	630.67			
P69	621.10	618.60	619.85			630.69	0.02	0.003
P70	628.55	624.20	626.38	6	630.27			
P71	621.00	619.00	620.00			630.48	0.21	0.035

(-) = Downward Gradient

(+) = Upward Gradient

Water Levels Collected by Montgomery Watson on September 22, 1997.

Table 3
Vertical Gradients in Lower Aquifer - September 1997
American Chemical Service, Inc. NPL Site
Griffith, Indiana

	Screen	Interval		Lowest		Ground	water Elev	ation/			Vertic	al Gradient	s
Well Nest	Тор	Bottom	Separation (feet)	Measurable Gradient	Upper	Upper	Middle	Lower	delta	Upper/ Upper	Upper/ Middle	Middle/ Lower	Upper/ Lower
MW7	595.9	590.9			NA	621.54				NA			
PZ44	578.4	573.4	13	0.0008			621.51		-0.03		-0.002		
MW36	552.7	542.7	21	0.0005		l		621.53	0.02			0.001	Wυ
MW8	598.2	593.2			NA	егтог				NA			
MW31	574.6	564.6	19	0.0005			621.19		NA]	NA		1
MW32	547.3	537.3	17	0.0006			1.	621.20	0.01	(WU	WU
MW9	605.9	600.9			NA	621.60				NA			
MW29	585.9	575.9	15	0.0007			621.58		-0.02		-0.001		
MW34	552.8	542.8	23	0.0004				621.61	0.03			0.0013	wu
MW51	611.9	601.9			621.07								
MW10	603.0	598.0	-1	-0.0091		621.22			0.15	-0.136			
MW30	585.0	575.0	13	0.0008		1	621.06		-0.16)	-0.012	9	
MW33	556.0	546.0	19	0.0005		l		621.06	0			WU	WU
MW28	588.7	578.7			NA	622.05				NA			
PZ42	568.5	563.5	10	0.0010		ļ	622.05		0		wu		
PZ43	554.5	549.5	9	0.0011				622.05	0			WU	WU
MW52	615.6	605.6			NA	621.18				NA			
MW53	555.7	545.7	50	0.0002			NA	621.16	-0.02		NA	NA	-0.0004
MW54	608.1	598.1			NA	620.99				NA			
MW55	547.6	537.6	51	0.0002			NA	621.00	0.01		NA	NA	WU

Water levels collected by Montgomery Watson on September 22, 1997.

Positive values indicate upward gradient. Negative values indicate downward gradient

NA = Not Applicable. Calculating vertical gradient only for upper/lower interval at this location.

WU = Within Uncertainty of measurement error.

error = Apparent water level measurement error based on historical data

Table 4
Vertical Gradients Between Upper and Lower Aquifers - September 1997
American Chemical Service, Inc. NPL Site
Griffith, Indiana

Well	Screen	Interval	Screen	Separation	Groun	dwater El	evation	Hydraulic
Designation	Тор	Bottom	Midpoint	(feet)	Upper	Lower	delta	Gradient
P28	634.30	629.30	631.80	11	630.54			
MW8	598.20	593.20	595.70			622.20	-8.34	-0.76
P27	631.02	626.02	628.52	8.5	628.66			
MW9	605.90	600.90	603.40			621.60	-7.06	-0.83
P8	635.36	630.36	632.86	18	633.07			
MW7	595.90	590.90	593.40	i		621.54	-11.53	-0.64
MW17	632.94	622.94	627.94	28	632.52			
MW28	588.70	578.70	583.70			622.05	-10.47	-0.37

(-) = Downward Gradient

(+) = Upward Gradient

Water levels collected by Montgomery Watson on September 22, 19°7.

Table 5
Summary of Field Parameter Measurements
American Chemical Service, Inc. NPL Site
Griffith, Indiana

			Field Parameters		-
Well	pH	Conductivity	Conductivity	Temperature	Turbidity
ID	(std. units)	(umhos/cm)	(adjusted to 25°C)	(°C)	(NTU)
MIS	6.56	2730	3500	14.0	52
M3S	6.78	1154	1354	17.6	13
M4S	6.26	2150	2432	19.2	99
MW4D	7.26	847	1083	14.1	133
MW6	6.43	1690	2092	15.4	28
MW7	8.28	677	888	13.1	98
MW8	7.80	460	594	13.7	45
MW09	6.60	1265	1574	15.2	91
MW10C	7.14	1620	2093	13.7	251
MW11	6.25	305	385	14.6	315
MW12	6.91	410	534	13.4	155
MW13	7.07	928	1215	13.2	24
MW14	6.48	611	691	19.2	407
MW15	7.01	4350	5397	15.3	15
MW18	6.89	746	930	15.1	5
MW19	7.45	5220	6141	17.5	34
MW21	11.34	646	835	13.7	45
MW22	9.11	3350	4491	12.3	86
MW23	7.04	829	1082	13.3	150
MW24	6.98	1034	1353	13.2	370
MW28	7.34	669	876	13.2	323
MW29	7.13	1060	1410	12.6	19
MW30	7.49	850	1139	12.3	168
MW31	7.46	674	913	11.9	175
MW32	7.44	759	1043	11.4	201
MW33	6.64	2990	. 3955	12.8	26
MW34	7.36	890	1190	12.4	17
MW36	7.36	827	1106	12.4	97
MW37	7.04	662	825	15.1	86
MW38	6.93	568	719	14.5	143
MW39	6.77	1354	1680	15.3	229
MW40	6.56	285	349	15.8	24
MW41	6.75	386	445	18.4	12
MW42	6.85	955	1134	17.1	335
MW43	6.78	900	1074	16.9	344
MW44	7.54	747	985	12.9	72
MW45	6.81	1280	1465	18.7	10
MW46	6.58	1078	1372	14.3	20
MW47	5.44	146	163	19.7	32
MW48	6.74	931	1138	15.9	57
MW49	6.76	782	929	17.1	27
MW50	7.18	3770	4883	13.6	444
MW51	7.01	1500	1963	13.2	168
MW52	7.01	1500	1974	13.0	92
MW53	6.56	3500	4768	11.7	257
MW54	7.46	1209	1616	12.4	100
MW55	7.21	851	1169	11.4	189

NTU = nephelometric turbidity units

.

Well	Analyte	Date	Result	DVQ	LQ	Uni
Inorgani	CS					
MW06	Aluminum	9/23/97	180	J	BN	ug/I
MW06	Arsenic	9/23/97	42			ug/l
MW06	Barium	9/23/97	369			ug/l
MW06	Calcium	9/23/97	174000	J		ug/l
MW06	Chromium	9/23/97	33			ug/
MW06	Cobalt	9/23/97	2		В	ug/l
MW06	Iron	9/23/97	14300			ug/l
MW06	Lead	9/23/97	9			ug/
MW06	Magnesium	9/23/97	34200	J		ug/
MW06	Manganese	9/23/97	2170			ug/
MW06	Nickel	9/23/97	25		В	ug/
MW06	Potassium	9/23/97	16900	J	E	ug/
MW06	Sodium	9/23/97	79300	J	E	ug/
MW11	Aluminum	9/29/97	421			ug/
MWII	Barium	9/29/97	27		В	ug/
MWII	Calcium	9/29/97	35700			ug/
MWII	Chromium	9/29/97	3		В	ug/
MW11	Cobalt	9/29/97	1		В	ug/
MW11	Iron	9/29/97	1600			ug/
MW11	Magnesium	9/29/97	11400			ug/
MW11	Manganese	9/29/97	525			ug/
MWII	Nickel	9/29/97	4		В	ug/
MW11	Potassium	9/29/97	1150	J.	BE	ug/
MW11	Vanadium	9/29/97	1		В	ug/
MW12	Aluminum	10/1/97	1690			ug/
MW12	Arsenic	10/1/97	8	J	В	ug/
MW12	Barium	10/1/97	72		В	1
MW12	Calcium	10/1/97	47400			ug/
MW12	Chromium	10/1/97	9	J	В	ug/
MW12	Cobalt	10/1/97	2	J	В	ug/
MW12	Copper	10/1/97	15	J	В	ug/
MW12	Iron	10/1/97	24400			ug/
MW12	Lead	10/1/97	12			ug/
MW12	Magnesium	10/1/97	17300			ug/
MW12	Manganese	10/1/97	1210			ug/
MW12	Nickel	10/1/97	7		В	ug/
MW12	Potassium	10/1/97	2930	J	BE	ug/
MW12	Vanadium	10/1/97	20		В	ug/
MW13	Barium	10/1/97	68		В	ug/
MW13	Calcium	10/1/97	130000			ug/
MW13	Iron	10/1/97	4420			ug/
MW13	Magnesium	10/1/97	37000			ug/
MW13	Manganese	10/1/97	604			ug/

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW13	Potassium	10/1/97	2020	J	BE	ug/L
MW13	Sodium	10/1/97	24600	J	E	ug/L
MW14	Aluminum	9/29/97	7180			ug/L
MW14	Arsenic	9/29/97	9		В	ug/L
MW14	Barium	9/29/97	88		В	ug/L
MW14	Calcium	9/29/97	96400			ug/L
MW14	Chromium	9/29/97	26			ug/L
MW14	Cobalt	9/29/97	8		В	ug/L
MW14	Соррег	9/29/97	32			ug/L
MW14	Iron	9/29/97	25900			ug/L
MW14	Lead	9/29/97	20			ug/L
MW14	Magnesium	9/29/97	22000			ug/L
MW14	Manganese	9/29/97	290			ug/L
MW14	Nickel	9/29/97	· 22		В	ug/L
MW14	Potassium	9/29/97	6440	1	E	ug/L
MW14	Vanadium	9/29/97	21		В	ug/L
MW14	Zinc	9/29/97	59			ug/L
MW15	Aluminum	9/23/97	487	1	N	ug/L
MW15	Arsenic	9/23/97	58			ug/L
MW15	Barium	9/23/97	1360			ug/L
MW15	Calcium	9/23/97	73000	J		ug/L
MW15	Chromium	9/23/97	13			ug/L
MW15	Cobalt	9/23/97	5		В	ug/L
MW15	Copper	9/23/97	13	J	В	ug/L
MW15	Iron	9/23/97	7010			ug/L
MW15	Lead	9/23/97	1		В	ug/L
MW15	Magnesium	9/23/97	74300	_1		ug/L
MV. 5	Manganese	9/23/97	141			ug/L
MW15	Nickel	9/23/97	24		В	ug/L
MW15	Potassium	9/23/97	118000	J	Е	ug/L
MW15	Sodium	9/23/97	415000	J	Е	ug/L
MW15	Vanadium	9/23/97	1		В	ug/L
MW18	Barium	9/29/97	32		В	ug/L
MW18	Calcium	9/29/97	64200			ug/L
MW18	Chromium	9/29/97	71			ug/L
MW18	Copper	9/29/97	13		В	ug/L
MW18	Lead	9/29/97	14			ug/L
MW18	Magnesium	9/29/97	18900			ug/L
MW18	Manganese	9/29/97	85			ug/L
MW18	Nickel	9/29/97	6		В	ug/L
MW18	Potassium	9/29/97	3220	J	BE	ug/L
MW18	Selenium	9/29/97	4		В	ug/L
MW18	Sodium	9/29/97	67500	I	Е	ug/L
MW18	Vanadium	9/29/97	2		В	ug/L

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW19	Aluminum	9/29/97	402			ug/L
MW19	Arsenic	9/29/97	27			ug/L
MW19	Barium	9/29/97	648			ug/L
MW19	Calcium	9/29/97	85300			ug/L
MW19	Chromium	9/29/97	8		В	ug/L
MW19	Cobalt	9/29/97	2		В	ug/L
MW19	Copper	9/29/97	184			ug/L
MW19	Iron	9/29/97	4660			ug/L
MW19	Lead	9/29/97	2		В	ug/L
MW19	Magnesium	9/29/97	63900			ug/L
MW19	Manganese	9/29/97	243			ug/L
MW19	Nickel	9/29/97	17		В	ug/L
MW19	Potassium	9/29/97	98000	J	Е	ug/I
MW19	Sodium	9/29/97	719000	J	Е	ug/I
MW37	Aluminum	9/26/97	1310			ug/I
MW37	Arsenic	9/26/97	2		В	ug/I
MW37	Barium	9/26/97	34		В	ug/I
MW37	Beryllium	9/26/97	1		В	ug/I
MW37	Calcium	9/26/97	84200			ug/I
MW37	Chromium	9/26/97	7	<u> </u>	В	ug/I
MW37	Cobalt	9/26/97	6		В	ug/l
MW37	Copper	9/26/97	12		В	ug/I
MW37	Iron	9/26/97	9440			ug/I
MW37	Magnesium	9/26/97	26600			ug/l
MW37	Manganese	9/26/97	682			ug/l
MW37	Nickel	9/26/97	14		В	ug/l
MW37	Potassium	9/26/97	2060	ī	BE	ug/l
MW3 ⁻	Sodium	9/26/97	17300			ug/l
MW37	Vanadium	9/26/97	3		В	ug/l
MW38	Aluminum	9/25/97	1280		-	ug/l
MW38	Arsenic	9/25/97	5		В	ug/
MW38	Barium	9/25/97	54	1	В	ug/
MW38	Calcium	9/25/97	57800		<u> </u>	ug/
MW38	Chromium	9/25/97	9	 	В	ug/l
MW38	Cobalt	9/25/97	2		В	ug/
MW38	Соррег	9/25/97	14		В	ug/
MW38	Iron	9/25/97	16200	 		ug/
MW38	Magnesium	9/25/97	20500	 		ug/
MW38	Manganese	9/25/97	594			ug/
MW38	Nickel	9/25/97	12	 	В	ug/
MW38	Potassium	9/25/97	959	J	BE	ug/
MW38	Vanadium	9/25/97	14	十一	B	ug/
MW38	Zinc	9/25/97	56	 	 	ug/
441 44 70	Line	7143171	1 20		<u> </u>	TAR.

Well	Analyte	Date	Result	DVQ	LO	Unit
MW39	Barium	9/25/97	78	2.4	B	ug/L
MW39	Calcium	9/25/97	110000	┝╼╌┧	_ <u></u> _	ug/L
MW39	Chromium	9/25/97	7		В	
MW39	Iron	9/25/97	7300	 		ug/L
MW39	Magnesium	9/25/97	19200	 		ug/L ug/L
MW39	Manganese	9/25/97	802			
MW39	Nickel	9/25/97	7		В	ug/L ug/L
MW39	Potassium	9/25/97	8190	J	E	ug/L
MW39	Sodium	9/25/97	123000			ug/L
MW40	Aluminum	9/29/97	2140	├─ ┤		ug/L
MW40	Barium	9/29/97	24		В	ug/L
MW40	Calcium	9/29/97	34100			ug/L
MW40	Chromium	9/29/97	5	\vdash	В	ug/L
MW40	Cobalt	9/29/97	3	 	В	ug/L ug/L
MW40	Copper	9/29/97	21		В	ug/L
MW40	Iron	9/29/97	6430	 		ug/L
MW40	Magnesium	9/29/97	14100			ug/L
MW40	Manganese	9/29/97	198	$\vdash \neg \vdash$		ug/L
MW40	Nickel	9/29/97	10	1	В	ug/L
MW40	Potassium	9/29/97	2220	7	BE	ug/L
MW40	Vanadium	9/29/97	12		В	ug/L
MW41	Aluminum	9/29/97	486		_=_	ug/L
MW41	Barium	9/29/97	28	\vdash	В	ug/L
MW41	Calcium	9/29/97	55200			ug/L
MW41	Chromium	9/29/97	7		В	ug/L
MW41	Cobalt	9/29/97	1		В	ug/L
MW41	Copper	9/29/97	12		В	ug/L
MW41	Lead	9/29/97	3			ug/L
MW41	Magnesium	9/29/97	18500			ug/L
MW41	Manganese	9/29/97	280			ug/L
MW41	Nickel	9/29/97	8		В	ug/L
MW41	Potassium	9/29/97	964	J	BE	ug/L
MW41	Vanadium	9/29/97	1		В	ug/L
MW42	Aluminum	9/26/97	1880			ug/L
MW42	Arsenic	9/26/97	13			ug/L
MW42	Barium	9/26/97	97		В	ug/L
MW42	Calcium	9/26/97	118000			ug/L
MW42	Chromium	9/26/97	14		-	ug/L
MW42	Cobalt	9/26/97	2		В	ug/L
MW42	Copper	9/26/97	22		В	ug/L
MW42	Iron	9/26/97	11100			ug/L
MW42	Magnesium	9/26/97	44400			ug/L
MW42	Manganese	9/26/97	697			ug/L
MW42	Nickel	9/26/97	12		В	ug/L

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW42	Potassium	9/26/97	2350	1	BE	ug/L
MW42	Sodium	9/26/97	18000			ug/L
MW42	Vanadium	9/26/97	4		В	ug/L
MW43	Aluminum	9/26/97	12700			ug/L
MW43	Arsenic	9/26/97	81			ug/L
MW43	Barium	9/26/97	128		В	ug/L
MW43	Beryllium	9/26/97	2		В	ug/L
MW43	Cadmium	9/26/97	1		В	ug/L
MW43	Calcium	9/26/97	134000			ug/L
MW43	Chromium	9/26/97	95			ug/L
MW43	Cobalt	9/26/97	20		В	ug/L
MW43	Copper	9/26/97	75			ug/L
MW43	Iron	9/26/97	47500			ug/L
MW43	Lead	9/26/97	33			ug/L
MW43	Magnesium	9/26/97	63600			ug/L
MW43	Manganese	9/26/97	857			ug/L
MW43	Nickel	9/26/97	82			ug/L
MW43	Potassium	9/26/97	5610	J	Е	ug/L
MW43	Selenium	9/26/97	2		В	ug/L
MW43	Vanadium	9/26/97	31		В	ug/L
MW43	Zinc	9/26/97	104			ug/L
MW44	Aluminum	9/29/97	457			ug/L
MW44	Arsenic	9/29/97	11			ug/L
MW44	Barium	9/29/97	112		В	ug/L
MW44	Calcium	9/29/97	83300			ug/L
MW44	Copper	9/29/97	4		В	ug/L
MW44	Iron	9/29/97	2510			ug/L
MW44	Magnesium	9/29/97	34500			ug/L
MW44	Manganese	9/29/97	44			ug/L
MW44	Potassium	9/29/97	1370	J	BE	ug/L
MW44	Sodium	9/29/97	18900	J	E	ug/L
MW45	Arsenic	9/29/97	44			ug/L
MW45	Barium	9/29/97	110		В	ug/L
MW45	Calcium	9/29/97	112000			ug/L
MW45	Cobalt	9/29/97	3		В	ug/L
MW45	Соррег	9/29/97	9		В	ug/L
MW45	Iron	9/29/97	15900			ug/L
MW45	Lead	9/29/97	9			ug/L
MW45	Magnesium	9/29/97	28400			ug/L
MW45	Manganese	9/29/97	480			ug/L
MW45	Nickel	9/29/97	10		В	ug/L
MW45	Potassium	9/29/97	8350	J	E	ug/L
MW45	Sodium	9/29/97	101000	J	Е	ug/L
MW46	Arsenic	9/25/97	3		В	ug/L

Table 6 Upper Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW46	Barium	9/25/97	126		В	ug/L
MW46	Calcium	9/25/97	115000			ug/L
MW46	Chromium	9/25/97	2		В	ug/L
MW46	Iron	9/25/97	19000			ug/L
MW46	Magnesium	9/25/97	30900			ug/L
MW46	Manganese	9/25/97	1390		·	ug/L
MW46	Nickel	9/25/97	4		В	ug/L
MW46	Potassium	9/25/97	1190	1	BE	ug/I
MW46	Sodium	9/25/97	70000			ug/I
MW47	Aluminum	10/1/97	724	1	N	ug/I
MW47	Barium	10/1/97	13		В	ug/I
MW47	Calcium	10/1/97	13700			ug/I
MW47	Cobalt	10/1/97	2		В	ug/I
MW47	Copper	10/1/97	6		В	ug/I
MW47	Iron	10/1/97	569			ug/I
MW47	Lead	10/1/97	8			ug/l
MW47	Magnesium	10/1/97	3990		В	ug/l
MW47	Manganese	10/1/97	17			ug/l
MW47	Nickel	10/1/97	3		В	ug/l
MW47	Potassium	10/1/97	959	J	BE	ug/l
MW47	Vanadium	10/1/97	2		В	ug/l
MW48	Aluminum	9/29/97	330			ug/l
MW48	Arsenic	9/29/97	12			ug/l
MW48	Barium	9/29/97	141		В	ug/l
MW48	Calcium	9/29/97	107000			ug/l
MW48	Chromium	9/29/97	8		В	ug/l
MW48	Cobalt	9/29/97	4		В	ug/
MW48	Copper	9/29/97	13		В	ug/
MW48	Iron	9/29/97	24500			ug/
MW48	Lead	9/29/97	8			ug/
MW48	Magnesium	9/29/97	15100			ug/
MW48	Manganese	9/29/97	504			ug/
MW48	Nickel	9/29/97	19		В	ug/
MW48	Potassium	9/29/97	8270	J	E	ug/
MW48	Sodium	9/29/97	42700	J	E	ug/
MW48	Vanadium	9/29/97	2		В	ug/
MW49	Aluminum	9/24/97	1130	1	N	ug/
MW49	Arsenic	9/24/97	37			ug/
MW49	Barium	9/24/97	120		В	ug/
MW49	Calcium	9/24/97	80300	J		ug/
MW49	Chromium	9/24/97	10		В	ug/
MW49	Cobalt	9/24/97	2		В	ug/
MW49	Copper	9/24/97	6	3	В	ug/
MW49	Iron	9/24/97	28200			ug/

and white. Table 6 **Upper Aquifer Detections - September 1997 American Chemical Services** Griffith, Indiana

e die

Well	Analyte	Date	Result	DVQ	LQ	Unit		
MW49	Lead	9/24/97	3			ug/L		
MW49	Magnesium	9/24/97	9980	J		ug/L		
MW49	Manganese	9/24/97	2210			ug/L		
MW49	Nickel	9/24/97	12		В	ug/L		
MW49	Potassium	9/24/97	5480	J	Е	ug/L		
MW49	Sodium	9/24/97	25800	J	E	ug/L		
MW49	Vanadium	9/24/97	2		В	ug/L		
Indicator Parameters								
MW18	Nitrate	9/30/97	5000			ug/L		
MW18	Sulfate	9/30/97	103000			ug/L		
MW18	TKN	9/30/97	0	J		ug/L		
MW18	TOC	9/30/97	2000			ug/L		
MW19	Ammonia-N	9/30/97	38000			ug/L		
MW19	BOD	9/30/97	3000			ug/L		
MW19	Sulfate	9/30/97	12000			ug/L		
MW19	TKN	9/30/97	40000			ug/L		
MW19	TOC	9/30/97	12000			ug/L		
MW38	Ammonia-N	9/25/97	0			ug/L		
MW38	BOD	9/25/97	0			ug/L		
MW38	Nitrate	9/25/97	['] 0			ug/L		
MW38	Orthophosphate	9/25/97	0			ug/L		
MW38	Sulfate	9/25/97	22000			ug/L		
MW38	TKN	9/25/17	1000			ug/L		
MW38	TOC	9/25/97	7000			ug/L		
MW39	Ammonia-N	9/25/97	4000			ug/L		
MW39	BOD	9/25/97	0			ug/L		
MW39	Nitrate	9/25/97	0			ug/L		
MW39	Orthophosphate	9/25/97	0			ug/L		
MW39	Sulfate	9/25/97	7000			ug/L		
MW39	TKN	9/25/97	4000			ug/L		
MW39	TOC	9/25/97	5000			ug/L		
MW40	Ammonia-N	9/29/97	0			ug/L		
MW40	BOD	9/29/97	0			ug/L		
MW40	Nitrate	9/29/97	0			ug/L		
MW40	Nitrite	9/29/97	0			ug/L		
MW40	Orthophosphate	9/29/97	0			ug/L		
MW40	Sulfate	9/29/97	51000			ug/L		
MW40	TKN	9/29/97	0			ug/L		
MW40	TOC	9/29/97	3000			ug/L		
MW41	Nitrate	9/30/97	0			ug/I		
MW41	Sulfate	9/30/97	30000			ug/L		
MW41	TKN	9/30/97	0			ug/L		
MW41	TOC	9/30/97	2000			ug/L		
MW45	Ammonia-N	9/30/97	1000	T		ug/L		

Table 6 Upper Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit				
MW45	BOD	9/30/97	4000			ug/L				
MW45	TKN	9/30/97	2000			ug/L				
MW45	TOC	9/30/97	5000			ug/L				
MW48	Ammonia-N	9/30/97	7000			ug/L				
MW48	BOD	9/30/97	16000			ug/L				
MW48	Nitrate	9/30/97	0			ug/L				
MW48	TKN	9/30/97	8000			ug/L				
MW48	TOC	9/30/97	12000			ug/L				
SVOCs										
MW06	2,4-Dimethylphenol	9/23/97	3		J	ug/L				
MW06	Bis(2-Chloroethyl)Ether	9/23/97	31			ug/L				
MW06	Isophorone	9/23/97	2		J	ug/L				
MW06	Phenol	9/23/97	60			ug/L				
MW12	Chloropropane)	10/1/97	87			ug/L				
MW12	Dimethylphthalate	10/1/97	3	J	J	ug/L				
MW12	Phenol	10/1/97	24			ug/L				
MW13	Bis(2-Ethylhexyl)Phthalate	10/1/97	2	J	J	ug/L				
MW13	Phenol	10/1/97	7	J	J	ug/L				
MW14	Bis(2-Ethylhexyl)Phthalate	9/29/97	3	J	J	ug/L				
MW14	Phenol	9/29/97	['] 18			ug/L				
MW15	Phenol	9/23/97	26			ug/L				
MW18	Phenoi	9/29/97	21			ug/L				
MW 19	Bis(2-Chloroethyl)Ether	9/29/57	12			ug/L				
MW19	Phenol	9/29/97	31			ug/L				
MW39	Bis(2-Chloroethyl)Ether	9/25/97	2		J	ug/L				
MW41	Phenol	9/29/97	34			ug/L				
MW42	Phenol	9/26/97	41	J		ug/L				
MW43	Phenol	9/26/97	75	J		ug/L				
MW44	Bis(2-Ethylhexyl)Phthalate	9/29/97	15			ug/L				
MW44	Dimethylphthalate	9/29/97	9	J	J	ug/L				
MW44	Phenol	9/29/97	11		J	ug/L				
MW45	1,2-Dichlorobenzene	9/29/97	5]	J	ug/L				
MW45	1,4-Dichlorobenzene	9/29/97	3	J	J	ug/L				
MW45	Chloropropane)	9/29/97	7	1	J	ug/L				
MW45	2-Methylnaphthalene	9/29/97	5	1	J	ug/L				
MW45	Bis(2-Chloroethyl)Ether	9/29/97	13	1		ug/L				
MW45	Naphthalene	9/29/97	100			ug/L				
MW45	Phenol	9/29/97	50			ug/L				
MW46	Bis(2-Chloroethyl)Ether	9/25/97	5		J	ug/L				
MW47	Phenol	10/1/97	39			ug/L				
MW48	Phenol	9/29/97	8	J	J	ug/L				
MW49	Chloropropane)	9/24/97	30			ug/L				
MW49	Anthracene	9/24/97	1		J	ug/L				
MW49	Bis(2-Chloroethyl)Ether	9/24/97	13		J	ug/L				

Table 6 Upper Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

1. 60

(المنطقة المالية

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW49	Bis(2-Ethylhexyl)Phthalate	9/24/97	11		J	ug/L
MW49	Isophorone	9/24/97	6		1	ug/L
MW49	Phenol	9/24/97	130			ug/L
VOCs						
MW06	1,2-Dichloroethane	9/23/97	3		J	ug/L
MW06	1,2-Dichloroethene (total)	9/23/97	2		J	ug/L
MW06	Benzene	9/23/97	140			ug/L
MW06	Chlorobenzene	9/23/97	1		J	ug/L
MW06	Chloroethane	9/23/97	140	J		ug/L
MW06	Ethylbenzene	9/23/97	13			ug/L
MW06	Vinyl Chloride	9/23/97	4		J	ug/L
MW06	Xylene (total)	9/23/97	29			ug/L
MW12	Chlorobenzene	10/1/97	5	J	J	ug/L
MW13	Benzene	10/1/97	33			ug/L
MW13	Chloroethane	10/1/97	160			ug/L
MW13	Methylene Chloride	10/1/97	1	1	J	ug/L
MW14	Toluene	9/29/97	1	J	J	ug/L
MW15	Benzene	9/23/97	4		J	ug/L
MW19	Benzene	9/29/97	1	J	J	ug/L
MW19	Chloroethane	9/29/97	18			ug/L
MW39	1,2-Dichloroethene (total)	9/25/97	4		J	ug/L
MW39	Benzene	9/25/97	4		J	ug/L
MW39	Chloroethane	9/25/97	2		J	ug/L
MW45	Benzene	9/29/97	860			ug/L
MW45	Chlorobenzene	9/29/97	26	J	J	ug/L
MW45	Chloroethane	9/29/97	120			ug/L
MW45	Xylene (total)	9/29/97	33	J	J	ug/L
MW46	Benzene	9/25/97	2		J	٠ ٦
MW48	Benzene	9/29/97	9500			ug/L
MW48	Chloroethane	9/29/97	980			ug/L
MW49	Benzene	9/24/97	8200		Е	ug/L
MW49	Chloroethane	9/24/97	810			ug/L

Table 7 Lower Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
Inorgani	<u> </u>					
MW07	Aluminum	9/24/97	1280	J	N	ug/L
MW07	Barium	9/24/97	132		В	ug/L
MW07	Calcium	9/24/97	102000	1		ug/L
MW07	Chromium	9/24/97	44			ug/L
MW07	Cobalt	9/24/97	2		В	ug/L
MW07	Copper	9/24/97	11	J	В	ug/L
MW07	Iron	9/24/97	5570			ug/L
MW07	Lead	9/24/97	4			ug/L
MW07	Magnesium	9/24/97	28600	1		ug/L
MW07	Manganese	9/24/97	205			ug/L
MW07	Nickel	9/24/97	31		В	ug/L
MW07	Potassium	9/24/97	2190	1	BE	ug/L
MW07	Sodium	9/24/97	20200	J	E	ug/L
MW07	Vanadium	9/24/97	3		В	ug/L
MW08	Aluminum	9/24/97	839	1	N	ug/L
MW08	Arsenic	9/24/97	6		В	ug/L
MW08	Barium	9/24/97	111		В	ug/L
MW08	Calcium	9/24/97	55200	J		ug/L
MW08	Chromium	9/24/97	37			ug/L
MW08	Cobalt	9/24/97	2		В	ug/L
MW08	Iron	9/24/97	3420			ug/L
MW08	Lead	9/24/97	3			ug/L
MW08	Magnesium	9/24/97	17700	1		ug/L
MW08	Manganese	9/24/97	134			ug/L
MW08	Nickel	9/24/97	23		В	ug/L
MW08	Potassium	9/24/97	1410	J	BE	ug/L
M' '9	Sodium	9/24/97	13500	J	Е	ug/L
MW08	Vanadium	9/24/97	2		В	ug/L
MW09	Aluminum	9/29/97	863			ug/L
MW09	Arsenic	9/29/97	3		В	ug/L
MW09	Barium	9/29/97	349			ug/L
MW09	Calcium	9/29/97	155000			ug/L
MW09	Chromium	9/29/97	12			ug/L
MW09	Cobalt	9/29/97	6		В	ug/L
MW09	Iron	9/29/97	16900			ug/L
MW09	Lead	9/29/97	3		В	ug/L
MW09	Magnesium	9/29/97	26100			ug/L
MW09	Manganese	9/29/97	219			ug/L
MW09	Nickel	9/29/97	13		В	ug/L
MW09	Potassium	9/29/97	11000	J	E	ug/L
MW09	Sodium	9/29/97	66400	J	Е	ug/L
MW09	Vanadium	9/29/97	5		В	ug/L
MW10C		9/24/97	6990	J	N	ug/L

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

1

63.87

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW10C	Arsenic	9/24/97	10			ug/L
MW10C	Barium	9/24/97	337			ug/L
MW10C	Calcium	9/24/97	141000	J		ug/L
MW10C	Chromium	9/24/97	360			ug/L
MW10C	Cobalt	9/24/97	14		В	ug/L
MW10C	Copper	9/24/97	46	J		ug/L
MW10C		9/24/97	21300			ug/L
MW10C	Lead	9/24/97	19			ug/L
MW10C	Magnesium	9/24/97	65900	J		ug/L
	Manganese	9/24/97	447		_	ug/L
MW10C		9/24/97	257			ug/L
MW10C	Potassium	9/24/97	7460	J	E	ug/L
MW10C	Sodium	9/24/97	158000	ı	E	ug/L
MW10C	Vanadium	9/24/97	15		В	ug/L
MW10C	Zinc	9/24/97	119	J		ug/L
MW21	Barium	10/1/97	182		В	ug/L
MW21	Calcium	10/1/97	952			ug/L
MW21	Chromium	10/1/97	8		В	ug/L
MW21	Cobalt	10/1/97	1		В	ug/L
MW21	Iron	10/1/97	2750			ug/L
MW21	Lead	10/1/97	1		В	ug/L
MW21	Magnesium	10/1/97	26400			ug/L
MW21	Manganese	10/1/97	166			ug/L
MW21	Potassium	10/1/97	4330	J	BE	ug/L
MW21	Sodium	10/1/97	38600	J	E	ug/L
MW22	Aluminum	9/29/97	579			ug/L
MW22	Barium	9/29/97	628			ug/I
MW?	Calcium	9/29/97	254000			ug/L
MW22	Chromium	9/29/97	20			ug/L
MW22	Cobalt	9/29/97	1		В	ug/L
MW22	Соррег	9/29/97	125			ug/I
MW22	Iron	9/29/97	1340			ug/I
MW22	Lead	9/29/97	7_			ug/I
MW22	Magnesium	9/29/97	39100			ug/l
MW22	Manganese	9/29/97	49			ug/I
MW22	Nickel	9/29/97	18		В	ug/I
MW22	Potassium	9/29/97	24700	J	Е	ug/I
MW22	Sodium	9/29/97	338000	J	E	ug/[
MW23	Aluminum	9/25/97	2440			ug/I
MW23	Arsenic	9/25/97	4		В	ug/I
MW23	Barium	9/25/97	133	 	В	ug/l
MW23	Calcium	9/25/97	84800	1		ug/I
MW23	Chromium	9/25/97	19	1		ug/I
MW23	Cobalt	9/25/97	5	1	В	ug/I

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW23	Copper	9/25/97	20		В	ug/L
MW23	Iron	9/25/97	11300			ug/L
MW23	Magnesium	9/25/97	23800			ug/L
MW23	Manganese	9/25/97	377			ug/L
MW23	Nickel	9/25/97	20		В	ug/L
MW23	Potassium	9/25/97	3940	J	BE	ug/L
MW23	Sodium	9/25/97	75300			ug/L
MW23	Vanadium	9/25/97	7		В	ug/L
MW24	Aluminum	9/25/97	9660			ug/L
MW24	Arsenic	9/25/97	8		В	ug/L
MW24	Barium	9/25/97	330			ug/L
MW24	Beryllium	9/25/97	1		В	ug/L
MW24	Calcium	9/25/97	161000			ug/L
MW24	Chromium	9/25/97	62			ug/L
MW24	Cobalt	9/25/97	9		В	ug/L
MW24	Copper	9/25/97	58			ug/L
MW24	Iron	9/25/97	36300			ug/L
MW24	Lead	9/25/97	17			ug/L
MW24	Magnesium	9/25/97	45700			ug/L
MW24	Manganese	9/25/97	566			ug/L
MW24	Nickel	9/25/97	44			ug/L
MW24	Potassium	9/25/97	6240	J	Е	ug/L
MW24	Selenium	9/25/97	3		В	ug/L
MW24	Sodium	9/25/97	62900			ug/L
MW24	Vanadium	9/25/97	20		В	ug/L
MW24	Zinc	9/25/97	62			ug/L
MW28	Aluminum	9/23/97	2850	J	N	ug/L
MW28	Arsenic	9/23/97	5		В	ug/L
MW28	Barium	9/23/97	123		В	ug/L
MW28	Beryllium	9/23/97	1		В	ug/L
MW28	Calcium	9/23/97	96800	J		ug/L
MW28	Chromium	9/23/97	71			ug/L
MW28	Cobalt	9/23/97	6		В	ug/L
MW28	Copper	9/23/97	40	J		ug/L
MW28	Iron	9/23/97	7090			ug/L
MW28	Lead	9/23/97	11			ug/L
MW28	Magnesium	9/23/97	39700	J		ug/L
MW28	Manganese	9/23/97	169			ug/L
MW28	Nickel	9/23/97	49			ug/L
MW28	Potassium	9/23/97	2980	J	BE	ug/L
MW28	Sodium	9/23/97	16400	J	E	ug/L
MW28	Vanadium	9/23/97	7		В	ug/L
MW29	Barium	9/29/97	116		В	ug/L
MW29	Calcium	9/29/97	93500			ug/L

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

A SHOW

4 500

Well	Analyte	Date	Result	DVQ	LQ	Uni
MW29	Iron	9/29/97	5790			ug/L
MW29	Lead	9/29/97	1		В	ug/I
MW29	Magnesium	9/29/97	42500			ug/I
MW29	Manganese	9/29/97	97			ug/I
MW29	Potassium	9/29/97	2950	J	BE	ug/I
MW29	Sodium	9/29/97	73900	J	E	ug/I
MW30	Aluminum	10/1/97	1830	J	N	ug/I
MW30	Arsenic	10/1/97	4		В	ug/I
MW30	Barium	10/1/97	210			ug/
MW30	Calcium	10/1/97	107000			ug/l
MW30	Chromium	10/1/97	50			ug/l
MW30	Cobalt	10/1/97	15		В	ug/l
MW30	Copper	10/1/97	40			ug/l
MW30	Iron	10/1/97	8590			ug/l
MW30	Lead	10/1/97	8			ug/l
MW30	Magnesium	10/1/97	49200			ug/l
MW30	Manganese	10/1/97	139			ug/
MW30	Nickel	10/1/97	59			ug/l
MW30	Potassium	10/1/97	3260	J	BE	ug/
MW30	Sodium	10/1/97	36600			ug/l
MW30	Vanadium	10/1/97	4		В	ug/
MW31	Aluminum	9/24/97	1890	J	N	ug/
MW31	Arsenic	9/24/97	8		В	ug/
MW31	Barium	9/24/97	245			ug/
MW31	Calcium	9/24/97	94900	J		ug/
MW31	Chromium	9/24/97	89			ug/
MW31	Cobalt	9/24/97	4		В	ug/
MW31	Copper	9/24/97	44	J		ug/
MW31	Iron	9/24/97	6230			ug/
MW31	Lead	9/24/97	8			ug/
MW31	Magnesium	9/24/97	34100	J		ug/
MW31	Manganese	9/24/97	174			ug/
MW31	Nickel	9/24/97	66			ug/
MW31	Potassium	9/24/97	2410	I	BE	ug/
MW31	Sodium	9/24/97	19800	J	E	ug/
MW31	Vanadium	9/24/97	4		В	ug/
MW32	Aluminum	9/24/97	780	J	N	ug/
MW32	Barium	9/24/97	169		В	ug/
MW32	Calcium	9/24/97	75200	J		ug/
MW32	Chromium	9/24/97	21			ug/
MW32	Cobalt	9/24/97	1		В	ug/
MW32	Copper	9/24/97	13	J	В	ug/
MW32	Iron	9/24/97	4860			ug/
MW32	Lead	9/24/97	4	T		ug/

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW32	Magnesium	9/24/97	47500	J		ug/L
MW32	Manganese	9/24/97	78			ug/L
MW32	Nickel	9/24/97	19		В	ug/L
MW32	Potassium	9/24/97	4630	J	BE	ug/L
MW32	Sodium	9/24/97	35400	J	E	ug/L
MW32	Vanadium	9/24/97	l		В	ug/L
MW33	Arsenic	10/1/97	20			ug/L
MW33	Barium	10/1/97	1280			ug/L
MW33	Calcium	10/1/97	290000			ug/L
MW33	Chromium	10/1/97	10		В	ug/L
MW33	Cobalt	10/1/97	3		В	ug/L
MW33	Copper	10/1/97	15		В	ug/L
MW33	Iron	10/1/97	27800			ug/L
MW33	Lead	10/1/97	2		В	ug/L
MW33	Magnesium	10/1/97	65900			ug/L
MW33	Manganese	10/1/97	128			ug/L
MW33	Nickel	10/1/97	22		В	ug/L
MW33	Potassium	10/1/97	15500	J	E	ug/L
MW33	Sodium	10/1/97	178000	J	E	ug/L
MW34	Barium	9/29/97	176	<u> </u>	В	ug/L
MW34	Calcium	9/29/97	84300			ug/L
MW34	Chromium	9/29/97	17			ug/L
MW34	Соррег	9/29/97	13		В	ug/L
MW34	Iron	9/29/97	3190			ug/L
MW34	Lead	9/29/97	3		В	ug/L
MW34	Magnesium	9/29/97	51000			ug/L
MW34	Manganese	9/29/97	42			ug/L
MW34	Nickel	9/29/97	17	 	В	ug/L
MW34	Potassium	9/29/97	4480	J	BE	ug/L
MW34	Sodium	9/29/97	37200	J	Е	ug/L
MW36	Aluminum	9/24/97	4770	J	<u>N</u>	ug/L
MW36	Arsenic	9/24/97	3		В	ug/L
MW36	Barium	9/24/97	242			ug/L
MW36	Calcium	9/24/97	75400	J		ug/L
MW36	Chromium	9/24/97	81			ug/L
MW36	Cobalt	9/24/97	3	 	В	ug/L
MW36	Copper	9/24/97	38	J		ug/L
MW36	Iron	9/24/97	9550			ug/L
MW36	Lead	9/24/97	9	┝╌┤		ug/L
MW36	Magnesium	9/24/97	46600	J		ug/L
MW36	Manganese	9/24/97	122	 		ug/L
MW36	Nickel	9/24/97	68			ug/L
MW36	Potassium	9/24/97	4690	J	BE	ug/L
MW36	Sodium	9/24/97	40600	J	<u>E</u>	ug/L

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

-

SAMPLE.

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW36	Vanadium	9/24/97	3		В	ug/L
MW50	Aluminum	10/1/97	12000	J	N	ug/L
MW50	Arsenic	10/1/97	7		В	ug/L
MW50	Barium	10/1/97	285			ug/L
MW50	Calcium	10/1/97	191000			ug/L
MW50	Chromium	10/1/97	130			ug/L
MW50	Cobalt	10/1/97	12		В	ug/L
MW50	Copper	10/1/97	36			ug/L
MW50	Iron	10/1/97	20200			ug/L
MW50	Lead	10/1/97	14			ug/L
MW50	Magnesium	10/1/97	87400			ug/L
MW50	Manganese	10/1/97	408			ug/L
MW50	Nickel	10/1/97	105			ug/L
MW50	Potassium	10/1/97	21000	J	Е	ug/L
MW50	Sodium	10/1/97	481000			ug/L
MW50	Vanadium	10/1/97	19		В	ug/L
MW50	Zinc	10/1/97	57			ug/L
MW51	Aluminum	10/1/97	1040	J	N	ug/L
MW51	Barium	10/1/97	397			ug/L
MW51	Calcium	10/1/97	138000			ug/L
MW51	Chromium	10/1/97	8		В	ug/L
MW51	Cobalt	10/1/97	2		В	ug/L
MW51	Copper	10/1/7	7		В	ug/L
MW51	Iron	10/1/97	8660			ug/L
MW51	Magnesium	10/1/97	61600			ug/L
MW51	Manganese	10/1/97	128			ug/L
MW51	Nickel	10/1/97	11		В	ug/L
MW51	Potassium	10/1/97	3880	J	BE	ug/L
MW51	Sodium	10/1/97	108000	J	Е	ug/L
MW51	Vanadium	10/1/97	2		В	ug/L
MW52	Aluminum	9/25/97	750			ug/L
MW52	Arsenic	9/25/97	42			ug/L
MW52	Barium	9/25/97	321			ug/L
MW52	Beryllium	9/25/97	1		В	ug/L
MW52	Calcium	9/25/97	114000			ug/L
MW52	Chromium	9/25/97	9		В	ug/L
MW52	Cobalt	9/25/97	2		В	ug/L
MW52	Copper	9/25/97	10		В	ug/L
MW52	Iron	9/25/97	5340			ug/L
MW52	Magnesium	9/25/97	44100			ug/L
MW52	Manganese	9/25/97	207			ug/I
MW52	Nickel	9/25/97	12		В	ug/L
MW52	Potassium	9/25/97	3640	J	BE	ug/L
MW52	Selenium	9/25/97	2		В	ug/I

Table 7 Lower Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW52	Sodium	9/25/97	145000			ug/L
MW52	Vanadium	9/25/97	2		В	ug/L
MW53	Aluminum	9/25/97	7490			ug/L
MW53	Antimony	9/25/97	2		В	ug/L
MW53	Arsenic	9/25/97	10			ug/L
MW53	Barium	9/25/97	1520			ug/L
MW53	Beryllium	9/25/97	2		В	ug/L
MW53	Calcium	9/25/97	230000			ug/L
MW53	Chromium	9/25/97	58			ug/L
MW53	Cobalt	9/25/97	7		В	ug/L
MW53	Copper	9/25/97	40			ug/L
MW53	Iron	9/25/97	27400			ug/L
MW53	Lead	9/25/97	17			ug/L
MW53	Magnesium	9/25/97	102000			ug/L
MW53	Manganese	9/25/97	417			ug/L
MW53	Nickel	9/25/97	62			ug/L
MW53	Potassium	9/25/97	29000	J	Е	ug/L
MW53	Sodium	9/25/97	380000			ug/L
MW53	Vanadium	9/25/97	4		В	ug/L
MW53	Zinc .	9/25/97	79			ug/L
MW54	Aluminum	9/24/97	1980	J	N	ug/L
MW54	Arsenic	9/24/97	5		В	ug/L
MV/54	Barium	9/24/57	153		В	ug/L
MW54	Calcium	9/24/97	126000	J		ug/L
MW54	Chromium	9/24/97	46			ug/L
MW54	Cobalt	9/24/97	3		В	ug/L
MW54	Соррег	9/24/97	39	J		ug/L
MW54	Iron	9/24/97	5480			ug/L
MW54	Lead	9/24/97	6			ug/L
MW54	Magnesium	9/24/97	52000	J		ug/L
MW54	Manganese	9/24/97	256			ug/L
MW54	Nickel	9/24/97	37		В	ug/L
MW54	Potassium	9/24/97	2750	J	BE	ug/L
MW54	Sodium	9/24/97	28700	J	E	ug/L
MW54	Vanadium	9/24/97	3		В	ug/L
MW55	Aluminum	9/24/97	6100	J	N	ug/L
MW55	Arsenic	9/24/97	6		В	ug/L
MW55	Barium	9/24/97	219			ug/L
MW55	Beryllium	9/24/97	1		В	ug/L
MW55	Calcium	9/24/97	78200	J		ug/L
MW55	Chromium	9/24/97	60			ug/L
MW55	Cobalt	9/24/97	4		В	ug/L
MW55	Copper	9/24/97	54	5		ug/L
MW55	Iron	9/24/97	5850			ug/L

Table 7
Lower Aquifer Detections - September 1997
American Chemical Services
Griffith, Indiana

UNITED IN

100

Well	Analyte	Date	Result	DVQ	LQ	Unit				
MW55	Lead	9/24/97	17			ug/L				
MW55	Magnesium	9/24/97	47700	J		ug/L				
MW55	Manganese	9/24/97	388			ug/L				
MW55	Nickel	9/24/97	61			ug/L				
MW55	Potassium	9/24/97	6660	J	E	ug/L				
MW55	Sodium	9/24/97	49500	J	E	ug/L				
MW55	Vanadium	9/24/97	5		В	ug/L				
SVOCs										
MW07	Phenol	9/24/97	48			ug/L				
MW08	Bis(2-Chloroethyl)Ether	9/24/97	4		J	ug/L				
MW08	Phenol	9/24/97	140			ug/L				
MW09	Bis(2-Chloroethyl)Ether	9/29/97	35			ug/L				
MW09	Isophorone	9/29/97	1	1	J	ug/L				
MW10C	Bis(2-Ethylhexyl)Phthalate	9/24/97	8		J	ug/L				
MW10C	Isophorone	9/24/97	1		J	ug/L				
MW10C	Phenol	9/24/97	20			ug/L				
MW21	Phenol	10/1/97	20			ug/L				
MW22	Phenol	9/29/97	330			ug/L				
MW28	Phenoi	9/23/97	37	J		ug/L				
MW29	Bis(2-Ethylhexyl)Phthalate	9/29/97	6	1	J	ug/L				
MW29	Phenoi	9/29/97	43			ug/L				
MW30	Phenol	10/1/97	17			ug/L				
MW31	Bis(2-Ethylhexyl)Phthalate	9/24/97	6		J	ug/L				
MW31	Phenol	9/24/97	130			ug/L				
MW32	Bis(2-Chloroethyl)Ether	9/24/97	2		J	ug/L				
MW32	Bis(2-Ethylhexyl)Phthalate	9/24/97	10		J	ug/L				
MW32	Phenol	9/24/97	110			ug/L				
MW33	Bis(2-Ethylhexyl)Phthalate	10/1/97	76			,				
MW33	Isophorone	10/1/97	1	J	J	ug/L				
MW33	Phenol	10/1/97	65			ug/L				
MW34	Bis(2-Ethylhexyl)Phthalate	9/29/97	0		J	ug/L				
MW34	Phenol	9/29/97	340			ug/L				
MW36	Bis(2-Ethylhexyl)Phthalate	9/24/97	6		J	ug/L				
MW36	Phenol	9/24/97	240			ug/L				
MW50	Phenol	10/1/97	340			ug/L				
MW51	Phenol	10/1/97	18			ug/L				
MW53	Isophorone	9/25/97	5		J	ug/L				
MW53	Phenol	9/25/97	50	J		ug/L				
MW54	Phenol	9/24/97	160			ug/L				
MW55	Bis(2-Ethylhexyl)Phthalate	9/24/97	32			ug/L				
MW55	Phenol	9/24/97	7		J	ug/L				
VOCs										
MW07	Toluene	9/24/97	1		J	ug/L				
MW09	Benzene	9/29/97	290			ug/L				

Table 7 Lower Aquifer Detections - September 1997 American Chemical Services Griffith, Indiana

Well	Analyte	Date	Result	DVQ	LQ	Unit
MW09	Chloroethane	9/29/97	1800			ug/L
MW10C	Chloroethane	9/24/97	420			ug/L
MW33	Benzene	10/1/97	ī	J	J	ug/L
MW34	Toluene	9/29/97	1]	J	ug/L
MW53	4-Methyl-2-Pentanone	9/25/97	5	J	J	ug/L
MW53	Benzene	9/25/97	2		J	ug/L
MW53	Toluene	9/25/97	1		J	ug/L
MW55	Toluene	9/24/97	1		J	ug/L

Table 8
Summary of Residential Well Sampling Results -- October 1997
American Chemical Service NPL Site
Griffith, Indiana

Parameter	ACS-PWD-02 10/2/97 CONC LOZDYQ RDL	ACS-PWK-02 10/2/97 CONC LO/DYO RDL	ACS-PWRC-02 10/2/97 CONC LO/DYQ RDL	ACS-PWRE-02 10/2/97 CONC LO/DYO RDL	ACS-PWY-02 10/2/97 CONC LO/DYO RDL	ACS-PWY-92 10/2/97 CONC LO/DYO RDL	ACS-PWZ-02 10/2/97 CONC LO/DYO RDL
VOLATHES (ug/L)						<u>L</u>	
Acetone	U/R 5	U/R 5	U/R 5	U/R 5	NA NA	U/R 5	U/R 5
Benzene	U/ I	U/ i	U/ I	U/ I	NA	l U/I	l W i
Bromochloromethane	U/ 1	U/ 1	ו עט	U/ I	NA	U/ 1	U/ 1
Bromodichloromethane	U/ I	ti	U/ 1	l W	NA	ן עט	U/ I
Bromoform	U/ I	l li	U/ 1	U/ I	NA	ו עו	U/ 1
Bromomethane	U/ I] W I	U/ I	U/ I	NA	U/ I	U/ i
2-Butanone	U/R 5	U/R 5	U/R 5	U/R 5	NA NA	U/R 5	U/R 5
Carbon Disulfide	U/ I	U/ I	U/ I	U/ I	NA	ו עו	U/ I
Carbon Tetrachloride	U/ I	J U/ I	l U/I	J U/ 1	NA .	ן עו	ן עו
Chlorobenzene	U/ I	ו עט	ו עו	ן עו	NA NA	U/ 1	U/ I
Chloroethane	U/ I	U/ i	U/ I	U/ I	NA NA	U/ I	U/ 1
Chloroform	U/ I	U/ 1	U/ I	ן עו	NA NA	U/ I	U/ I
Chloromethane	U/R I	U/R I) U/R 1	U/R I	NA NA	U/R I	U/R 1
Dibromochloromethane	U/ 1	U/ I	U/ i	U/ I	NA NA	U/ 1	U/ 1
1,2-Dibromo-3-Chloropropane	U/ I	l W ı	{ ∪/ ı	ן עו	NA NA	Uνι	U/ 1
1,2-Dibromoethane	U/ I	U/ I	l u/ i] U/ 1	NA	ו עו	U/ 1
1,2-Dichlorobenzene	U/ I	U/ I	U/ 1	l W I	NA	U/ I	į vi
1,3-Dichlorobenzene	U/ I	ן עו	U/ I	U/ I	NA NA	U/ I	U/ 1
1,4-Dichlorobenzene	U/ I	U/ i	U/ I	ו עט	NA	U/ 1	U/ I
1,1-Dichloroethane	U/ I	ן עט	U/ I	l W I	NA	ו עט	ו עו
1,2-Dichloroethane	U/ I	l W I	ַ ו עט	ו עו	NA NA	U/ i	W i .
1,1-Dichloroethene	U/ I] W I	U/ 1	U/ 1	NA NA	U/ 1	U/ I
Cis-1,2-Dichloroethene	U/ I	U/ I	U/ I	U/ I	NA NA	U/ I	ו עו
Trans-1,2-Dichloroethene	U/ I	l W i	U/ I	U/ I	NA NA	U/ I	U/ 1
1,2-Dichloropropane	U/ I	U/ I	U/ 1	U/ I	NA NA	U/ 1	U/ I
Cis-1,3-Dichloropropene	U/ 1	(w ı	U/ I	l W	NA.	ו עט	ו עו
Trans-1,3-Dichloropropene	U/ I	LV 1	U/ 1	U/ -1	NA.	U/ 1	U/ I
Ethylbenzene	U/ I	U/ I	U/ I	U/ I	NA NA	ו עו	U/ I
2-Hexanone	U/ 5	U/ 5	U/ 5	U/ 5	NA	U/ 5	U/ 5
Methylene Chloride	U/ 2	U/ 2	0.2 J/ 2	0.2 J/ 2	NA	U/ 2	U/ 2
4-Methyl-2-Pentanone	U/ 5	U/ 5	U/ 5	U/ 5	NA NA	U/ 5	U/ 5
Styrene	U/ I	U/ I	U/ i	ו עט	NA NA	ו עו	U/ I
1,1,2,2-Tetrachloroethane	U/ 1	U/ 1	U/ 1	l v/ i	NA NA	U/ I	U/ i
Tetrachloroethene	U/ I	U/ 1	U/ i	U/ I	NA NA	U/ I	ו עו
Toluene	U/ I	ו עט	ו עט	ו עו	NA NA	U/ I) U/ 1
1,1,1-Trichloroethane	U/ I	U/ I	U/ I	U/ I	NA NA	U/ I	U/ I
1,1,2-Trichloroethane	U/ I	UI	U/ I	U/ I	NA	U/ I	U/ I
Trichloroethene	U/ I	0.2 1. 1	ו עט	ו עט	NA NA	U/ I	U/ 1
Vinyl Chloride	U/ I	U/ i	U/ 1	U/ I	NA NA	U/ I	U/ i
Xylene (Total)	U/ 5	U/ 5	U/ 5	U/ 5	NA NA	U/ 5	U/ 5

Table 8
Summary of Residential Well Sampling Results -- October 1997
American Chemical Service NPL Site
Griffith, Indiana

	ACS-PWD-02 10/2/97	ACS-PWK-02 10/2/97	ACS-PWRC-02 10/2/97	ACS-PWRE-02 10/2/97	ACS-PWY-02 10/2/97	ACS-PWY-92 10/2/97	ACS-PWZ-02 10/2/97
Parameter	CONC LOXDYQ RDL	CONC LOYDYO ROL	CONC LOVDYO RDL	CONC LOVDYO RDL	CONC LO/DYO RDL	CONC LOYDYQ RDL	CONC LOYDYQ RDL
Semivolatiles (ug/L.)							
Bis(2-Chloroethyl)Ether	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Phenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2-Chlorophenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
1,3-Dichlorobenzene	U/ 5	U/ 5	ט 5	U/ 5	U/ 5	U/ 5	U/ 5
1,4-Dichlorobenzene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
1,2-Dichlorobenzene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2-Methylphenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2,2'-oxybis(1-Chloropropane)	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
4-Methylphenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
N-Nitroso-Di-N-Propylamine	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Hexachloroethane	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Nitrobenzene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Isophorone	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2-Nitrophenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2,4-Dimethylphenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Bis(2-Chloroethoxy)Methane	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5	U/ 5
2,4-Dichlorophenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
1,2,4-Trichlorobenzene	U/ 5	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5
Naphthalene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
4-Chloroandine	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Hexachiorobutadiene	U/UJ 5	U/UJ 5	U/UJ 5	U/UJ 5	נט/ט 5	U/UJ 5	U/UJ 5
4-Chloro-3-Methylphenol	U/ 5	U/ 5	U/ 5	U/ 5	l U/ 5	U/ S	U/ 5
2-Methylnaphthalene	U/ 5	U/ 5	υ/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Hexachlorocyclopentadiene	U/ 5	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5
2,4,6-Trichlorophenol	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ S
2,4,5-Trichlorophenol	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
2-Chloronaphthalene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2-Nitroaniline	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
Dimethylphthalaie	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Acenaphthylene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2,6-Dinitrotoluene	U/ 5	U/ 5	Ū/ 5	U/ 5	U/ 5	U/ 5	U/ 5
3-Nitroaniline	11/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
Acenaphthene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
2,4-Dinitrophenol	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
4-Nitrophenol	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
Dibenzofuran	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	υ/ 5	U/ 5
2,4-Dinitrotoluene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Diethylphthalate	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
4-Chlorophenyl-phenylether	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Fluorene	U/ 5	U/ 5	U/ 5	U/ S	υ/ 5	U/ 5	U/ 5

Table 8
Summary of Residential Well Sampling Results -- October 1997
American Chemical Service NPL Site
Griffith, Indiana

n	ACS-PWD-02 10/2/97	ACS-PWK-02 10/2/97	ACS-PWRC-02 10/2/97	ACS-PWRE-02 10/2/97	ACS-PWY-02 10/2/97	ACS-PWY-92 10/2/97	ACS-PWZ-02 10/2/97
<u>Parameter</u>	CONC LOVDYO RDL	CONC LOVDYO RDL	CONC LOYDYO RDL	CONC LO/DYO RDL	CONC LOYDYO RDL	CONC LOXDYQ RDL	CONC LOYDYO RDL
Semivolatiles (ug/L) (continue	l ·d)				<u> </u>]
4-Nitroaniline	U/ 20	U/ 20	Ū/ 20	U/ 20	U/ 20	U/ 20	U/ 20
4,6-Dinitro-2-Methylphenol	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
N-Nitrosodiphenylamine	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
4-Bromophenyl-phenylether	U/ 5	U/ 5	U/ S	U/ 5	J U/ 5	U/ 5	U/ 5
Hexachlorobenzene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Pentachlorophenol	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20	U/ 20
Phenanthrene	U/ 5	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5
Anthracene	U/ 5	[U/ 5°	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Carbazole	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Di-N-Butylphthalate	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	Ų 5	U/ 5
Fluoranthene	U/ 5) U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Pyrene	U/ 5	Į U S	U/ 5	U/ 5	U/ 5] U/ 5	U/ 5
Butylbenzylphthalate	U/ 5	U, 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
3,3'-Dichlorobenzidine	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5
Benzo(a)Anthracene	U/ 5	U/ 5	W 5	U/ 5) U/ 5	U/ 5	U/ 5
Chrysene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5	U/ S	U/ 5
Bis(2-Ethylhexyl)Phthalate	U/ 5	U/ 5	J/U 5	U/ 5	U/ 5	U/ 5	U/ 5
Di-N-Octylphthalate	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5	U/ 5
Benzo(b)Fluoranthene	U/ 5	U/ 5	U/ 5	U/ 5	U/ 5) U/ 5	U/ 5
Benzo(k)Fluoranthene	U/ 5	U/ 5	U/ S	U/ 5	U/ 5	U/ 5	U/ 5
Benzo(a)Pyrene	U/ 5	U/ 5	U/ 5	U 5	U/ 5	U/ 5	U/ 5
Indeno(1,2,3-Cd)Pyrene	U/ 5	U/ 5	U/ S	UV S	U/ 5	U/ 5	U/ 5
Dibenz(A,H)Anthracene	U 5	U/ 5	U/ S	U/ S	U/ 5	U/ 5	U/ 5
Benzo(G,H,1)Perylene	U/ 5) U/ 5	U/ 5	U/ 5	U/ 5	U/5.	U/ 5

Table 8
Summary of Residential Well Sampling Results -- October 1997
American Chemical Service NPL Site
Griffith, Indiana

	ACS-PWD-02 10/2/97	ACS-PWK-02 10/2/97	ACS-PWRC-02 10/2/97	ACS-PWRE-02 10/2/97	ACS-PWY-02 10/2/97	ACS-PWY-92 10/2/97	ACS-PWZ-02 10/2/97
Parameter	CONC LOYDVO RDL	CONC LOYDYO RDL	CONC LOYDYO RDL	CONC LOYDYO RDL	CONC LOYDYO RDL	CONC_LOYDYQ_RDL	CONC LOYDYQ RDL
Pesticide/PCBs (ug/L)						<u> </u>	
alpha-BHC	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
heta-BHC	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
delta-BHC	U/ 0.01) U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
gamma-BHC (Lindane)	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
Heptachlor	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
Aldrin	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
Heptachlor epoxide	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
Endosulfan I	U/ 0.01	[U/ 0.01	U/ 0.01	U/ 0.01	J U/ 0.01	U/ 0 .01	U/ 0.01
Dieldrin	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
4,4'-DDE	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
Endrin	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
Endosulfan II	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
4,4'-DDD	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
Endosulfan sulfate	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
4,4'-DDT	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
Methoxychlor	∫ U/ 0.1	U/ 0.1	U/ 0.1	U/ 0.1	U/ 0.1	U/ 0.1	U/ 0.1
Endrin ketone	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
Endrin aldehyde	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02	U/ 0.02
alpha-Chlordane	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0,01	U/ 0.01
gamma-Chlordane	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01	U/ 0.01
Toxaphene	ו עט	ו עט	U/ 1	U/ I	Į U/ I	(υ/ι	U/ I
Aroclor-1016	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2
Aroclor-1221	U/ 0.4	U/ 0.4	U/ 0.4	U/ 0.4	U/ 0.4	U/ 0.4	U/ 0.4
Aroclor-1232	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2
Aroclor-1242	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2
Aroclor-1248	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2
Aroclor-1254	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2
Aroclor-1260	U/ 0.2	U/ 0.2	U/ 0.2	[U/ 0.2	U/ 0.2	U/ 0.2	U/ 0.2

Page 5 of 5

Table 8
Summary of Residential Well Sampling Results -- October 1997
American Chemical Service NPL Site
Griffith, Indiana

D		S-PWI 10/2/9	7		S-PW 10/2/9	7	1	S-PWR 10/2/91	7	Ì	S-PWR 10/2/97	,	İ	S-PW 10/2/9	7	}	S-PW1 10/2/97	7	ł	S-PW2 10/2/97	7	
<u>Parameter</u>	CONC	LOVDY	2 KDL	2000	LUDY	U KUL	CONC	LOVDY	₹ KDL	COMC	LOVDYO	KDL	CONC	LOVDY	O KOL	CONC	LOADA	RDL	CONC	LOVDY	RDL	4
Metals (ug/L)				1			1						1						1			- [
Aluminum		BN/U	11.7	103	BN/J	10		UN/U	1 10		UN/UJ	10		UN/U	J 10		UN/U	10		UN/U	10	٦
Antimony	1	U/	1	l	U/	1	ł	U/	1	1	U/	1	1	U/	1	ì	U/	1		U/	ı	١
Arsenic		U/	2	1	U/	2	i	U/	2	ì	U/	2	1	U/	2	1	U/	2	1	U/	2	ľ
Barium	150	B/	1	48.5	B/	1	178	B/	1	2.7	B/	1	131	B/	1	132	B/	1	13.2	. B/	ı	- 1
Beryllium	ı	U/	1	1	U/	1	1	U/	1	1	U/	1	ļ	U/	1		U/	ı		U/	1	
Cadmium	ŀ	U/	1		U/	1		U/	1	ł	U/	1		W	1		U/	1		U/	1	- (
Calcium	95300	1	8	89500	1	8	96800	1	8	1470	B/	8	80600	1	8	82900	1	8	45100	1	8	- [
Chromium	ľ	U/	1	!	U/	1	ł	U/	1	Į.	U/	1	ļ.	U/	l		B/U	3.8		U/	1	1
Cobalt		U/	1	ì	U/	1	1	U/	ı	1	U/	l		U/	1		U/	1		U/	1	ſ
Copper	71.2	1	1	102	1	1] 3	B/	1	12.1	B/	1	2.7	B/	ı	1.3	B/	1	14.2	B/	1	J
Iron	2750	1	6	150	1	6	2270	1	6	114	1	6	2560	1	6	2540	1	6	ļ	B/U	39.8	ı
Lead	10.2	1	1	11.3	1	1	1	U/	1	1	B/U	1.2	ł	U/	l		U/	1	1	B/U	2	- 1
Magnesium	49600	1	3	30500	1	3	53900	1	3	923	B/	3	42700	1	3	43500	1	3	16000	1	3	
Manganese	46.2	1	3	854	1	1	17.3	1	3	į.	U/	ı	29.3	1	1	28.2	1	1	l	W	J	ı
Mercury		U/	0.2		W.	0.2		U/	0.2		U/	0.2	l .	U/	0.2		U/	0.2	Ì	U/	0.2	ı
Nickel	4.3	B/	1	2.7	B/	1	1.2	B/	1		U/	1	5.5	B/	l	1.3	B/	1	1.1	B/	1	- 1
Potassium	1950	BE/J	16	5310	E/J	16	3450	BE/J	16	2510	BE/J	16	2730	BE/J	16	2800	BF/J	16	3840	BE/J	16	J
Selenium	}	U/	2	}	U/	2	l	U/	2	ł	U/	2	2.2	8/	2	ł	U/	2	•	U/	2	ı
Silver	ł	U/	1	}	W	l]	U/	į.		U/	l	İ	U/	l		U/	1		U/	ı	ı
Sodium	24100	1	22	108000	1	22	29100	1	22	191000	/	22	22300	1	22	24300	1	22	9430	1	22	- 1
Thallium		U/	2	1	U/	2		B/U	2.6	1	B/U	2	1	B/U	2.6		U/	2		U/	2	1
Vanadium	i	U/	f	ł	U/	1	l	U/	1	1	U/	ſ	1	U/	1	ĺ	U/	l .	l	U/	1	ı
Zinc	1140	1	1	64.8	1	1	1	B/U	17.3		B/U	10.1	1	/U	23.4	ĺ	/U	26.6	158	1	1	ł
Cyanide	l l	U/	10	1	U/	10	1	U/	10		U/	10	l	U/	10	i	U/	10		U/	10	1

Table 9 Top of Clay Elevation Data From Soil Borings ACS NPL Site

Barrier Wall Borings

Boring	Coord		Ground	Depth	Clay
Number	Northing	Easting	Elevation (msl)	To Clay (ft)	Elevation (msl)
SB-101	6892.9	5253.7	637.9	19.5	618.4
SB-102	6873.7	5269.6	637.8	21.0	616.8
SB-103	6855.1	5287.1	637.8	21.0	616.8
SB-104	6838.3	5304.1	637.8	20.0	617.8
SB-105	6817.9	5321.3	637.8	20.0	617.8
SB-106	6802.1	5339.3	637.8	20.3	617.5
SB-107	6782.4	5356.8	637.8	19.5	618.3
SB-107	6764.6	5372.8	637.6	18.5	619.1
SB-109	7027.3	5307.5	638.0	18.5	619.5
SB-110	6751.9	5660.5	638.8	21.8	617
SB-111	6688.6	5524.4	638.4	19.0	619.4
SB-111	6935.0	5575.9	639.7	19.5	620.2
SB-112	7065.9	5422.2	637.8	17.6	620.2
SB-114	7072.6	5374.8	638.1	19.3	618.8
SB-115	7071.4	5328.2	638.3	19.8	618.5
SB-116 •	7071.4	5472.4	637.5	18.6	
SB-117	6929.2	5219.9	637.9	18.5	618.9
					
SB-118	6721.5	5620.5 5567.4	639.1	24.8	614.3
SB-119	6708.8		638.8	21.7	617.1
SB-120	6742.0	5280.7 5476.0	637.7	20.0	617.7
SB-121	6673.0		638.1	21.5	616.6
SB-122	6971.7	5248.3	638.1	19.1	619
SB-123	7001.1	5274.0	638.1	19.5	618.6
SB-124	7023.1	5521.0	638.6	18.5	620.1
SB-125	6855.0	5622.8	638.4	19.0	619.4
SB-126	6907.2	5615.2	638.3	19.5	618.8
SB-127	6960.9	5599.7	638.3	19.0	619.3
SB-128	6803.1	5653.1	638.9	24.5	614.4
SB-129	6712.4	5268.4	636.9	18.5	618.4
SB-130	6652.2	5448.6	637.9	19.5	618.4
SB-131	6826.5	5088.9	636.7	18.0	618.7
SB-132	6756.4	5174.5	637.C	19.0	618
SB-133	6670.7	5352.5	637.3	20.0	617.3
SB-134	6667.5	5402.1	637.7	20.5	617.2
SB-135	6737.0	5230.1	637.1	18.5	618.6
SB-136	6903.5	5146.0	637.5	18.5	619
SB-137	6985.7	5225.5	637.6	17.5	620.1
SB-138	6636.5	5397.5	637.6	20.0	617.6
SB-139	6865.6	5117.2	637.4	18.5	618.9
SB-140	6956.3	5179.7	637.6	18.5	619.1
SB-141	6999.3	5199.7	637.6	18.5	619.1
SB-142	6885.6	5641.6	638.3	19.0	619.3
SB-143	7078.6	5430.1	637.6	19.5	618.1
SB-144	6996.0	5565.6	639.7	19.7	620
SB-145	6797.4	5603.5	639.6	23.5	616.1
SB-146	6783.8	5610.0	639.6	24.0	615.6
SB-147	6777.3	5597.9	639.7	24.0	615.7
SB-148	6785.2	5620.0	639.5	22.5	617
SB-149	6833.6	5764.9	638.2	19.5	618.7
SB-150	6452.9	5749.4	639.0	21.0	618
SB-151	6763.8	5890.1	638.8	20.0	618.8
SB-152	6606.8	5818.6	639.2	21.0	618.2

Table 9 Top of Clay Elevation Data From Soil Borings ACS NPL Site

Barrier Wall Borings

Boring	Coord	linates	Ground	Depth	Clay
Number	Northing	Easting	Elevation (msl)	To Clay (ft)	Elevation (msl)
SB-201	5674.8	4984.8	647.5	NA	NA
SB-202	6059.9	5011.5	640.4	NA	NA
SB-202A	6077.4	5014.5	639.9	22.0	617.9
SB-203	6029.0	5011.5	641.0	22.0	619
SB-204	5964.5	5012.0	641.9	21.8	620.1
SB-205	5913.8	5014.2	643.4	22.5	620.9
SB-205A	5930.6	4988.6	645.9	26.5	619.4
SB-206	5856.2	5013.4	644.6	24.0	620.6
SB-207	5801.1	4978.0	646.9	25.0	621.9
SB-208	5763.9	4960.8	646.8	25.5	621.3
SB-209	5715.5	4942.1	647.4	28.0	619.4
SB-210	5690.0	4988.9	647.2	26.0	621.2
SB-211	5663.6	5186.0	650.9	29.5	621.4
SB-212	5758.7	5453.6	649.4	28.0	621.4
SB-213	5637.8	5388.9	653.1	31.0	622.1
SB-214	5946.4	5523.4	647.2	26.0	621.2
SB-215	6126.2	5615.5	647.9	28.5	619.4
SB-216	6325.7	5662.3	645.9	26.0	619.9
SB-217	6444.1	5602.8	639.5	22.0	617.5
SB-218	6517.4	5411.0	634.7	16.0	618.7
SB-219	6606.9	5299.9	633.0	14.0	619
SB-220	6496.9	5175.7	635.4	16.0	619.4
SB-221	6353.9	5138.1	634.0	13.0	621
SB-222	6223.4	5069.4	638.6	18.5	620.1
SB-223	6729.8	5059.2	638.5	20.0	618.5
SB-224	6197.5	5301.8	646.9	27.0	619.9
SB-225	6208.5	5283.1	647.3	27.0	620.3
SB-226	6192.7	5286.9	647.5	27.0	620.5
SB-227	6212.0	5297.6	646.9	27.1	619.8

Table 9 Top of Clay Elevation Data From Soil Borings ACS NPL Site

Boring	Coordi		Ground	Depth	Clay
Number	Northing	Easting	Elevation (msl)	To Clay (ft)	Elevation (ms
MW-01	5783	4305	635.7	15	620.7
MW-02	6839	5033	634.8	19	615.8
MW-03	7314	5299	634.1	14	620.1
MW-04	7126	6112	638.2	19.5	618.7
MW-05	6482	5788	639.4	21	618.4
MW-06	5520	5298	653	32	621
MW-07	6732	6113	638.7	20.5	618.2
MW-08	7506	5934	638.2	21.2	617
MW-09	6990	4893	635.9	16.6	619.3
MW-10	7784	5200	633	13.8	619.2
	NS NS	NS	634.3	15.5	
MW-10A			·		618.8
MW-10B	NS	NS 6220	634.2	17	617.2
MW-IOC	7554	5229	634.7	15.7	619
MW-11	7329	6377	637.5	20.3	617.2
MW-12	6352	6019	639.7	20.2	619.5
MW-13	7814	5050	631.9	12.8	619.1
MW-14	6995	4882	636	16.8	619.2
MW-15	5003	4721	635.2	14.9	620.3
MW-16	6596	5065	636.3	16.8	619.5
MW-18	5746	5836	645.4	20	625.4
LW-01	5070	4807	642.4	23	619.4
LW-02	5465	4662	647.4	26	621.4
MW-21	7067	4546	631.3	13	618.3
MW-22	4898	5208	634.3	20.5	613.8
MW-23	7404	4717	631.1	11.5	619.6
MW-24	8033	4596	633.1	15	618.1
MW-28	5696	5657	649	27.5	621.5
MW-29	7012	4886	635.7	15	620.7
MW-30	7774	5194	632.1	13.5	618.6
MW-31	7505	5907	639.4	18.5	620.9
MW-32	7507	5902	639.5	18.5	621
MW-33	7774	5189	632	13.5	618.5
MW-34	7002	4880	635.8	15.5	
	6542	4934	632.4		620.8
MW-35		6164	636.2	13	619.4
MW-36	6767				621.2
PZ-42	5696	5662	649	27.5	621.5
PZ-43	5702	5662	649.1	27.5	621.6
PZ-44	6766	6170	636.1	15	621.1
MW-52	7814	4996	631.4	12.5	618.9
MW-54	7592	5590	634.6	14	620.6
MW-50	5383	5269	647.2	29.5	617.7
MW-55	7604	5595	635.3	14	621.3
MW-37	7976	5395	634	12	622
MW-38	8216	5903	633.6	11.5	622.1
MW-39	7947	6253	634	11	623
MW-40	6831	6349	636.6	13.5	623.1
MW-41	4517	6242	629.6	13	616.6
MW-41-4R	4517	6317	629	1	628
MW-41-5R	4567	6367	629		628
MW-41-6R	4800.5	6100	629	1.5	627.5
MW-42	3808	6264	629.3	14	615.3
MW-43	3719	5880	630.2	18	612.2
MW-44	4303	5390	630	3.5	626.5
MW-45	4388	5830	632.1	11	621.1
MW-46	7424	4526	630	11.5	
			· · - · - · · - · - · - · - · - · · · ·		618.5
MW-47	5084	5958	637.6	13	624.6
MW-48	7814	5669	632.6	11.5	621.1
MW-49	7650	5551	634.2	12.5	621.7
M-ID_	5747	4359	637.1	19.5	617.6
M-2D	6495	3997	635	19	616
M-3D	6821	4144	630.5	12	618.5
M-4D	6538	4949	631.4	12.5	618.9
M-5D	7094	4171	633	11.5	621.5

Table 10

Monitoring Wells and TICs with Two or More Occurrences

American Chemical Service Inc. NPL Site

Griffith, Indiana

A. 18. 18.

Well	<u>Aquifer</u>	Setting	TIC	Concentration (ug/L)
M-1S	Upper		Ether	20
M-1S	Upper		Chloro-di-flouromethane	95
M-4S	Upper		Tetrahydrofuran	45
MW-06	Upper		Ether	29
MW-13	Upper		Ether	82
MW-14	Upper		2-ethyl-1-hexanol	28
MW-15	Upper		Chloro-di-flouromethane	17
MW-19	Upper		Ether	5
MW-19	Upper		Chloro-di-flouromethane	21
MW-41	Upper		2-ethyl-1-hexanol	5

<u>Well</u>	Aquifer	Setting	TIC	Concentration (ug/L)
MW-10C	Lower	Top	Ether	4,100
MW-10C	Lower	Тор	Tetrahydrofuran	170
MW-21	Lower	Top	2-ethyl-1-hexanol	12
MW-22	Lower	Top	Chloro-di-flouromethane	9
MW-22	Lower	Top	2-ethyl-1-hexanol	25
MW-24	Lower	Top	2-ethyl-1-hexanol	5
MW-29	Lower	Middle	2-ethyl-1-hexanol	8
MW-30	Lower	Middle	2-ethyl-1-hexanol	7
MW-34	Lower	Bottom	2-ethyl-1-hexanol	12
MW-50	Lower	Тор	2-ethyl-1-hexanol	19
MW-51	Lower	Тор	Ether	12,000
MW-51	Lower	Тор	Tetrahydrofuran	110
MW-52	Lower	Тор	Ether	9,900
MW-52	Lower	Тор	Tetrahydrofuran	72
MW-53	Lower	Bottom	Tetrahydrofuran	19

Notes:

See Appendices D and E for complete listing of data

Table 11 Groundwater Level Gauging Points American Chemical Service NPL Site

Lower Aquifer Wells and Piezometers

Well	Reference Points	Date:	
Designation	East North TOIC		Notes
PZ44	6170 : 6766 638.47		
MW28	5657 5696 648.77		
PZ42	5662 5696 648.44		
PZ43	5662 5702 648.69		
MW50	5269 5383 649.43		
MW-7	6113 6732 641.46		
MW-10C	5229 7554 637.45		
MW-9R	4893 6990 639.05		
MW29	4886 7012 638.06		
MW34	4880 7002 638.14		
MW-23	4717 : 7404 633.31		
MW-24	4596 8033 635.22		
MW52	4996 7814 632.74		
MW53	4977 : 7833 - 632.87		
MW51	5198 7767 634.16	1	
MW30	5194 7774 634.25		
MW33	5189 7774 634.13		
MW54R	5590 7592 636.05	i	
MW55	5595 7604 636.63		
MW-8	5934 7506 640.43		
MW31	5907 7505 641.64		
MW32	5902 7507 641.84		
M-4D	4949 6538 633.32		
ATMW-4D	5297 7311 637.99		

Table 11 Groundwater Level Gauging Points American Chemical Service NPL Site

Upper Aquifer Wells

Well	Reference Points			Date:	
Designation	East	North	TOIC		Notes
MW-6	5298	5520	655.28		
MW-11	6377	7329	640.47		
MW-12	6019	6352	642.74		
MW-13	5050	7814	634.08		
MW-14	4882	6995	638.56		
MW-15	4721	5003	637.89	,	
MW-18	5836	5746	644.89		
MW-19	5231	4943	635.78	1	
MW37	5395	7976	636.78		
MW38	5903	8216	636.51		
MW39	6253	7947	637.77		
MW40	6349	6831	639.46		
MW41	6242	4517	632.74		
MW42	6264	3808	632.32	.	
MW43	5880	3719	633.56		
MW44	5390	4303	633.04		
MW45	5830	4388	635.35		
MW46	4526	7424	633.32		
MW47	5958	5084	640.54		
MW48	5669	7814	636.36		•
MW49	5551	7650	637.00		
M-1S	4362	5743	639.09		Griffith Landfilll Wells
M-4S	4953	6537	633.42	1	Griffith Landfilll Wells

Staff Gauges

Well	Reference Points		Date:		
Designation	East	North	TOSG		Notes
SG-2	4423	6864	622.84		
SG-7	5403	6889	637.01		
SG-8R	5409	5252	634.70		
SG-1	5023	6196	633.50		Yes/No
SG-3	4180	7123	631.17		Yes/No
SG-5	5464	7713	633.36		Yes/No
SG-6	4495	8075	632.97		Yes/No
SG-11	5859	8245	634.62		Yes/No
SG-12	5596	7867	634.12	1	Yes/No

Table 11 Groundwater Level Gauging Points American Chemical Service NPL Site

Piezometers

Well	Reference Points			Date:	
Designation	East	North	TOC		Notes
LW-1	4807		644.57		
LW-2	4662		649.70		
P-3	5453	6470			
P-4	5432	6228	639.25		Not Found
P-5	5285	6510	636.70		Buried in Brush
P-6	5150	6551	638.75		Not Found 6/97
P-7	5950	6630	643.63		
P-8	6156	6734	639.27	<u> </u>	
P-9	6134	6994	638.88	ļ <u> </u>	7. 7
P-10	1 0	5852	649.32	ļ	Top of inner casing cracked 3/97 & 6/97
P-11	5199	5900 5723	649.14 650.08	 	Bent, free product present 3/97 & 6/97 Free Product in Piezometer 3/97 & 6/97
P-12 P-13		5735	651.20		Free Froduct in Plezometer 3/91 & 6/91
P-15		6187	639.93	·	
P-16		5749			
P-17		6006		 	Inside Griffith Landfill
P-18	4623	6224		 	Inside Griffith Landfill
P-22	4636	6732	78 T 88	 	Thorough Landin
P-23		7018		 	
P-24		7178	636.06		
P-25		7510		1	
P-26	4764	7309	634.23	1	
P-27	4904		000.0		
P-28	5883	7486			
P-29	5738	6619	642.37		Free Product in piezometer 9/97
P-30	5626		072.72	<u> </u>	Not Found
P-31		7159		<u> </u>	
P-32	5746		642.32	<u> </u>	
P-35	5515		641.44	 	Free Product in piezometer 9/97
P-36 P-37	5410	6949	645.89		Destroyed 2/07
P-37	5330	6992	641.37 639.87	 	Destroyed 3/97 Destroyed 3/97
P-39	5940	6902	642.00	 	Desiroyed 3/9/
P-40		7241	638.77		New 9/97 - Installed after water level monitoring
P-41	5663	7377		 	New 9/97 - Installed after water level monitoring
P-49	5145	6949	638.98		New 9/97 - Installed after water level monitoring
P-50	5129	6964			Not Found
P-51	3876	6859	635.07	 	Not Found
P-52	4100	7845		 	
P-53	4597	8015	636.18	1	
P-54	4936		755 55	1	
P-55	5628	7979	636.08		
P-56	6405	7665	639.46		
P-59	6389	6590	639.22		
P-60	6111	6051	640.23		
P-61	5533	5284	638.58		
P-62	5665	4945	637.06		
P-63	5483	7689	637.70		N
EW-1	5113		639.50		Not Found
P-64	4617	7065	634.87		
P-65	4615	7063	634.77	1	
P-66	4729	7034	636.02		
P-67	4732	7034	636.06		
P-68	4743	7752	634.48		
P-69 P-70	4741	7751 7680	634.66 635.38		
	4876		635.32		
r-/1	70/0	7002	055.52		

Table 11 35,635 - W. **Groundwater Level Gauging Points American Chemical Service NPL Site**

New Diezometers - Unner Aquifor

Well	Reference Points	Date:	
Designation	East North TO		Notes
PGCS Piezomete	r Sets	ì	
P-81	5577 7581 636.1	9	
P-82	5577 7572 635.7	7	
P-83	5577 7562 635.9	5	
P-84	5322 7603 634.3	5	
P-85	5326 7594 634.0	8	
P-86	5329 7585 634.4	1	
P-87	5121 7466 633.8	8	
P-88	5130 7460 633.9	0	
P-89	5137 7454 634.0	2	
P-90	4881 7152 632.5	9	
P-91	4889 7145 632.9	7	
P-92	4896 7138 633.6	3	
BWES Piezomete	er Pairs		
P-93	5136 7067 638.7	9	
P-94	5146 : 7061 638.9	8	
P-95	5146 6532 638.5	8	
P-96	5156 6537 638.3	9	
P-97	5098 6283 638.3	9	
P-98	5130 6279 639.3	5	
P-99	5020 5945 644.3	5	
P-100	5031 5948 643.9	3	
P-101	5550 5979 650.0	8	
P-102	5517 5996 647.1	8	
P-103	5672 6248 644.9	7	
P-104	6267 5639 646.6	58	
P-105	6678 5885 638.8	36	
P-106	6685 5871 638.1	0	
P-107	5766 7339 637.4	12	
P-108	5757 7324 638.	13	

Note

All depth measurements and elevations are in units of feet.

Table 12. Groundwater Monitoring Plan, First three years
Upper Aquifer Wells
American Chemical Service NPL Site

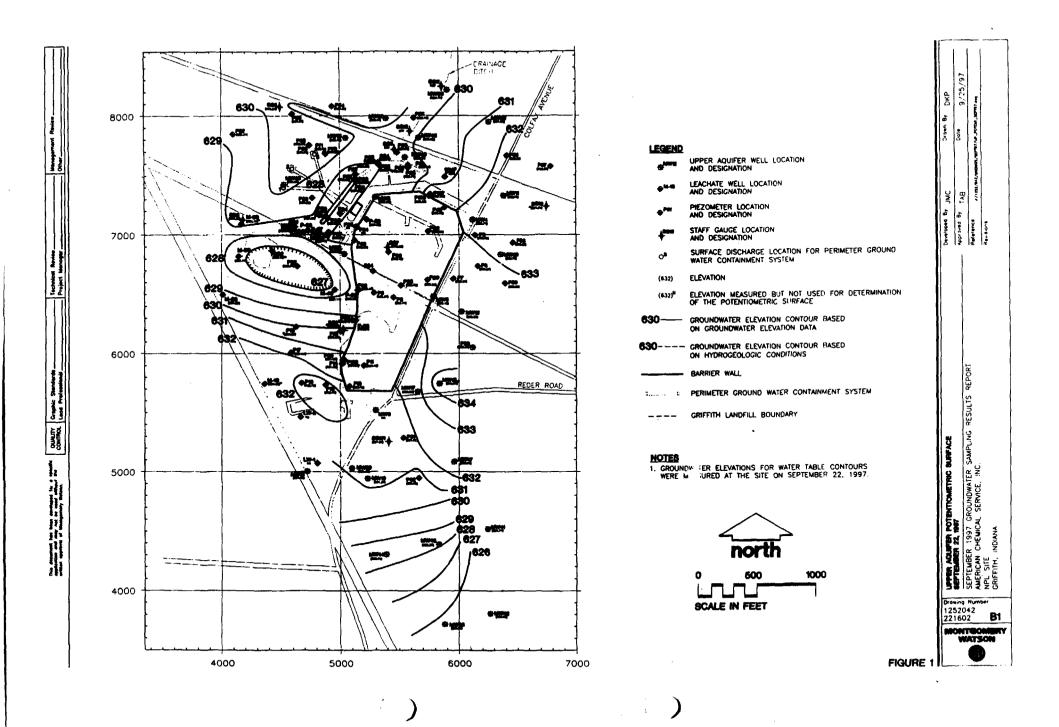
	Area of		Location with Respect				Monitoring Parameters							
	Groundwater	Well	to Area of Groundwater		1998				199		2000			
<u></u>	Contamination	Identification	Contamination	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
1	North	MW-11	Side Gradient	TCL/TAL		Ind	Ind		Ind		Ind		Ind	
2		MW-12	Side Gradient	TCL/TAL		Ind	ind		ind		Ind		Ind	
3		MW40	Side Gradient	_TCL/TAL		Ind	Ind		Ind		Ind		Ind	
4		MW38	Side Gradient	TCL/TAL		Ind	TCL/TAL	A	Ind		TCL/TAL		Ind	
5		MW39	Side Gradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
6		MW48	Internal	TCL/TAL.	Ind	Ind	TCL/TAL	Ind	lnd	Ind	TCL/TAL	Ind	Ind	Ind
7		MW49	Internal	TCL/TAL	Ind	Ind _	TCL/TAL	Ind	Ind	Ind	TCL/TAL	Ind	Ind	Ind
8		MW37	Downgradient	TCL/TAL		Ind	TCI/TAL		Ind		TCL/TAL		lnd	
9	West	MW13	Internal	TCL/TAL		_Ind	TCL/TAL		Ind		TCL/TAL		Ind	
10		MW14	Internal	TCL/TAL		Ind	TCI/TAL		Ind		TCLTAL		Ind	
11		MW46	Side Gradient	TCL/TAL_		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
12		M-1S	Griffith Landfill	TCL/TAL		Ind	Ind	•	Ind		Ind	_	Ind	
13		M-3S	Griffith Landfill	TCI/TAL	_									
14		M-4S	Griffith Landfill	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
15	South	MW18	Upgradient	TCL/TAL		Ind	TCLTAL		Ind		TCL/TAL		Ind	
16		MW6	Internal	TCL/TAL	•	Ind	TCL/TAL		Ind		TCL/TAL		Ind	
17		MW19	Internal	TCI/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
18		MW45	Internal	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		ind	
19		MW44	Side Gradient _	TCL/TAL	_	Ind	TCL/TAL		Ind		TCL/TAL		Ind	
20		MW41	Side Gradient	TCL/TAL	_	Ind	TCL/TAL	- -	Ind		TCI/TAL		Ind	
21		MW47	Side Gradient	TCL/TAL	_	Ind	TCI/TAL	-	Ind		TCL/TAL		ind	
22		MW15	Side Gradient	TCI/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
23		MW42	Downgradient	TCL/TAL	,	Ind	TCL/fal		Ind		TCI/TAI.		Ind	
24		MW43	Downgradient	TCI/FAI.		Ind	TCL/TAL		Ind		TCI/TAI.		Ind	

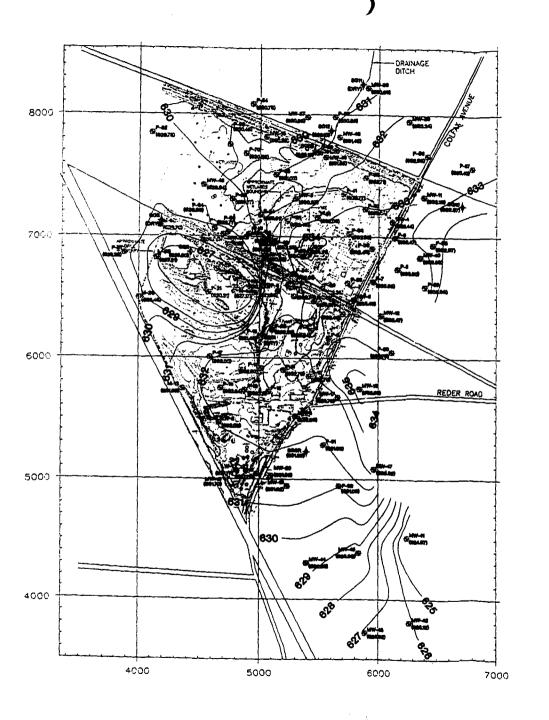
Notes:

TCL/TAL: Full scan Target Compound List and Target Analyte List Parameters

Ind: Indicator Parameters, including PCE, TCE, TCA, DCE, VC, chloroethane, benzene, phenol, phthalates, arsenic, and lead. (The need for phenols and phthalates to be determined after 2nd Quarter 1998 Sampling).

Table 13. Groundwater Monitoring Plan, First three years
Lower Aquifer Wells
American Chemical Service NPL Site


		Well Screen	Location with	Monitoring Parameters										
ł	Well	Depth in	Respect to Area of		1998				99			20	000	
<u> </u>	Identification	Lower Aquifer	GW Contamination	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
1	MW22	Upper	Upgradient	TCL/TAL										
2	MW28	Upper	Upgradient	TCL/TAL		Ind	TCL/TAL		lnd		TCL/TAL		ind	
3	MW50	Upper	Upgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
4	MW7	Upper	Side Gradient	TCL/TAL		Ind	lnd		Ind	***	Ind		ind	
5	MW36	Middle	Side Gradient	TCL/TAL										
6	MW10C	Upper	Internal	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
7	MW9R	Upper	Internal	TCL/TAL	TCL/TAL	TCL/TAL	TCL/TAL	Ind	Ind	Ind	TCL/TAL	Ind	Ind	Ind
8	MW29	Middle	Internal	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
9	MW34	Lower	internal	TCL/TAL		Ind	Ind		Ind		Ind		Ind	
10	MW23	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
11	MW24	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
12	MW52	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
13	MW53	Lower	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
14	MW51	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
15	MW30	Middle	Downgradient	TCL/TAL		Ind	TCL/TAL		ind		TCI/TAL	i	Ind	, ,
16	MW33	Lower	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	1
17	MW54R	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	·· •
18	MW55	Lower	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
19	MW8	Upper	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
20	MW31	Middle	Downgradient	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	
21	MW32	Lower	Downgradient	TCL/TAL		Ind	TCL/TAL		Inu		TCL/TAL		Ind	
22	M-4D	Upper	Griffith Landfill	TCL/TAL		Ind	Ind		Ind		Ind		Ind	
23	ATMW-4D	Upper	ACS Site	TCL/TAL		Ind	TCL/TAL		Ind		TCL/TAL		Ind	


Notes:

TCL/TAL: Full scan Target Compound List and Target Analyte List Parameters

Ind: Indicator Parameters, including PCE, TCE, TCA, DCE, VC, chloroethane, benzene, phenol, phthalates, arsenic, and lead. (The need for phenols and phthalates to be determined after 2nd Quarter 1998 Sampling)

23

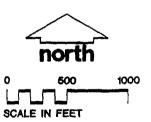
LEGEND

UPPER AQUIFER WELL LOCATION AND NUMBER

LEACHATE/UPPER AQUIFER WELL LOCATION AND NUMBER

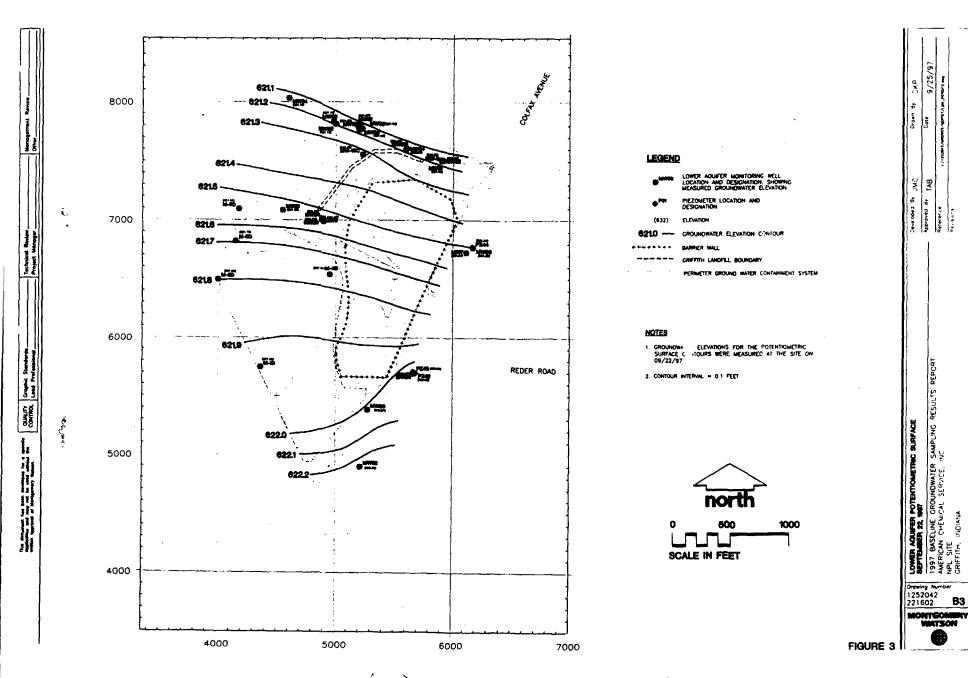
PIEZOMETER LOCATION AND NUMBER

STAFF GAUGE LOCATION AND NUMBER

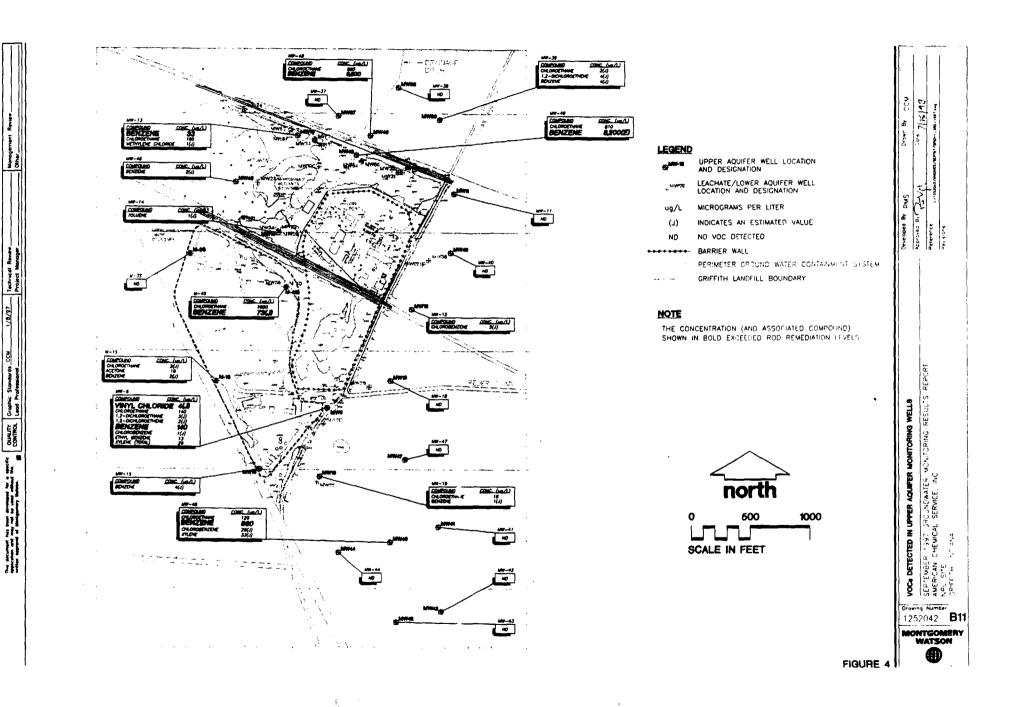

MEASURED WATER TABLE ELEVATION, IN FT. AMSL

NOT MEASURED

GROUNDWATER ELEVATION CONTOUR


NOTES

1. GROUNDWATER LEVELS FOR WATER TABLE CONTOURS WERE MEASURED AT THE SITE ON NOVEMBER 4, 1996



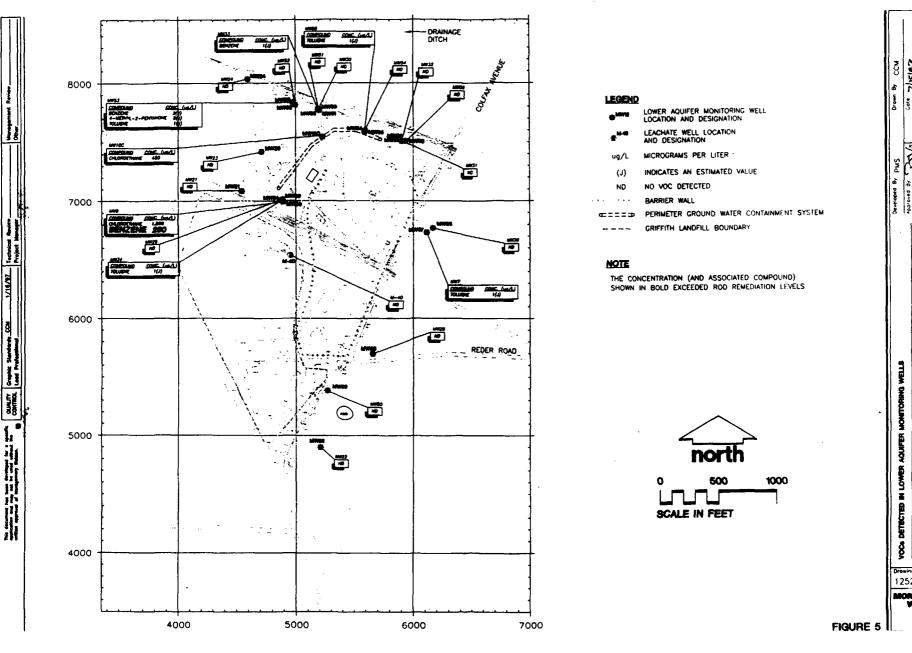
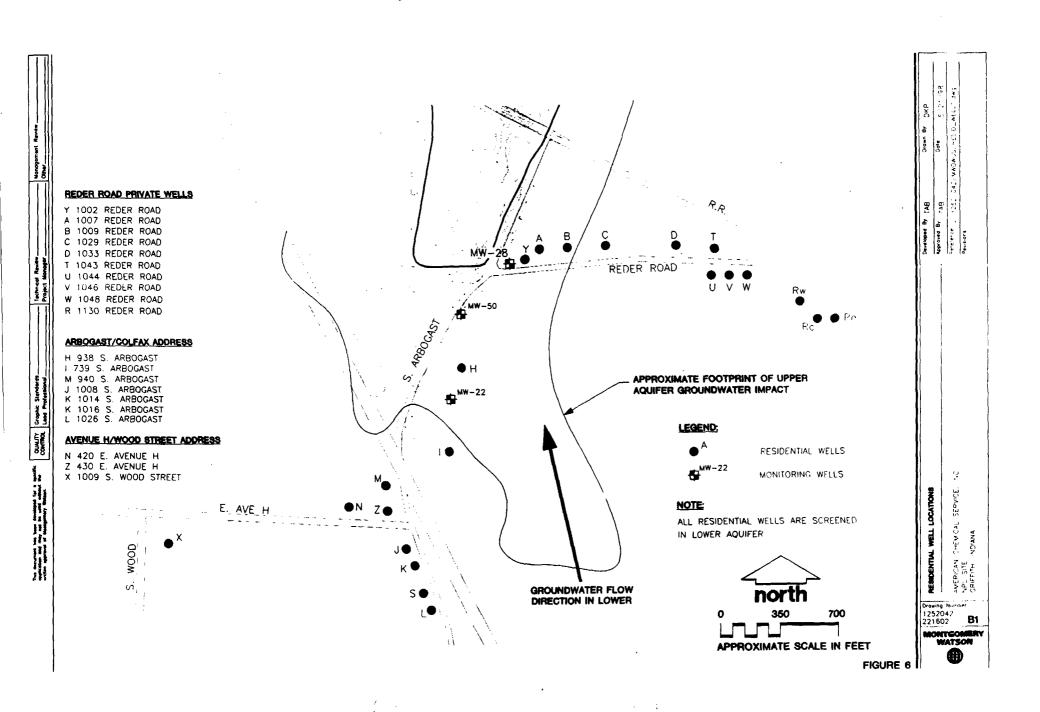
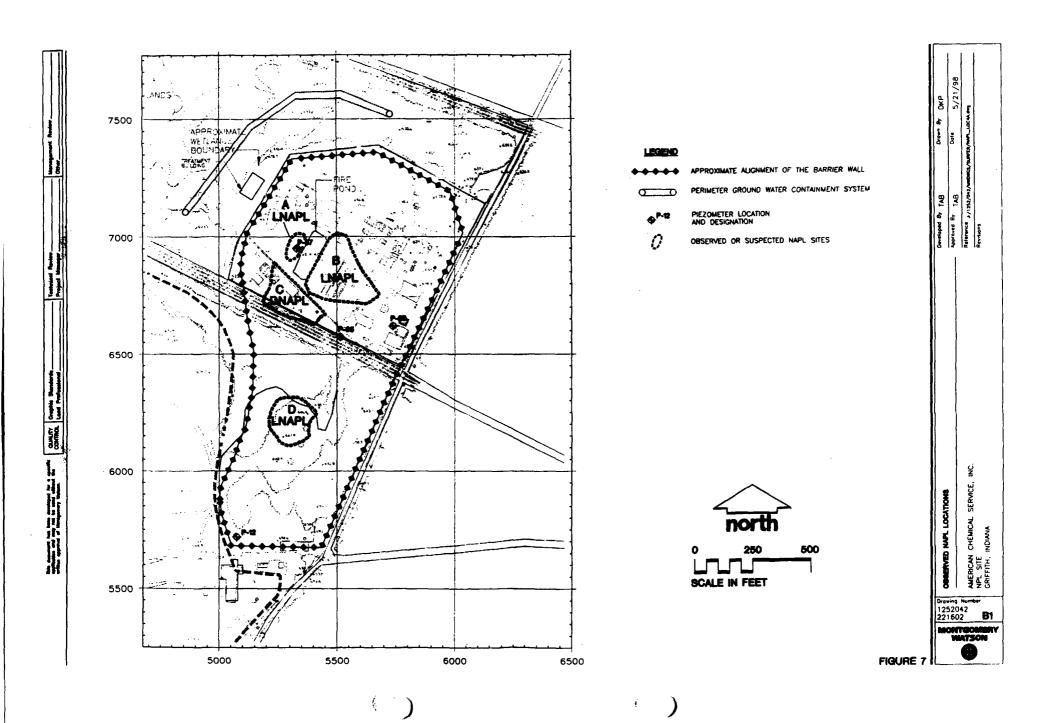
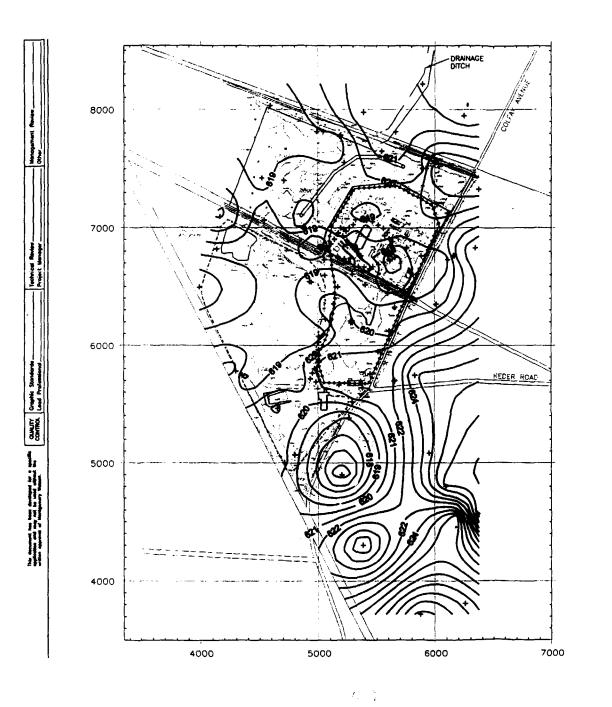

4077.0074**B15** MONTGOMERY WATSON

FIGURE 2



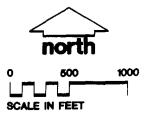

B3



1252.042 **B12** MONTGOMERY WATSON

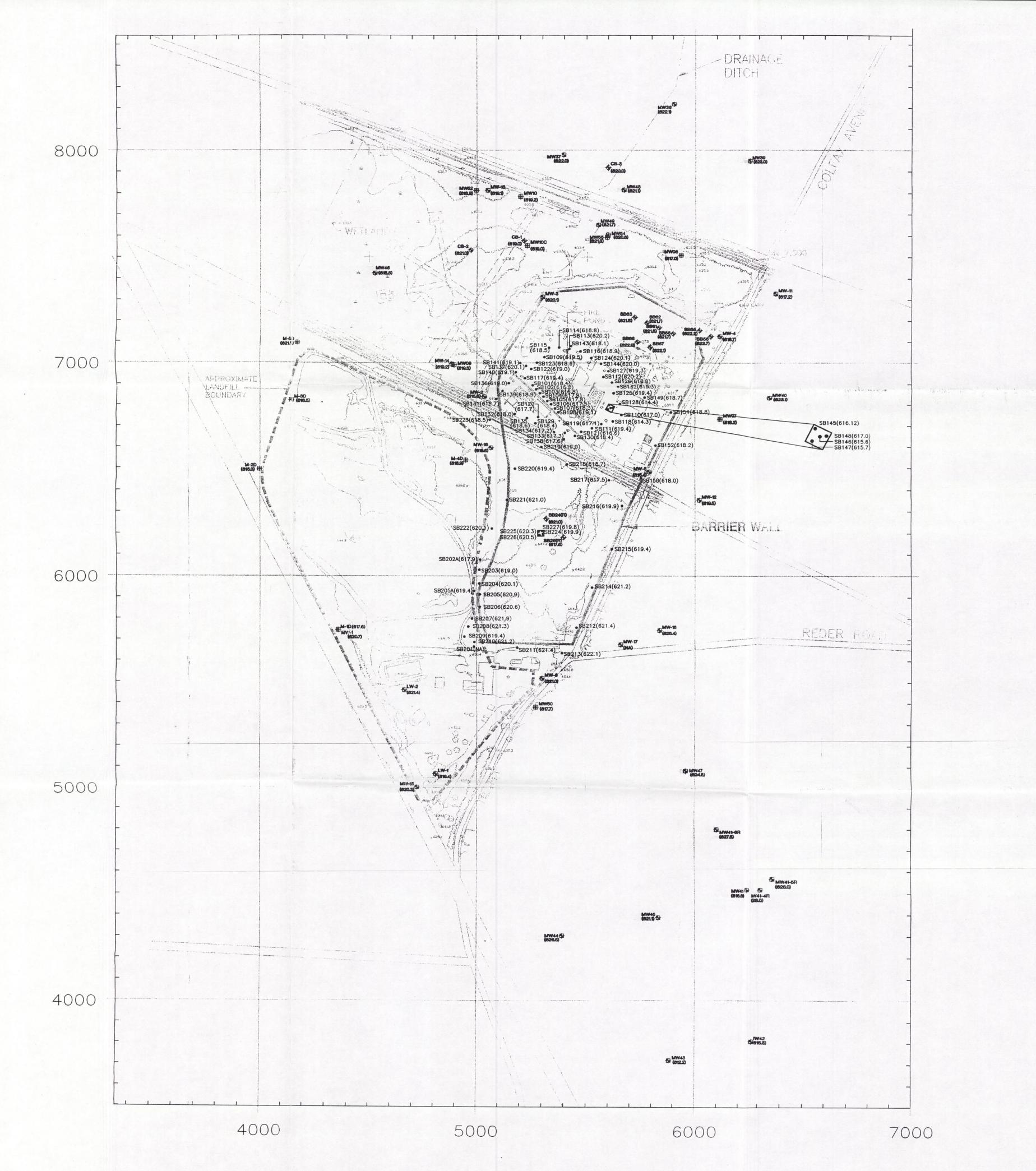
LEGEND

BARRIER WALL


PERIMETER GROUND WATER CONTAINMENT SYSTEM

GRIFFITH LANDFILL BOUNDARY

INDICATES TOP OF CLAY ELEVATION LOCATION


NOTE

THE TOP OF CLAY CONTOUR MAP WAS DEVELOPED BY THE KRIGING INTERPOLATION ALGORITHM IN THE SURFER SOFTWARE PACKAGE FROM THE ELEVATION DATA COMPILED IN TABLE 9 VALUES ARE PLOTTED ON FIGURE 9

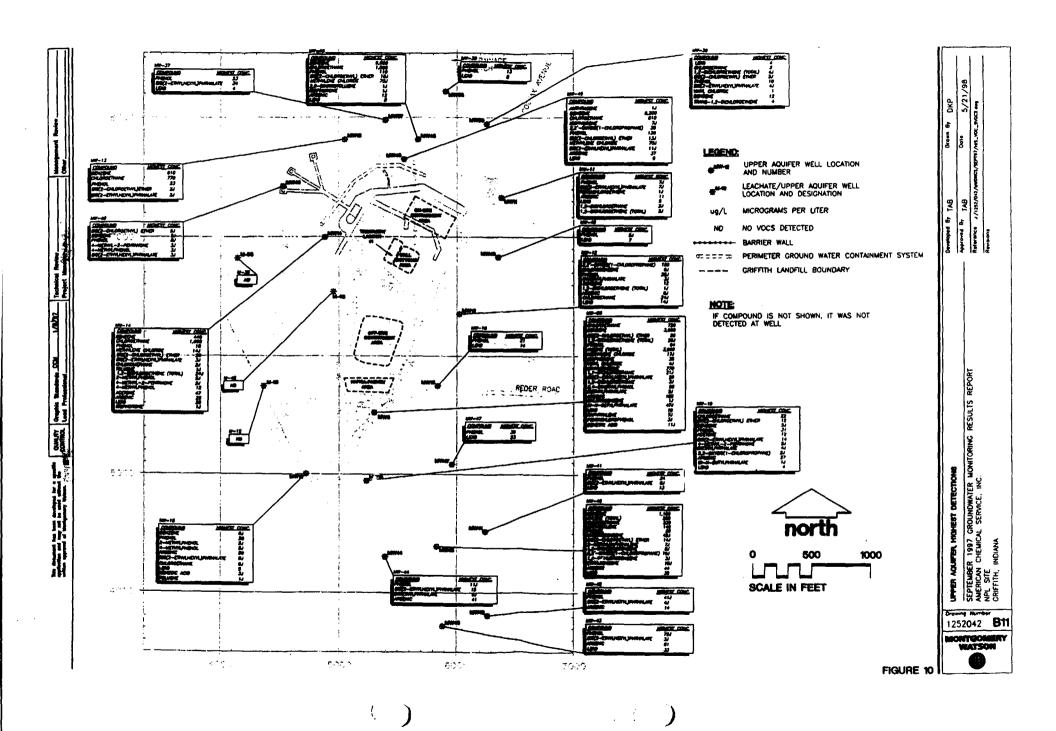

SERVICE. CHEMICAL CONTOUR PLOT OF Drawing Number 1252042 221602 MONTGOMERY WATSON

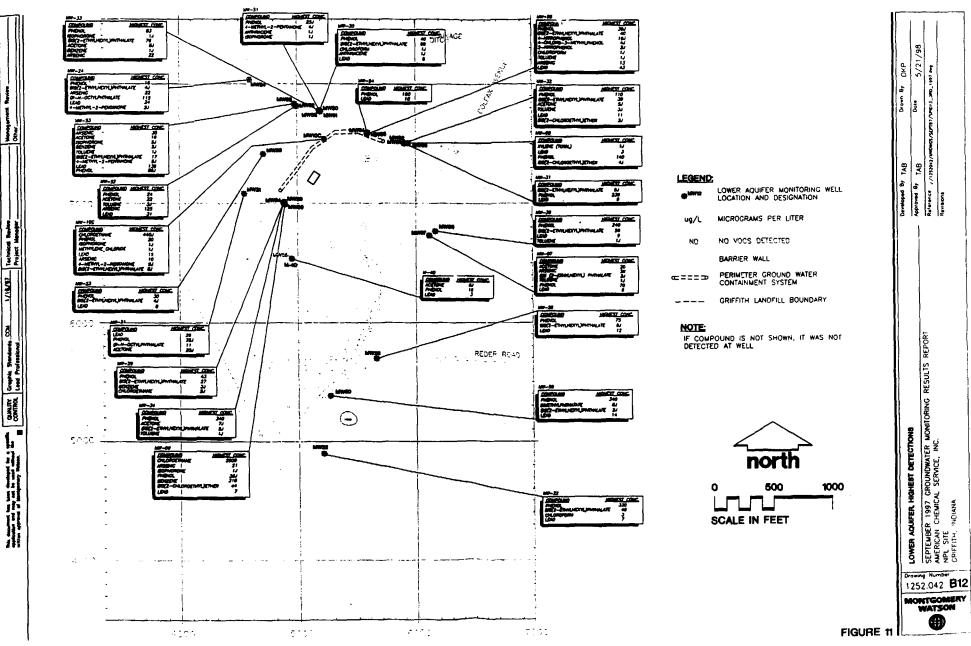
FIGURE 8

NOTES

- 1. BASE MAP DEVELOPED FROM AN AERIAL SURVEY MAP OF THE SITE FLOWN ON MARCH 8, 1994 BY GEONEX CHICAGO AERIAL SURVEY, INC. CONTOUR INTERVAL = 2 ft.
- 2. CLAY ELEVATIONS BASED ON SOIL BORINGS AND MONITORING WELL BORINGS INSTALLED BETWEEN 1988 AND 1997 AND INCLUDED IN VARIOUS REPORTS PREPARED FOR THE ACS NPL SITE.

Appro Appro Refer Refer Revisi


DKP


MONTGOMERY WATSON

Drawing Number

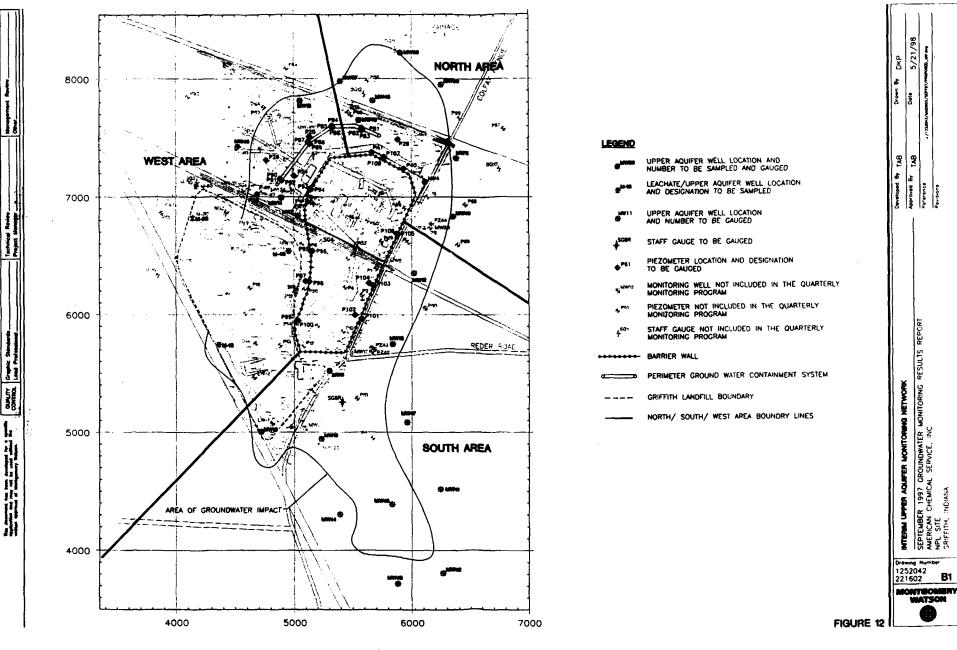
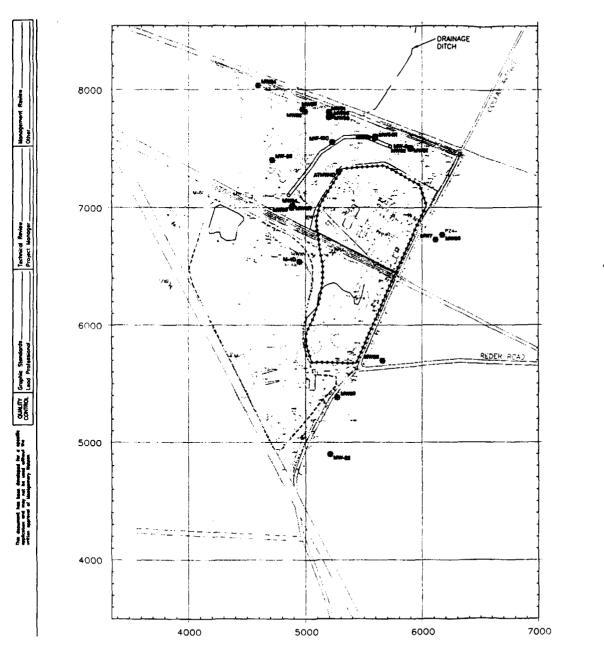

1252042

FIGURE 9



SEPTEMBER 1997 GROUNDWATER MONITORING RESULTS REPORT AMERICAN CHEMICAL SERVICE, INC. NPL SITE CRIFFTH, "WOIANA

RESULTS REPORT UPPER AQUIFER MONITORING NETWORK MONITORING 1252042 221602

LEGEND

LOWER AQUIFER WELL LOCATION AND NUMBER TO BE SAMPLED

PIEZOMETER NOT INCLUDED IN THE QUARTERLY MONITORING REPORT

MONITORING WELL NOT INCLUDED IN THE QUARTERLY MONITORING PROGRAM

LEACHATE/LOWER AQUIFER WELL NOT INCLUDED IN THE QUARTERLY MONITORING REPORT

STAFF GAUGE NOT INCLUDED IN THE QUARTERLY MONITORING REPORT

--- BARRIER WALL

PERIMETER GROUND WATER CONTAINMENT SYSTEM

--- GRIFFITH LANDFILL BOUNDARY

NOTES

1. SEE TABLE 9 FOR LOWER AQUIFER WELLS TO BE GAUGED

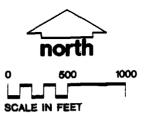


FIGURE 13

NUTERIM LOWER ACURER MONTORING NETWORK SPECAL SPECA
INTERIM LOWER AGUIFER MONTORING NETWORK SEPIEMBER 1997 GROUNDMATER MONTORING RESULTS REPORT AMERICAN CHEMICAL SERVICE, INC NPL STE GPFTT 1997
1262042
Ordeing Number 1252042 221602 B1 MONTGOMERY

APPENDIX A

GROUNDWATER FLOW VELOCITY CALCULATIONS

Estimates of ACS Aquifer Test Results

Source: Table 2-4, Remedial Investigation Report (Warzyn, June 1991)

Slug Test Results: Upper Aquifer Monitoring Wells

East Side	K		
Mon Wells	(cm/sec)		
MW-4	1.40E-03		
MW-5	1.10E-03		
MW-6	1.50E-03		
MW-11	1.30E-03		
MW-12	1.90E-03		
MW-15	2.00E-03		
MW-17			
MW-18	3.50E-03		
		045.00	

1.81E-03

West Side	K	
Mon Wells	(cm/sec)	
MW-1	1.70E-03	
MW-2	1.50E-03	
MW-3	2.10E-03	
MW-13	5.00E-03	•
MW-14	2.105-03	
MW-16	1.50E-03	

2.32E-03

Averagε. 2.05E-03 Min: 1.10E-03 Max: 5.00E-03

Lower Aquifer	K
Mon Wells	(cm/sec)
MW-7	2.30E-02
MW-8	2.20E-02
MW-9	2.10E-02
MW-10	2.30E-02

Average:

2.2E-02

Aquifer Characteristics

Two Aquifers Separated by Clay Aquiclude Upper Aquifer

Fine to coarse Sand, little gravel, trace clay Hydraulic Conductivity

5.5

Mean: 2.0E-03 cm/sec Max: 5.0E-03 cm/sec Min: 1.1E-03 cm/sec

Clay Aquiclude (RI, Tables 2-2 & 4-7)

Lean Clay, trace sand Hyraulic Conductivity

Mean: 5.0E-08 cm/sec
Max: 7.0E-07 cm/sec
Min: 6.0E-09 cm/sec

Lower Aquifer (From Table 2-4)

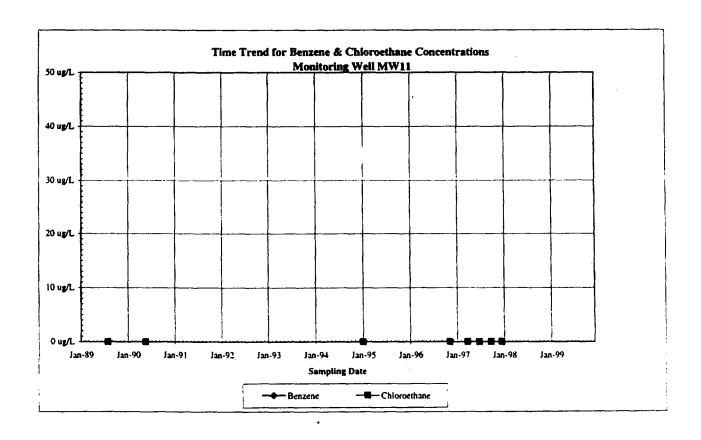
Fine to medium Sand, some gravel Hyraulic Conductivity

Mean: 2.2E-02 cm/sec Max: 2.3E-02 cm/sec Min: 2.1E-02 cm/sec

Upper Aquifer				
Hydraulic C cm/sec	Conductivity ft/year	Gradient ft/ft	Effective Porosity	GW Velocity
1.1E-03	1139	0.0025	0.3	9 feet/year
5.0E-03	51 <i>77</i>	0.01	0.2	259 feet/year
2.0E-03	2118	0.005	0.25	42 feet/year
	Hydraulic C cm/sec 1.1E-03 5.0E-03	Hydraulic Conductivity cm/sec ft/year 1.1E-03 1139 5.0E-03 5177	Hydraulic Conductivity Gradient ft/ft 1.1E-03 1139 0.0025 5.0E-03 5177 0.01	Hydraulic Conductivity Cradient cm/sec ft/year ft/ft 1.1E-03 1139 0.0025 0.3 5.0E-03 5177 0.01 0.2

Lower	Lower Aquifer				
	Hydraulic Conductivity cm/sec ft/year		Gradient ft/ft	Effective Porosity	GW Velocity
Min:	2.1E-02	21742	0.00035	0.2	38 feet/year
Max:	2.3E-02	23813	0.0006	0.3	48 feet/year
Average:	2.2E-02	22778	0.0005	0.25	46 feet/year

APPENDIX B

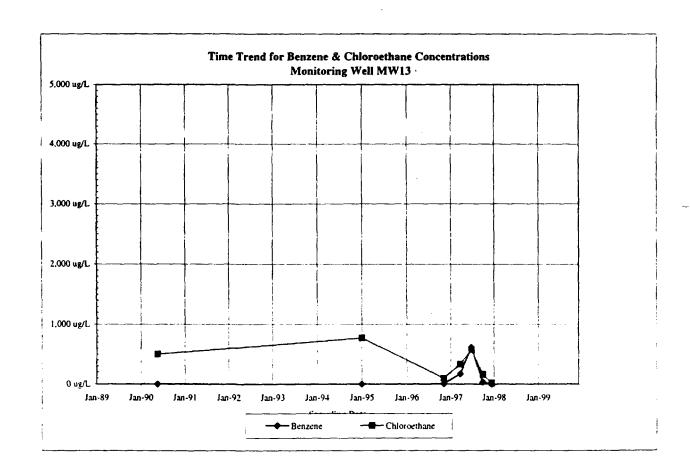

TIME TREND PLOTS

Baseline Groundwater Monitoring

MW11

<u>Date</u>	Benzene	Chloroethane
August-89	BDL	BDL
May-90	BDL	BDL
January-95	BDL	BDL
November-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

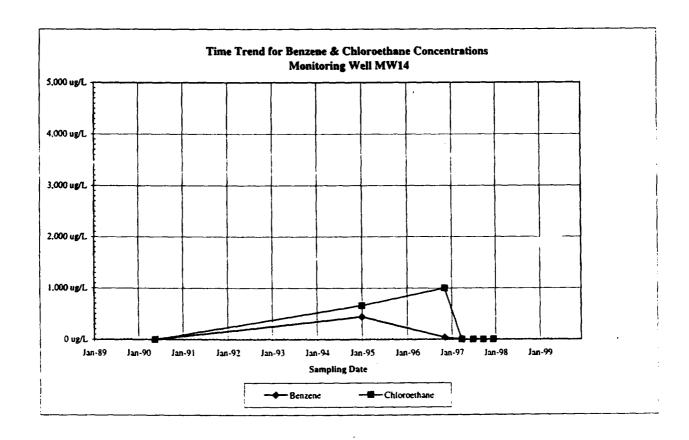


Baseline Groundwater Monitoring

MW13

Date	Benzene	Chloroethane
August-89		
May-90	2 ug/L	500 ug/L
January-95	BDL	770 ug/L
November-96	6 ug/L	97 ug/L
March-97	170 ug/L	330 ug/L
June-97	610 ug/L	570 ug/L
October-97	33 ug/L	160 ug/L
December-97	BDL	20 ug/L
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

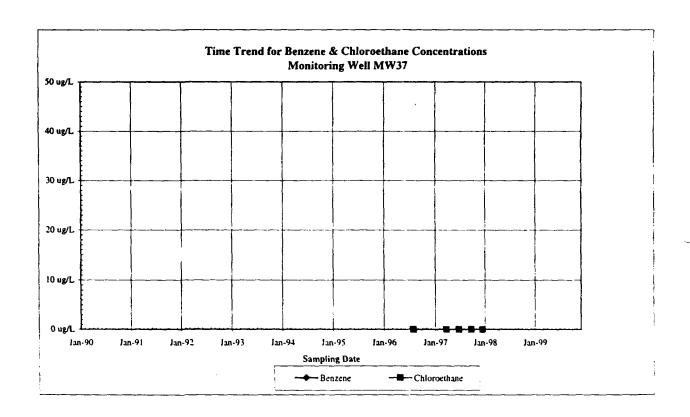


Baseline Groundwater Monitoring

MW14

Date	Benzene	Chloroethane
August-89		
May-90	2 ug/L	3 ug/L
January-95	440 ug/L	660 ug/L
November-96	41 ug/L	1,000 ug/L
March-97	BDL	BDL
June-97	l ug/L	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

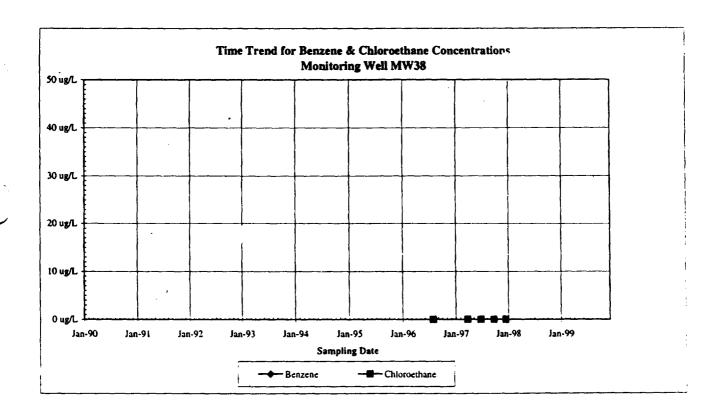


Baseline Groundwater Monitoring

MW37

<u>Date</u>	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

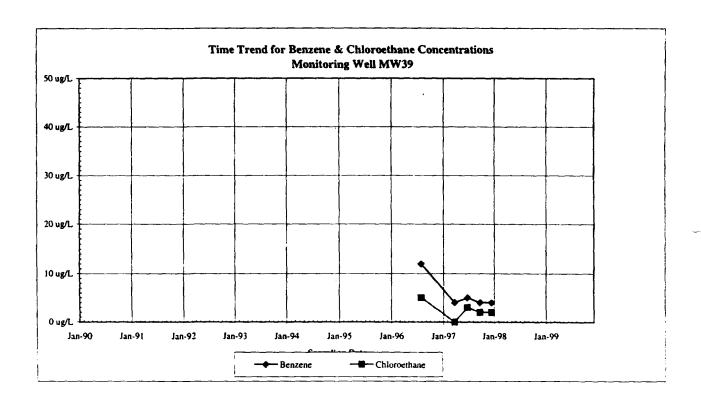


Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99	-	
October-99		

BDL = Below the Detection Limit

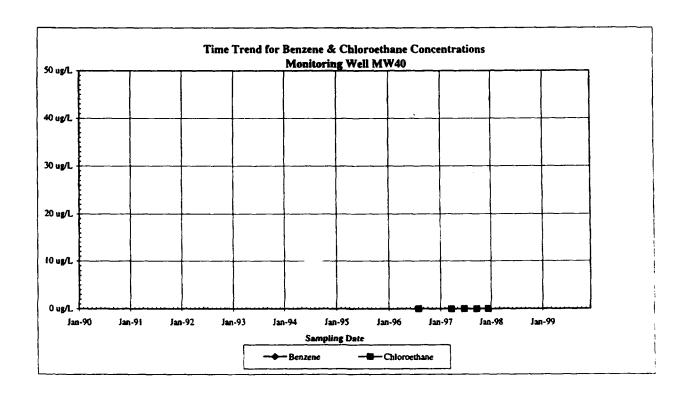


Baseline Groundwater Monitoring

MW39

Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	12 ug/L	5 ug/L
March-97	4 ug/L	BDL
June-97	5 ug/L	3 ug/L
September-97	4 ug/L	2 ug/L
December-97	4 ug/L	2 ug/L
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

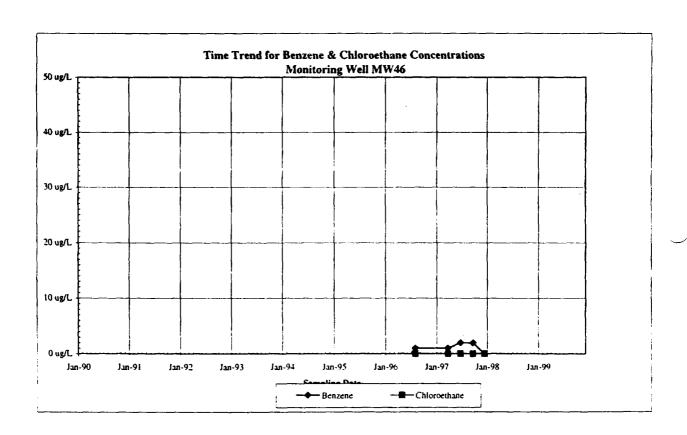


Baseline Groundwater Monitoring

ACS NPL Site

<u>Date</u>	Benzene	Chloroethane
August-89	1	
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99	Ţ	

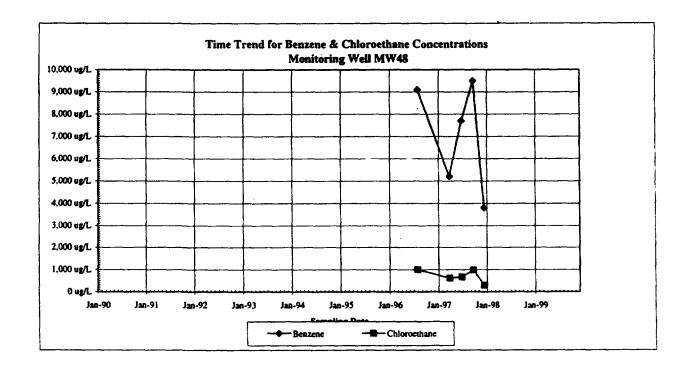
BDL = Below the Detection Limit



Baseline Groundwater Monitoring

ACS NPL Site

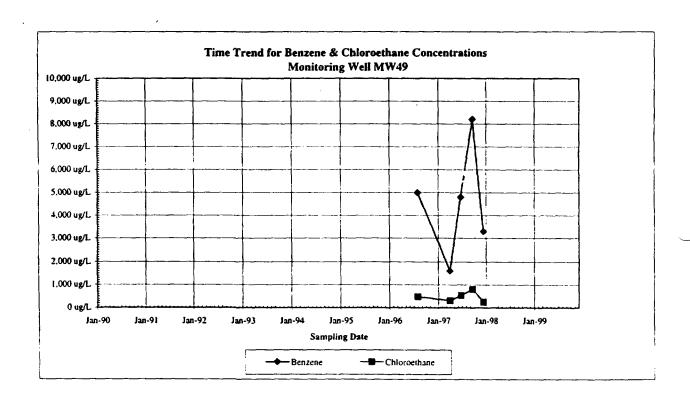
Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	I ug/L	BDL
March-97	l ug/L	BDL
June-97	2 ug/L	BDL
September-97	2 ug/L	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		


BDL = Below the Detection Limit

4....

Baseline Groundwater Monitoring ACS NPL Site

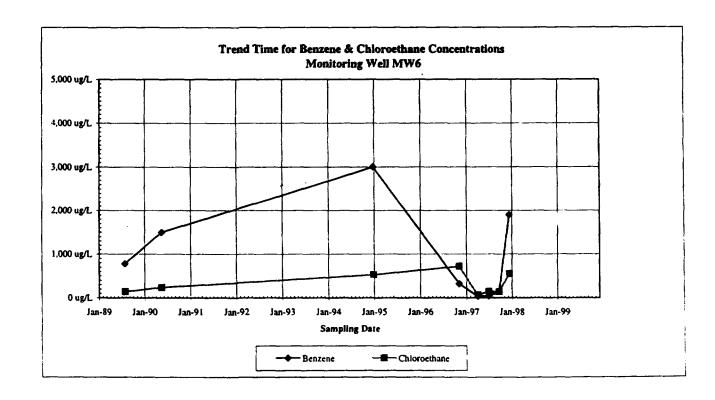
Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	9,100 ug/L	1,000 ug/L
March-97	5,200 ug/L	620 ug/L
June-97	7,700 ug/L	670 ug/L
September-97	9,500 ug/L	980 ug/L
December-97	3,800 ug/L	300 ug/L
June-98		
November-98		
March-99		
October-99		


Baseline Groundwater Monitoring

ACS NPL Site

MW49

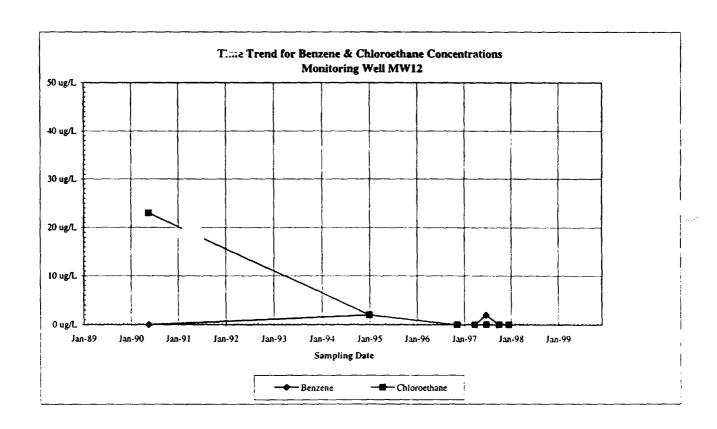
Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	5,000 ug/L	480 ug/L
April-97	1,600 ug/L	310 ug/L
June-97	4,800 ug/L	540 ug/L
September-97	8,200 ug/L	810 ug/L
December-97	3,300 ug/L	250 ug/L
June-98		
November-98		
March-99		
October-99		


BDL = Below the Detection Limit

Baseline Groundwater Monitoring ACS NPL Site

Date	Benzene	Chloroethane
August-89	780 ug/L	140 ug/L
May-90	1,500 ug/L	240 ug/L
December-94	3,000 ug/L	530 ug/L
November-96	320 ug/L	720 ug/L
April-97	35 ug/L	67 ug/L
July-97	39 ug/L	140 ug/L
September-97	140 ug/L	140 ug/L
December-97	1,900 ug/L	550 ug/L
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

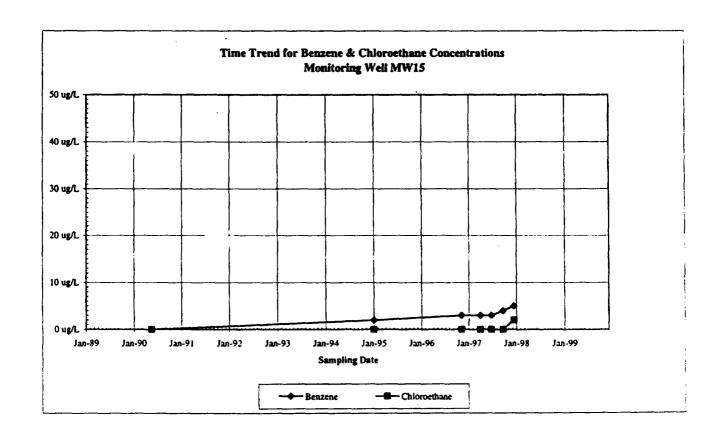


Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90	BDL	23 ug/L
January-95	2 ug/L	2 ug/L
November-96	BDL	BDL
March-97	BDL	BDL
June-97	2 ug/L	BDL
October-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98	1	
March-99		
October-99		

BDL = Below the Detection Limit

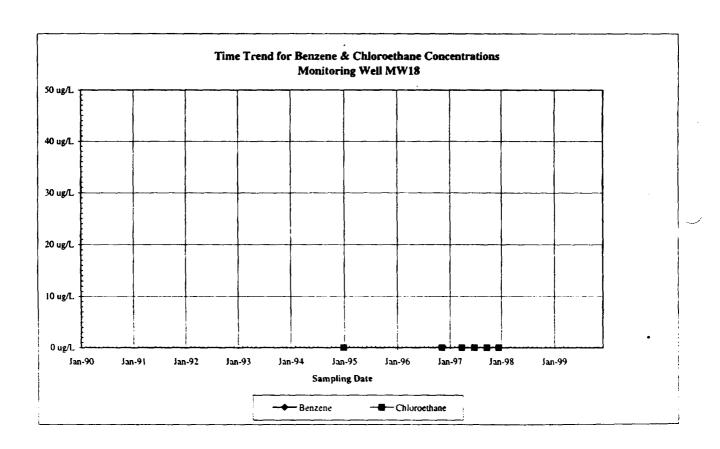

Sec.

Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90	BDL	BDL
January-95	2 ug/L	BDL
November-96	3 ug/L	BDL
April-97	3 ug/L	BDL
June-97	3 ug/L	BDL
September-97	4 ug/L	BDL
December-97	5 ug/L	2 ug/L
June-98		
November-98		
March-99		
October-99		

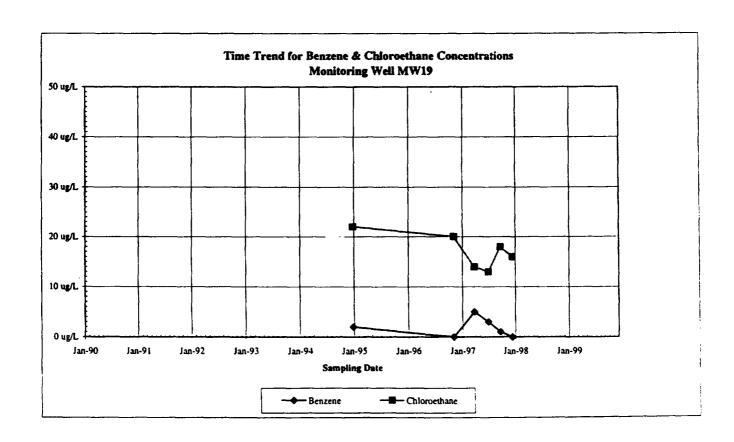
BDL = Below the Detection Limit



Baseline Groundwater Monitoring

MW18

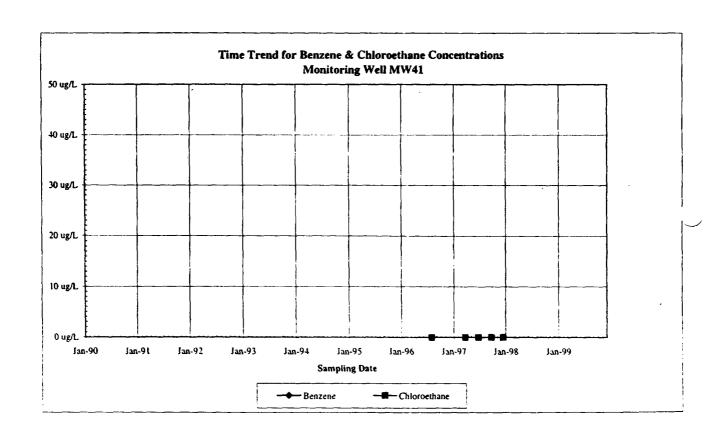
Date	Benzene	Chloroethane
August-89		
May-90	1	
December-94	BDL	BDL
November-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		


BDL = Below the Detection Limit

Baseline Groundwater Monitoring ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90		
December-94	2 ug/L	22 ug/L
November-96	BDL	20 ug/L
March-97	5 ug/L	14 ug/L
June-97	3 ug/L	13 ug/L
September-97	l ug/L	18 ug/L
December-97	BDL	16 ug/L
June-98		
November-98]	
March-99		
October-99		

BDL = Below the Detection Limit

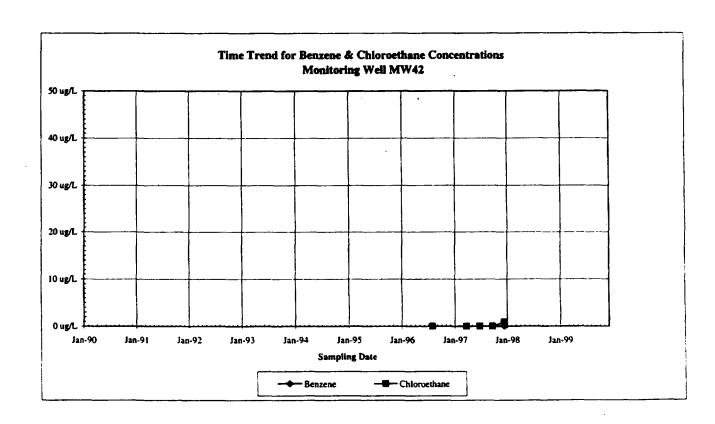


Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

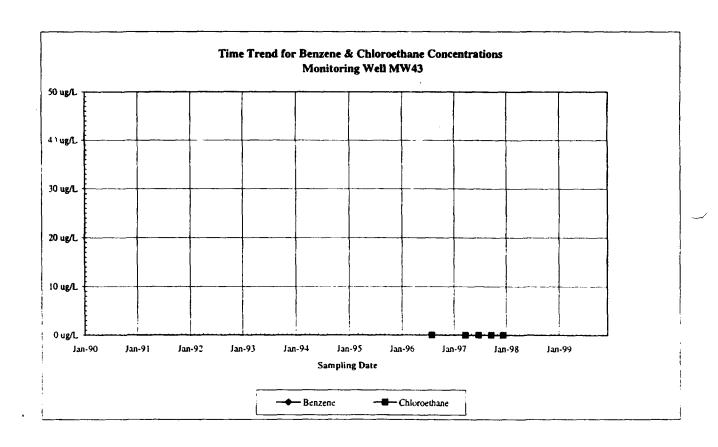


Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	0.9 ug/L
June-98		
November-98		
March-99		
October-99		

BDL = Below the Detection Limit

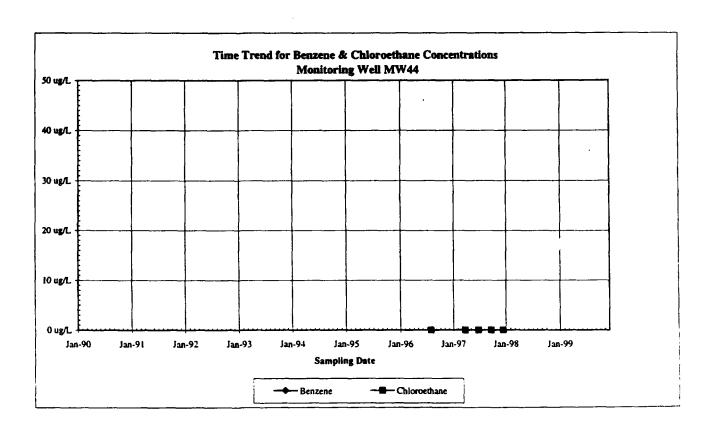


Baseline Groundwater Monitoring

ACS NPL Site

Date	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	BDL	BDL
March-97	BDL	BDL
June-97	BDL	BDL
September-97	BDL	BDL
December-97	BDL	BDL
June-98	T	
November-98	1	
March-99		
October-99		

BDL = Below the Detection Limit

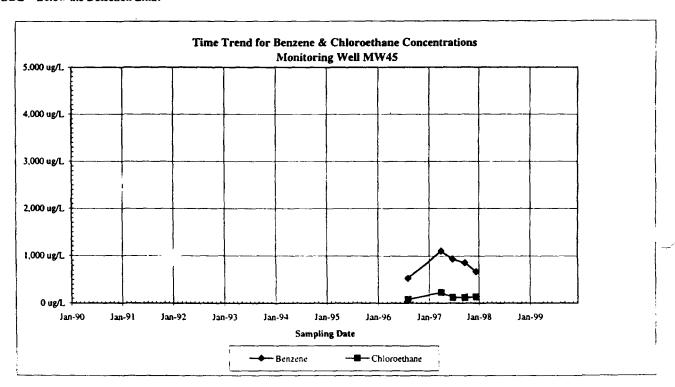

eggi en

Baseline Groundwater Monitoring

MW44

Date	Benzene	Chloroethane					
August-89							
May-90							
December-94							
August-96	BDL	BDL					
March-97	BDL	BDL					
June-97	BDL	BDL					
September-97	BDL	BDL					
December-97	BDL	BDL					
June-98							
November-98							
March-99	Ţ						
October-99							

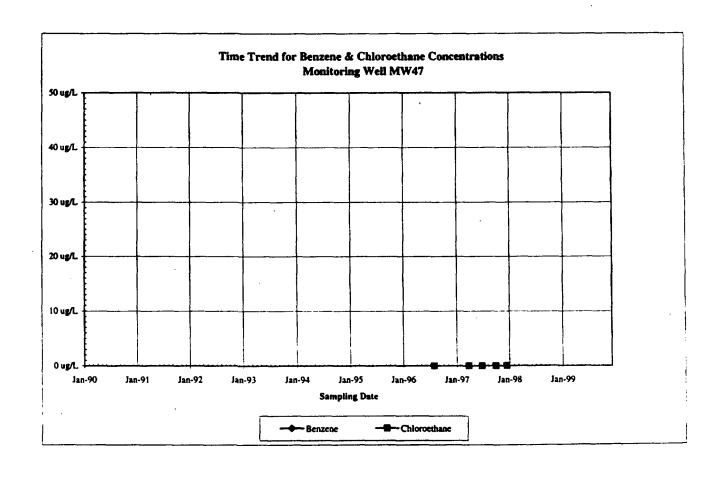
BDL = Below the Detection Limit



Baseline Groundwater Monitoring

ACS NPL Site

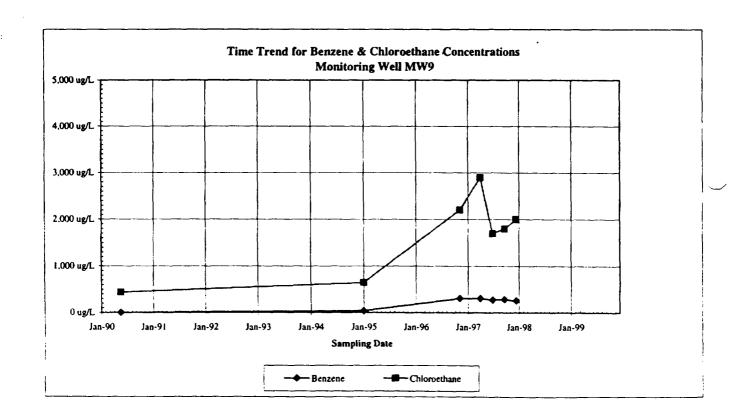
<u>Date</u>	Benzene	Chloroethane
August-89		
May-90		
December-94		
August-96	530 ug/L	82 ug/L
April-97	1,100 ug/L	230 ug/L
June-97	940 ug/L	120 ug/L
September-97	860 ug/L	120 ug/L
December-97	670 ug/L	130 ug/L
June-98		
November-98		
March-99		
October-99		


BDL = Below the Detection Limit

Baseline Groundwater Monitoring ACS NPL Site

Date	Benzene	Chloroethane						
August-89		3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
May-90								
December-94								
August-96	BDL	BDL						
March-97	BDL	BDL						
June-97	BDL	BDL						
October-97	BDL	BDL						
December-97	BDL	BDL						
June-98								
November-98								
March-99								
October-99								

BDL = Below the Detection Limit


Baseline Groundwater Monitoring

ACS NPL Site

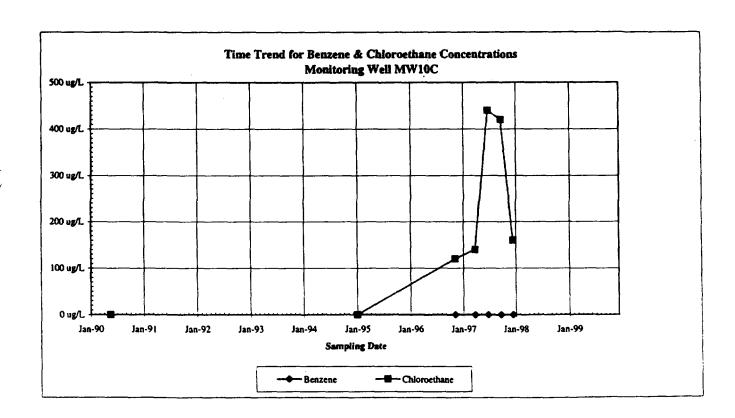
MW9

Date	Benzene	Chloroethane						
August-89								
May-90	BDL	440 ug/L						
January-95	40 ug/L	650 ug/L						
November-96	310 ug/L	2,200 ug/L						
April-97	310 ug/L	2,900 ug/L						
June-97	280 ug/L	1,700 ug/L						
September-97	290 ug/L	1,800 ug/L						
December-97	260 ug/L	2,000 ug/L						
June-98	1							
November-98	;							
March-99								
October-99	1							

BDL = Below the Detection Limit

Lower Aquifer Monitoring Well: MW10C

44.


Baseline Groundwater Monitoring

ACS NPL Site

MW10C

<u>Date</u>	Benzene	Chloroethane					
August-89	. !						
May-90	BDL	BDL					
January-95	BDL	BDL					
November-96	BDL	120 ug/L					
March-97	BDL	140 ug/L					
June-97	BDL	440 ug/L					
September-97	BDL	420 ug/L					
December-97	BDL	160 ug/L					
June-98							
November-98							
March-99							
October-99	1						

BDL = Below the Detection Limit

Appendix C **Maximum Concentrations Baseline Groundwater Monitoring** American Chemical Services NPL Site

Griffith, Indiana

Event 1 = Sampled in either March 1996, August 1996, or November 1996

Event 2 = Sampled in either March 1997 or April 1997

Event 3 = Sampled in either June 1997 or July 1997

Event 4 = Sampled in either September 1997 or October 1997

LQ = Lab Qualifier

DQ = Data Validation Qualifier

B =The analyte was found in the blank.

E = Exceeds Calibration

J = The concentration is estimated.

R = Unusable

S = Method of standard additions

U = The concentration is below the detection limit.

* = Values outside of QC limits

NA = Not analyzed / Not available

A blank in the result column indicates that the concentration was below the detection limit.

Appendix C Maximum Concentrations of Volatile Organics Baseline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana

			Event 1				Kvent	vent 2 Even				41					Highest		
Well	Anulyle	Cimits	Republ	1.0		Detect Limit	Result	1.0	BQ		Result	T I.O	ــــــــــــــــــــــــــــــــــــــ	Detect Limit	Remit	IQ	Event 4	Detect Limit	Detection
_	1,1,1-Trichloroethane	ug/L	NA					U	U	10		Ü	U	10	V	U	Ü	10	10
M-15	1,1,2,2-Tetrachloroethane	ug/t.	NA.					Ü	Ť	10	 	Ü	Ť	10		Ü	Ü	10	10
	1,1,2-Trochlomethanc	upl.	NA	 				Ü	Ü	10	 	Ü	l ŭ	10	 	Ιŭ	انا	10	10
M-IS	1.1-Duchbusethau	ug/l.	NA		_			Ü	Ü	10		Ü	Ů	10		ΙŬ	Ü	10	10
	1.1-Duchkenethene	ug/L	NA	 				Ū	Ü	10		Ü	Τů	10		Ü	Ü	10	10
	1,2-Dichloroethane	ugit.	NA	_				Ū	Ū	10		Ü	Ť	10		Ü	Ŭ	10	10
	1,2-Dichloroethene (total)	Jug/L	NA				· · · · ·	Ū	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1,2-Dichleropropanc	ug/L	NA					Ü	Ü	10		Ü	Ü	10		Ū	Ü	10	10
M-IS	2. Butatout:	ug/L	NA				 	Ū	Ü	10	f	Ū	Ū	10		Ü	Ü	10	10
M-IS	2-He samone	ug/L	NA					U	U	10		U	U	10		Ü	ü	10	10
	4-Methyl-2-pentanone	upt	NA					U	دا	10		U	Ū	10		V	U	10	10
M-IS	Accuse	ug/L	NA					U	υ	10		U	U	10	la la			10	18
	Bensene	ugit.	NA				1	U	U	10		Ū	U	10	2.0	1.7	$\overline{}$	10	10
	Briminghhiromethane	w.	NA					U	Ü	10		U	Ü	10		U	U	10	10
	Branchare	ug/L	NA			I		U	υ	10		U	U	10		Ū	Ū	10	10
	Beammethan:	ug/L	NA					U	٦	10		U	U	10		U	Ū	10	10
	Carbon Disselfide	ug/L	NA					U	U	10		U	U	10		U	Ū	10	10
	Carbon Tetrachloride	upt.	NA					U	W	10		U	Ü	10		U	U	10	10
	Chlorobenzene	ugl	NA					U	υ	10		U	Ü	10		Ü	Ū	10	10
	Chloroethane	ugA.	NA	T				υ	υ	10		Ü	UJ	10	2.0	7		10	10
	Chileroform	we/L	NA					U	U	10		U	U	10		U	U.	10	10
	Chloromethane	ug/L	NA					U	W	10		U	U	10		U	U	10	10
M-15	cis 1,3-Dichtoropropene	ug/L	NA					U	٧	10		U	U	10		U	U	10	10
	Debromochloromethane	ug/L	NA					U	υ	10		U	U	10		U	U	10	10
MIS	Buhyl Benzene	ug/l.	NA					U	V	10		U	U	10		Ü	U	10	10
	Methylene Chloride	He/L	NA .					U	U	10		U	U	10		U	U	10	10
	Styrenc	wy/L	NA					U	ט	10		U	Ü	10		ีย	U	10	10
M-15	Tetrachloroethene	ug/L	NA					U	Ų	10		U	Ü	10		U	U	10	10
M-15	Toldete	ug/L	NA					U	U	10		U	U	10		U	U	10	10
M·IS	trans-1,3-Dichloropropene	ug/L	NA				L	U	U	10		U	U	10		U	U	10	10
M-1S	Trichloroethene	uμ/l.	NA					U	>	10		U	U	10		V	U	10	10
M-IS	Vinyl Chlorids	ug/L	NA	Ш				U	د	10		U	Ü	10		U	U	10	10
M-IS_	Xylenes (total)	wg/L	NA					Ü	5	10		U	U	10		U	U	10	10
M-15	1,1,1-Trichloroethane	W/L	NA						9	Į O		V	U	10			U	10	10
M-35	1,1.2,2-Tetrachlomethane	ug/L	NA						٦	10		U	U	10			U	10	10
M-3S	1,1,2-Trichkoroethane	ug/L	NA						>	10		U	U	10			U	16	10
M-35	1,1-Dichlaracthuse	ug/l.	NA.						2	10		U	U	10			Ü	10	10
	1,1-Dichlorisethene	ug/l.	NA				<u> </u>		٥	-10		2	U	10			2	10	10
	1,2-Dichloraethane	uge.	NA	L				$ldsymbol{\sqcup}$	ح	10		U	U	10			ט	10	10
	1,2-Dichloroethene (total)	ug/L	NA	<u> </u>	<u> </u>		<u> </u>	1	۳	10		U	U	10			C	10	10
	1,2-Dichharopropute	ug/L	NA	 			<u> </u>	 _	ح	16	·	U	U	10			2	10	10
	2-Butannic	ug/L	NA .		 -		<u> </u>		2	10		U	U	10		<u></u>	_	10	10
M-35	2-10c summe	ng/L.	NA				<u> </u>		2	10		U	U	10			2	10	10
	4-Methyl-2-pentanone	ug/L	NA NA	 		<u> </u>		 	>	10		U	٧	10			U	10	10
	Acctone	ug/L	NA				1.5	—	7	NA NA		U	U	10			U	10	10
	Велиеле	ug/L	NA	-				U		10		U	U	10	L		L V	10	10
	Bromidchloronethane	- 199 0	NA .	 _			<u> </u>	_	2	10		U	U	10			U	lo	10
	Managari Gyrea	W/L	NA	<u> </u>			<u> </u>		ح	10		U	U	10			2	10	10
	Berne methane	w/L	NA						3			U	U	10			W	10	10
M-35	Carbon Doubliste	wet.	NA NA		لسا		ļ		2	10		U	Ü	10			U	10	10
M-3S	Carbon Tetrachhorick	Ug/L	NA				<u> </u>		>	10		U	U	10			U	10	10
M-3S	Chlorohenzene	ug/L.	NA NA					ш	ح	10		U	Ų	10			U	10	10
M-35	Chlorocthane	ug/l.	NA	L	لتل		3.0			10		U	IJ	10			W	10	10

		7			Event				Event	2	1		Event	3			Event 4	1	Highest
Well	Analyte	Units	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
		_	NA	 ````		17,11111			U	10		U	U	10			U	10	10
M 38	Chlorotorm	ug/L			├─-		 		U	10		lυ	Ü	10		_	Ü	10	10
M 38	Chloromethane	ug/L	NA NA		├			 	U	10		۱ ٽ	Ü	10			υ	10	10
M 38	cis-1.3-Dichloropropene	ug/L.	NA NA	 	 				Ü	10		Ü	Ü	10		-	Ü	10	10
M 35	Dibiomic bloroughane	ug/L	NA NA	 	-				Ü	10		Ü	Ü	10			l ü	10	10
M-38	Ethyl Benzene Methylene Chloride	_	NA NA		├──		 	1	Ü	10	 	۱ŭ	Ü	10			l öll	10	10
MAS MAS	Styrene	ug/L ug/L	NA NA		-			-	Ü	10	 	Ü	Ü	10			Ü	10	10
			NA NA	├			 	-	บ	10		ŤŮ	Ü	10		-	Ŭ	10	10
	Tetrachloroethene	ug/l.	NA NA	-	1		 	-	Ü	10	 	l ü	Ü	10			Ü	10	10
M 35	Toluene	ug/L	NA NA		-			\vdash	Ü	10		۱ ٽ	Ü	10			Ü	10	10
M 15	trans-1,3-Dichloropropene Trichloroethene		NA NA	-	-	·	 	1	Ŭ	10		υ	Ü	10			Ü	10	10
		ug/L			-				Ü	10		Ü	Ü	10		_	Ü	10	10
	Vinyl Chkirule	ug/l.	NA NA	-	-			1	Ü	10		1 0	lΰ	10	·		Ü	10	10
M 15	Xylenes (total)	ug/L						U	Ü	10	 -	Ü	Ü	10		U	1 0		
	1.1.1-Trichloroethane	ug/L	NA	├	-				_	10		Ü	Ü					10	10
M-ID	1.1.2.2-Tetrachloroethane	ug/L	NA.				}	U	บ	10	 	1 5	U	10	 	۳.	ų.	10	10
M-4D	1,1,2-Trichloroethane	ug/L	NA NA	├	-		 	U	U	10	 	1 0	U	10	 	U	U	10	10
M 4D	1,1-Dichloroethane	uy/l.	NA.		-		ļ	l U		10	_	1 5	l U				_	10	10
M 4D	1,1-Dichloroethene	ug/L	NA	├	-	 	<u> </u>		Ü	10		l ü		10		2	Ų.	10	10
M 4D	1,2-Dichloroethanc	ug/l.	NA	├				U	U		 		U)	10		. U	U I	10	10
M 4D	1,2 Dichloroethene (total)	uy/L	NA			 	ļ	Ų.	٦:	10		ļ <u>U</u>	<u>u</u>	10		U	Ų	10	10
M-4D	1,2 Dichloropropane	ug/L	NA NA	 	_		 	L.	U	10		Ų.	U	10		U	U	10	10
M 4D	2-Butanone	ug/l.	NA	-	-			U	U	10		Ü	U	10		U	U	10	10
M-4D	2-Hexanone	ug/l.	NA .		-				U	10		U	U	10		U	U	10	10
M 40	4-Methyl-2 pentanone	ug/L	NA		-		 _ , 	U	U	10		Ų.	U	10	<u> </u>	U	U	10	10
M 4D	Acetone	ug/L	NA	├		 	6.0	1		10		l u	U	10	ļ	U	U.	10	10
M 4D	Benzene	ug/L.	NA NA			 	.	Ü	U	10	} -	U	υ	10		Ü	U	10	10
M 4D	Bromodichloromethane	ug/l.	NA.		 		 	<u> </u>	U	10	 	U	U	10		۳	U	10	10
M 4D	Bromotorm	ug/L	NA.		├		 	<u>ب</u>	U	10	 	U	U	10		U	U	10	10
M 4D	Broncorethanc	ug/t.	NA	├ ─	├	ļ		U	UJ	10		U U	Ų.	10		Ü	U	10	10
NI 4D	Carbon Disultide	ug/l.	NA NA	-	├	 	 	1 5	U	10			U	10		2	U	10	10
M 4D	Carbon Tetrachloride	Jug/L.	NA NA	├	├~~		 	U	บ	10		Ü	U	10		<u></u>	<u> </u>	10	10
M 4D	Chlorobenzene	ug/L	NA NA	├	├			1	_	10	 	_		10		U	Ų.	10	10
M-4D	Chloroethane	ug/L	NA NA	├	├		ļ		ν.:			ų.	UJ	10	ļ — — — — — — — — — — — — — — — — — — —	Ų.	W	10	10
M 40	Chlorotorn	ug/L	NA_	-	├—	 		1 !!	: د	10	 	U	U	10		U	U	10	10
M 4D	Chloromethane	ug/1.	NA NA		├		}	U.	U		 		U	10		U	U	10	10
M-ID	cis-1,3-Dichloropropene	ug/L	NA NA	├	├			U	<u>.</u>	10		U	U	10		U	U	10	10
M-4D	Dibromochloromethane	ug/L	NA .	├	├ ──		 	1 5	U	10		U	Ų.	10	 	U	U	10	10
M 4D	Fiftyl Benzene	ug/L.	NA NA	├	├	<u> </u>		_	U			U	U	10	 	2	U	to to	10
M 4D	Methylene Chloride	uµ/l.	NA NA	├	├		 	<u></u>	U	10	 	l u	<u></u>	10	 	U	U.	10	10
M 4D	Styrene	ug/l.	NA NA		├	 	 	<u>ا</u>	Ü	10		Ų	U	10		2	Ų.	10	10
M-4D	Tetrachloroethene	ug/L	NA NA	├	├		 	<u></u>	U	10	 	U.	U.	10		<u></u>	U U	10	10
M-4D	Toluene	ug/L	NA NA	├	├ ─		 	U	Ü	10	 	U	U.	10		U	U	10	10
M 4D	trans-1,3-Dichloropropene	Uy/L.	NA .	-	├		 	l !!	U	10	 	Ų.	U	10	 	٦	U	10	10
M-4D	Trichloroethene	ug/l.	NA .	₩-	├ ──			<u></u>	υ	10	 	U	U	10		٥	U	10	10
MHD	Vinyl Chloride	υ γ /1.	NA.				 	U.	U	10	 	U	U	10	ļ	U	U	10	10
M 4D	Xylenes (total)	ug/l.	NA NA	├	├ ─		<u> </u>	l !!	Ü	10		U	U	10		U	U	10 ,	10
M 45	1.1.1-Trichloroethane	ug/l.	NA		├	ļ	 	U	Ü	100	 	l U	U	100		ט	U	NO NO	100
M-45	1,1,2,2-Tetrachloroethane	ug/l.	NA	├	├		 	U	U	100		U	U	100		٥	U	160	100
M-45	1,1,2-Trichloroethane	ug/1.	NA.				}	U	U	100		U	U	100		U	U	160	100
M-4S	1.1 Dichloroethane	ug/1.	NA_	┞	↓	ļ	<u> </u>	U	U	100	<u> </u>	U	U	100		υ	U	160	100
M 4S	1, f. Dichloroethene	ug/L	NA	1	_	ļ		LU	U	100		U	U	100		υ	U	160	100
M 48	1.2-Dichloroethane	ug/L	NA.		L	L		U	U	100	<u> </u>	U	Πì	100		υ	Ü	80	100
M 48	1,2 Dichloroethene (total)	ug/1.	NA.	L	L	l	<u> </u>	U	U	100	15	U	υ	100	L	U	Ü	X ()	160

		, 			V				Event				F				Wa 1		
		11-11-	Result	10	Event	Detect Limit	Result	1.0	DQ	Detect Limit	Result	110	Event	Detect Limit	B	1	Event		Highest
Well	Analyte	Limits		1.0		OCHEC LANGE	- Account				Resear	IQ			Result	I.Q	_	Detect Limit	Detection
M-4S	1,2-Dichkoropropane	ug/l.	NA	├	-		<u> </u>	U	U	100	 	U	U	100		U	U	300	100
M-4S	2-Butaninic	ug/1.	NA NA	 	 	<u> </u>	<u> </u>	U	U	100		U	U	100		U	U	*0	100
M-4S	2-Hexamine	ug/L	NA NA	ļ	<u> </u>		ļ	U	٦	100	├ ──	U	U	100		U		NO NO	100
M-4S	4-Methyl-2-pentanone	ug/L	NA	_				U	Ü	(60	 	U	U	100		U	U	100	100
M-45	Accione	we/L	NA NA	-			ļ	U	V	100	<u> </u>	υ	U	100		Ų	U	100	100
M 45	Bearing	<u> </u>	NA	 	 		98	1:-	<u> </u>	100	190	-	-	100	73	1.	 	80	(90
M-45	Bronodickloronichane	uy/L	NA	├				U	۳	100	ļ	U	U	100		U	U	30	100
M-42	Bromodorn	NW/L	NA NA	├				U	; c	100	 -	U	U	100		U	W	20	100
M-4S	Bransmethane	ug/L	NA .	├		 		U	:	100		U	U	100		U.	U	80	100
M-42	Carlson Disultide	l my.	NA	-	-	ļ		Ų	: د	100		U	U	100		U	U	20	(01)
M-42	Carbon Tetrachbrok	ug/L	NA		<u> </u>			U	=	100	 	U	U	.100		U	U	80	100
M-45	Chloropenzene	ug/L	NA	├	 			υ	>	100	 	U	Ü	100		U	U	80	100
M-45	Chloroethane	uye/L.	NA	Ь—			1,300	 	H	100	1,300	-	1	100	1,000	ļ.,		80	1,300
M-4S	Chlorofottu	ug/L	NA	L			ļ	U	<u> </u>	100		U	U	100		U	U	80	(00)
M-4S	Chimmethane	ug/L	NA	ļ				U	٥.	100	 	U	U	100		U	U	10	100
M-4S	cis-1,3-Dichloropropene	ug/L	NA.	!				U	٥	100		U	U	100		ט	U	20	100
M-12	Dibromochlommethane	w/L	NA	—				U	>	100	ļ	U	U	100		U	Ľ	380	100
M-4S	Ethyl Benzene	<u> we</u> ∧L	NA				<u> </u>	U	2	100	}	U	U	100		U	5	80	100
M-4S	Methylene Chloride	ug/L	NA	ــــــ	 _	·		U	U	190		U	U	600		U	Ù	100	100
M-4S	Styrene	up/L	NA		<u> </u>			U	٦	100		U	L.	100		U	U	(80)	100
M-4S	Tetrachloroethene	ug/L	NA	L			ļ	U	2	100	<u> </u>	U	U	100		U	C	· (KI)	100
M-45	Tolucee	<u> </u>	NA		<u> </u>			U.	2	190	<u> </u>	U	U	(00)		U	U	NO.	100
M-4S	trans-1,3-Dichloropropene	- 48V	NA	Ļ.,				L U	ح	100		υ	U	100		U	U	80	100
M-45	Trichisocthene	We/L	NA	Ļ_	<u> </u>			U	ש	100	<u> </u>	U	U	100		U	U	90	100
M-4S	Vinyl Chloride	ug/L	NA	Ь				U	2	100	<u> </u>	U	U	100		U	U	HO N	100
M-45	Xylenes (total)	ug/L	NA		_			U	ح	100		υ	U	100		U	Ü	1013	100
MW-IK	1,1,1-Truchknowthane	ug/L		U	U	50		U	ע	10	<u> </u>	U	W	10		U	U	10	50
MW-06	1,1,2,2-Tetrachloroethane	uy/L		U	U	50	├ ───	U	U	10		U	U	10		U	Lu	10	50
MW-06	1,1,2-Trichloroethane	ug/L		U	U	50		U	اد	10	<u> </u>	U	U	10		U	U	10	50
MW-I6	1,1-Dichlomethane	₩/L	23	1	 -	NA NA	3.0	1	<u> </u>	10		U	U	10		U	U	10	21
MW-06	1,1-Dichlotoeshene	W/L		U	U	50	ļ———	U	<u> </u>	10	 	U	U	10		U	U	10	50)
MW-06	1.2-Dichloroethane	Wa/L		U	U	50		Ų	۲	10		U	UJ	10	3.0	14		ŧo	50
MW-06	1,2-Dichloroethene (total)	- Mark	26	1	 -	NA .	4.0	1 :-	-	10	5.0	1.	٠	10	2.0	<u> </u>	<u> </u>	10	26
MW-06	1.2-Dichkeropsopane	- WA		L.	U	50		Ų.	Ü	10		U	U	10		U	۳	10	50
MW-06	2-Butanine	Jug/L		U	Ü			U	Ü	10		U	U	10		U	U	10-	50
MW-II6	2-Hexanone	ug/L		U.	U	50 50		U		10	 	U	U	10		U	U	10	50
MW-06	4-Methyl-2-pentanone	ug/L.		Ų.	U	50	 	Ü		10		U	U	10		U	U	10	50
MW-06	Acctone	- VgA		Ľ	۳.	NA NA			U	10		U	<u> </u>	10		L U	U	10	50
MW-U6	Bensene	Up/L	320	 	U	30	35	U		10	39	 	 	10	140	1		10	320
MW-06	Browndichleronethanc	ug/L							=	10		U	U	10		U	U	10	50
MW-06	Beaucharus	ug/L		<u>!</u>	U	50		U	Ÿ	10	 -	U	U	10		Ü	۳	10	50
MW-4K	Briminicihane	ug/L		U	U.	50	 	Ų.	Ü	10	 	U	U	10		U	UJ	10	50
MW-IM	Cartum Disultate	Jug/L		Ų.	U	50		Ų.	· U	10		U	U	10		U	U	10	50
MW-06	Cartion Tetrachloride	we/L		U	U	50		Ų	۳	10		U	U	10		U	U	10	50
MW-416	Chlorobenzene	- myl		U	U			U	U	10		U	U	10	1.0	1		10	50
MW-16	Chlorocthane	up/L	720	 		NA CO	67	 	ــــا	10	140		1	10	140	ļ	1	10 ,	720
MW-06	Chloroform	<u> ""/"</u>		U	U	50		U	U	10	 	U	U	10	ļ	U	U	10	50
MW-U6	Chloromethane	ug/L		U	U	50	 	U	Ü	10		U	U	10		U	U	10	50
MW-06	cis-1,3-Dichloropropene	ug/L		U	U	50	<u> </u>	U	2	10		U	U	10		U	U	10	50
MW-06	Dibromochloromethane	ug/L		U	U	50	<u> </u>	U	ح	10		U	U	10		U	U	10	50
MW-II6	Ethyl Benzene	ug/L	16	1		NA.	<u> </u>	U	5	10		U	U	10	13			10	16
MW-06	Methylene Chloride	ug/L	17	-		NA NA		U	U	10	2.0	J	\bot	to		U	U	10	17
MW-06	Styrene	up/L		υ	U	50	l	U	U	10	L	U	U	10		U	U	10	50

	,				Event				Event	,			Event :			—	Event 4		Highest
	A	Units	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
Well	Analyte		RESUR	Ü	C 2	50	Vesan	Ü		10		Ü	U	10	- N. F. S.	2	_	10	50
	Tetrachloroethene	ug/L		1 5	1	50		U	Ü	10		Ü	Ü	10		۳	1 5 1	10	50
MW OA	Toluene	ug/L		T U	Ü	50		Ü	U	10		1 0	Ü	10		Ü	┧	10	50
MW 06	trans-1.3-Dichloropropene	ug/L		l u	U	50		l ü	Ü	10	 	l ü	Ü	10		U	Ü	10	50
	Enchloroethene	ug/L	ļ	l U	U	50		l ü	7	10	3.0	۲,		10	4.0	1		10	50
	Vmyl Chloride	ug/L				NA NA		Ü	Ü	10	3.0	Ü	υ	10	29	 '		10	40
	Xylenes (total)	ug/L	40	1:		10		1 0	Ü	10		1 0	Ü	10		U	 		
	1,1,1-Trichloroethane	ug/L		U	Ų						 							10	10
	1.1.2.2 Tetrachloroethane	ug/L		U	IJ	10	 _	U	2	10		U	U	10		U	U	10	10
	1.1,2-Trichloroethane	uy/L		l u	ע	10	<u> </u>	Ų	U	10		U.	Ų.	10		L U	U	10	10
	1,1-Dichloroethane	ug/L		Ų.	U	10		U	U	10		U	U	10	 	U	υ	10	10
	1,1-Dichloroethene	ug/L		U	U	10		U	U	10	 	U.	U	10	 	U	U	10	10
MW-07	1,2-Dichkiroethane	ug/L		U	٦	10	L	U	U_	10	<u> </u>	U	UI	10		υ	υ	10	10
MW-407	1,2 (Dichloroethene (total)	uy/L		U	٦	10	L	U	<u> </u>	10		U	U	10		۷	U	10	10
MW-07	1,2-Dichloropropane	uµ∕L.	L	U	ט	10		U	٦	10		U	U	10	 _	٦	U	10	10
MW-07	2-Butanone	up/L		U	U	10		U	U	10		U	U	10	-	U	U	10	10
MW-07	2-Hexanone	ug/L		U	U	10		U	U	10	ļ	U	U	10		U	UJ	10	10
MW-07	4-Methyl-2-pentanone	ug/L.		U	٦	10		U	U	10	ļ	U	U	10		U	C	10	10
MW-07	Accione	ug/L.		U	ح	10	20			10			IJ	24		J	U	10	24
MW-07	Benzene	1/yu		U	٥	10		U	٦	10		U	U	10		IJ	U	10	10
MW 07	Bromodichloromethane	ug/L		U	5	10		U	U	10		U	U	10		υ	C	10	10
MW-07	Bromotom	ug/L		Ü	U	10		U	U	10		υ	υ	10		U	U	10	10
MW-07	Bromomethane	ug/L		U	٦	10		U	U	10		Ü	U	10		U	U	10	10
MW-07	Carbon Disultide	ug/L		U	٦	10		U	U	10		U	U	10		U	IJ	10	10
MW-07	Carbon Tetrachloride	ug/L		U	Ü	10		U	Ū	10		U	U	10		Ü	(U	10	10
MW-07	Chlorobenzene	ug/L		Ü	U	10		Ü	Ü	10		U	U	10		Ü	U	10	10
MW-07	Chloroethane	ug/L		Ū	U	10		U	Ü	10	· · · · · · · · · · · · · · · · · · ·	1	UJ	10		Ü	Ü	10	10
MW-07	Chlorotorm	ug/L		Ū	U	10		Ū	Ü	10		U	Ü	10		Ü	Ü	10	10
MW 07	Chloromethane	ug/L		ĺυ	Ū	10		T U	U	10	·	Ť	Ū	10	 	Ū	Ŭ	10	10
MW 07	cis-1,3 Dichloropropene	ug/L		Ü	Ü	10		Ü	Ü	10	 	١ij	Ü	10		Ü	Ü	10	10
MW 07	Dibronna bloromethane	ug/L		i ii	Ü	10		υ	Ü	10		l ü	Ü	10	 	Ü	Ü	10	10
MW 07	Ethyl Benzene	ug/t.		Ti-	Ü	10	 	Ü	Ü	10		Ü	Ü	10	 	υ	Ü	10	10
	Methylene Chloride	ug/L		Ü	Ü	10		Ü	Ü.	10		Ť	Ü	10	 	Ü	Ü	10	10
	Styrene	ug/L	<u> </u>	lυ	Ü	10		Ü	Ü	10	 	Ü	Ü	10	 	Ü	Ü	10	10
	Tetrachloroethene	ug/L		Ü	Ü	10		t u	Ü	10	 	lυ	Ü	10		Ü	Ü	10	10
	Toluene	υμ/L.		Ü	Ü	10	 	Ìΰ	Ü	10	 	Ιŭ	Ü	10	1.0	7	 	10	10
	trans 1,3 Dichloropropene	ug/L		Ü	Ü	10		υ	Ŭ	io		tΰ	Ü	10		Ú	U	10	10
	Trichloroethene	ug/L		Ü	Ü	10	 	Ü	Ü	10	 	tΰ	Ť	10	 	Ü	Ü	10	10
	Vinyl Chloride	ug/L		Ü	Ü	10		Ŭ	Ü	10	 	Ü	Ü	10	t	Ü	Ü	10	10
	Xylenes (total)	ug/L		Ŭ	Ü	10	·	Ü	Ü	10		i	Ü	10	 	Ü	Ü	10	10
MW-08	1,1,1-Trichloroethane	ug/L		Ü	Ü	10		Ü	Ü	10		l ü	Ü	10	 	Ü	Ü	10	10
MW-08	1,1,2,2-Tetrachlorocthane	ug/L		Ü	Ü	10		Ü	Ü	10		۳	Ť	10	 	Ü	Ü	10	10
	1,1,2-Trichloroethane			Ü	U	10	 	Ü	Ü	10	├──	l ö	Ü	10		U	Ü	10	10
MW OK		ug/L ug/L		l ü	۳	10	 	10	U	10		10	H U	10		U	_	10	10
	1,1-Dichloroethane				_								_		 	-	U.		
MW 08	1.1 Dichloroethene	ug/L		U	Ü	10		U.	U.	10	 	U	U	10		U	U	10	10
	1,2 Dichloroethane	ut/I.		<u>U</u>	U	10		U	U	10		l u	UI	10	 	U	U	10	10
MW-08	1.2 Dichloroethene (total)	ug/L		U	U	to		l u	U	10	 	U	U	10		U	U	10 ,	10
	1.2-Dichloropropane	υg/L		U	U	10		U	U	10	<u> </u>	U	U	10		U	U	10	10
MW-08	2-Butanone	ug/L		U	U	10		U	U	10		U	U	10	<u> </u>	U	U	10	10
MW-08	2-Hexanone	ug/L		U	U	10		U	۳	10	<u> </u>	υ	υ	10	L	U	U	10	10
	4-Methyl-2-pentanone	og/L		U	U	10		U	2	10		U	U	10		U	C	01	10
MW-08	Acctone	ug/l.		U	Ü	10		U	٥	10			U	10		U	E	10	10
MW-08	Benzene	ug/l.		U	U	10		U	5	10		U	U	10		٦	U	10	10
MW 08	Bromodichloromethane	ug/L.		L (i	U	10	L	U	Ü	10	L	U	U	10	1.	U	U	10	10

an Chemical Services NPI Griffith, Indiana

					Event	1			Event	2			Event	3			Event	4	Sighest
Well	Analyte	tinits	Result	1.0	DQ	Detect Limit	Result	1.Q	pQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0		Detect Limit	Detection
MW-ON	Bronotom	ug/L		U	U	10		U	U	10		Ū	Ü	10		v	U	10	10
MW-IN	Browningthanc	ug/t.		U	U	10		U	دا	10		U	U	10		U	U	10	10
MW-tal	Carbon Disulfade	ug/L		U	U	10		U	5	10		U	Ü	10		U	UJ	(O	10
MW-IIK	Carbon Tetrachloride	ug/L		U	U	10		U	U	10		U	Ü	10		v	UJ	10	10
MW-(M	Chimedicazene	ug/L		U	V	10		U	U	10		U	Ü	10		U	U	10	10
MW-08	Chloricthase	ug/L		U	U	10		U	U	10		Ü	UJ	10		U	U	10	10
MW-IN	Chlorotoru	WE/L		U	υ	10		U	٥	10		U	U	10		U	U	10	10
MW-08	Chhyomethane	ug/L		U	V	10		U	U	10		U	U	10		Ü	U	10	10
MW-(III	cis-1,3-Dichloropropene	ug/L		U	٦	10		U	U	10		U	U	10		U	U	10	10
MW-IM	Dibrimichlimmerhate	ug/L		U	U	10		U	U	10		Ū.	U	10		U	U	10	10
MW-DI	Ethyl Benzene	wg/L		U	U	10		V	U	10		U	U	10		Ü	U	10	10
MW-08	Methylene Chlorole	ug/L		U	υ	10		U	Ü	10		U	Ü	10		U	UJ.	10	10
	Styrene	ug/L		U	U	10		V	U	10		U	U	10		U	U	10	10
	Tetrachloroethene	ug/L		U	٥	10		υ	U	10		U	c	10		U	υ	10	10
MW-06	Tolucac	ug/L		U	٦	10		U	Ü	10		v	-	10		Ü	U	10	10
	trans 1,3-10chlotopropene	ug/L		ט	٦	10		U	2	10	<u> </u>	U	Ü	10		Ü	U	10	10
	Trichloroethene	ug/L		Ū	٦	10		Ü	U	10		U	Ü	10		٦	U	10	10
	Vinyl Chloride	ug/L		U	5	10		U	Ü	10		U	v	10		U	U	10	10
	Xylenes (total)	ug/L		U	2	10		U	حا	10		·Ū	5	10		Ü	Ü	10	10
	1,1,1-Trichloroethane	w/L		U	-	200		Ū	Ü	200	<u> </u>		2	130		Ť	Ü	160	200
MW 499	1.1.2,2-Tetrachloroethane	ug/L		U	U	200		U	U	200	·		U	130		7	Ü	160	200
	1,1,2-Trichloroethane	ug/L		U	U	200		U.	5	200		_	5	130		U	Ū	160	200
	1.1-Dichlausethane	- Jugit		U	U	200		U	U	200			2	130		Ü	Ü	160	2(11)
AIW-09	1.1 Dichloroethene	Juge/L		U	U	200		U	-	200				130		Ü	Ü	160	200
NW-W	1.2-Dichloroethane	ug/L		U	υ	200	-	U	U	200			Ü	130		Ü	Ü	160	2(10)
	1,2 Dightoroethene (total)	ug/L		Ū	U	200		U	-	200			2	130		Ü	Ü	160	200
	1,2-Dichlosopropage	wyl.		Ü	7	200		Ü	2	200		-	Ü	130		U	ΤŪ	160	200
NW-W	2-Burnanc	ug/L		U	Ü	200		U	Ü	200		┰	Ü	130		Ü	Ü	160	200
MW-09	2-Hexamone	- Jugit	-	Ū	U	200		U	U	200 .			Ť	130		-	Ü	160	200
	4-Methyl 2-pentamone	ug/L		U	U	200		U	U	200			-	1,34)		Ü	Ü	160	200
	Acctute	ug/L		U	U	200		U	U	200			U	130		Ü	Ü	160	200
	Benzere	ug/L	310		_	NA	310	<u> </u>		200	305		Ť	NA NA	290	Ť	- <u>-</u> -	160	310
	Bermule khauttethane	ug/L		v	٦	200		U	Ü	200			5	130		U	U	160	200
	Merchinefest (II	· ug/L		U	υ	200		Ü	-	200		_	-	130		Ü.	Ü	160	200
	Bermann thanc	ug/L		U	U	260		U	۳	200			5	130		Ü	Ü	160	200
	Carbon Disulfale	wer		U	0	200		V	U	200			U	130		U	Ü	160	200
	Carbon Tetrachlorate	ug/l.		U	U	200		2	U	260		_	5	130		Ü	Ü	160	2(10)
MW-IN	Chlurchen/ene	ug/L		U	U	200		U.	U	200			2	130		U	U	160	200
	Chloricthanc	we/L	2,200			NA .	2,900			200	1,850		-	ŇA	1,800			160	2,900
	Chlorotogu	ug/L		U	U	200		U	U	200			5	130		U	U	160	200
	Chlurennethunc	ug/L		Ü	>	200		Ü	U	200			U	130		Ü	Ü	160	200
	cm-1,3-DicMunipropene	wg/L		U	U	200		U	υ	200			U	130		Ü	Ü	160	200
	Debengun hinromerinane	ug/L		U	U	200		U	5	200			2	1,30		Ü	U	160	200
	Ethyl Benzene	we/L		Ü	υ	200		Ü	2	200			U	1,30		U	Ū	160	200
	Methylene Chloride	ug/L		U	2	200		U	2	200			-	130		U	Ti-l	160	2(X)
	Stytene	···μΛ.		U	-	240		U	-	208			2	130		U	Ť	160	200
	Tetrachimethese	ug/L		Ū	Ü	200		Ü	Ü	200			Ü	130		Ü	Ü	160	200
MW-49	Tohuse	wp/l.		Ü	-	289		Ū	Ü	200			v	130		Ü	Ü	160	200
MW-09	trans-1,3-Dichloropropene	ug/L		Ü	-	200		Ü	Ü	260		_		130		Ü	Ü	160	200
MW-(9)	Trachborocthene	up/L		Ü	Ü	380		Ü	Ü	200			5	130		U	Ü	160	
		us/t.		U	U	200		Ü	U	200		\vdash	۳	130		U			200
MW-09	Vinyl Chloride			U	U	200		Ü	U	200		-					<u> </u>	160	200
	Xylenes (total)	uy/L			U			Ü	_		ļ		2	130		U	U	160	200
MW-RC	1,1,1-Trichloroethane	υ _Ε /1.		U	L <u>u</u>	100	L		U	10	<u> </u>	L	U	150		U	U	50	150

AHS\API:
J.\1252\042\Sept 97 Sampling Rpt\HighDetects xls\VOC
1252\042\221601

		7			Event	1			Event	2			Event	,			Event	1	flighest
Well	Anulyte	Units	Result	TiQ	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
MW-IOC	1.1,2,2 Fetrachloroethane	ug/L		U	Ü	100		U	U	10			U	150		5	U	50	150
MW-IOC	1.1.2-Trichloroethane	ug/L		U	U	100		U	U	10			Ü	150		٦	Ü	50	150
MW-IIK	1.1-Dichloroethane	ug/t.		U	U	100		Ü	U	10			U	150		U	C	50	150
MW-IOC	1.1-Dichloroethene	ug/L		U	Ü	100		U	U	10			υ_	150		U	U	50	150
MW-100	1,2-Dichloroethane	ug/L		U	U	100		U	U	10			UJ	150		٦	U	50	150
MW-IIK	1,2-Dichloroethene (total)	ug/l.		U	2	100		υ	υ	10			υ	150		U	Ü	50	150
MW-IOC"	1,2-Dichloropropane	ug/L		U	U	100		U	2	10			U	150		J	U	50	150
MW-IOC	2-Butanone	ug/L		U	اد	100		U	٦	10			U	150		٦	U	50	150
MW-IOC	2-Hexanone	ug/L		U	U	100		U	U	10			U	150		U	U	50	150
MW-IUC	4-Methyl-2 pentanone	ug/L		บ	>	100		U	ح	10			U	150		٦	Ü	50	150
MW-IUC	Acetose	ug/L		U	٦	100		U	5	10			Ü	150		U	υ	50	150
MW-IUC	Benzelie	ug/L		U	٦	100		Ü	U	10	L	l	U	150		٦	Ū	50	150
MW-IOC	Bronndichloromethane	ug/L		U	٦	100		Ų	>	10			U	150		U	U	S() .	150
MW-IUC	Bronnology	ug/L		U	5	100		U	ט	10			U	150		٦	U	50	150
MW-IOC	Brimmethane	ug/L		U	٦	100		U	3	10			U	150		٦	U	50	150
MW-10C	Carbon Disultide	ug/L		U	ح	100		U	U	10			U	150		υ	υ	50	150
MW-IDC	Carbon Tetrachloride	ug/L		υ	υ	100		U	U	0			U	150		U	บ	50	150
MW-10C	Chlorobenzene	ug/L		U	U	100		U	U	10			Ü	150		U	U	50	150
MW-100	Chloroethane	ug/L	120			NA	140_			10	390		1	NA NA	420	٠.		50	420
MW-10C	Chlorotorm	ug/L		U	٧	100		U	U	10			U	150		Ū	U	50	150
MW-IOC'	Chloromethane	ug/t.		U	U	100		U	Ü	10			U	150		υ	U	.50	150
MW-IIX	cis-1,3-Dichloropropene	ug/L		U	2	100		U	Ų	10			Ü	150		U	U	50)	150
MW-HK"	Dibromochloromethane	ug/L		U	U	100		U	U	10			U	150		V	U	50	150
MW-IOC	Ethyl Benzene	ug/L		U	Ü	100		U	υ	10			U	150		U	U	50	150
MW-IOC	Methylene Chloride	ug/L		U	U	100	1.0		1	10	128			NA NA		U	U	50	128
MW-loc	Stytene	ug/L		U	U	100		U	U	10			U	150		υ	U	50	150
MW-IIX"	Tetrachloroethene	ug/L		Ü	٦	100		U	U	10			U	150		U	U	50	150
MW-IIK"	Toluene	ug/L		U	U	100		U	U	10			U	150		Ü	U	50	150
MW-HIC	trans-1,3-Dichloropropene	ug/L		U	U	100		U	U	10			Ü	150		Ų	U	50	150
	Trichloroethene	ug/L		U	U	100		U	U	10			U	150		U	Ü	50	150
MW-10C	Vinyl Chloride	ug/L		Ü	U	100		U	U	10	129			NA NA		U	U	50	129
MW-IIX"	Xylenes (total)	ug/L		U	Ü	100		U	Ü	10			Ü	150		U	U	50	150
MW-II	1,1,1-Trichloroethane	ug/L		U	٥	10		U	Ü	10		U	U	10		5	Ū	10	10
MW-II	1,1,2,2-Tetrachloroethane	ug/L.		U	U	10		υ	Ü	10		U	U	10		U	U	10	10
MW-II	1,1,2-Trichloroethane	ug/L.		U	U_	10		U	Ü	10		U	U	10		٦	U	10	10
MW-II	1,1-Dichloroethane	υμ/L		U	U	10		U	U	10		U	Ų	10		υ	υ	10	10
MW-II	1,1 Dichloroethene	ug/t.		U	U	10	[U	U	10		U	U	10		٦	U	_10	10
MW-11	1,2-Dichloroethane	ug/L		U	2	10		U	U	10		U	UJ	10		Ų	U	10	10
MW-11	1,2-Dichloroethene (total)	ug/t.		U	υ	10		υ	U	10		U	U	10		2	U	10	10
MW-H	1,2-Dichloropropane	ug/L		U	Ü	10		Ü	U	10		U	U	10		٦	U	10	10
MW-II	2-Butanone	ug/L		U	٥	10		U	Ü	10		U	U	10		V	נט	10	10
MW-II	2-Hexanone	nk/L		Ų	U	10		U	U	10		U	U	10		5	IJ	10	10
MW-II	4-Methyl-2-pentatione	ug/t.		U	U	10		U	Ü	10		U	U	10		۵	UJ	10	10
MW-11	Acctone	ug/L		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-11	Benzene	ug/t.		Ū	υ	10		U	υ	10		υ	U	10		٦	U	10	10
MW-II	Bromedichloromethane	ug/L		U	υ	10		U	U	10		U	U	10	I	υ	υ	10 ,	10
MW-11	Bronnform	ug/L		Ü	U	10		Ü	U	10		U	U	10		V	U	10	10
	Bromomethane	սե/Մ		U	U	10		U	U	10		Ü	Ū	10		2	U	10	10
MW-II	Cartier Disulfide	ug/L		U	U	10	T	U	U	10		Ü	Ü	10	T	Ū	Ü	10	10
MW-II	Carbon Tetrachloride	υgΛ.		U_	U	10		Ü	Ü	10		U	U	10		٦	Ū	to	10
MW-11	Chlorobenzene	ug∕t.		U	Ü	10		U	Ū	10		Ü	Ū	10	T	Ü	Ü	10	10
MW-11	Chloroethane	ug/L		Ü	U	10		Ü	Ü	10		Ū	Ü	10	†	Ü	Ü	10	10
MW-11	Chlorotom	ug/L		Ū	Ü	10	 	Ū	Ü	10	 	Ü	Ü	10		Ü	Ü	10	10

	1				F.veul				Event		L		Event.	3			Event	4	Highest
Well	Anniyte	Units	Result	I.Q	DQ	Detect 1.imit	Result	LQ	8	Detect f.imit	Result	IQ	DQ	Detect 1.imit	Result	I.Q	DQ	Detect Limit	Detection
MW-11	Chloromethate	ug/i.		U	U	10		U	Ü	10		U	U	10		υ	U	10	10
MW-II	cis-1,3-Dichloropropene	ug/L		U	U	10		U	U	10		U	U	10		U	υ	10	10
MW-11	Dibromon bloromethate	ug/L.		Ų	U	10		U	U	10		U	υ	10		U	U	10	10
MW-II	Ethyl Benzene	ug/l.		U	U	10		U	Ū	10		U	U	10		υ	U	10	10
MW-11	Methylene Chloride	ug/L		U	Ų	10		U	U	10		U	U	10		U	U	10	10
MW-II.	Styrene	ug/L		U	U	10		Ü	U	10		U	U	10	i	Ü	U	10	10
MW-11	Tetrachloroethene	ug/L		U	V	10		U	U	10	1.0	7		10		U	U	10	10
MW-II	Toluctic	wg/L		U	υ	10		V.	Ü	10		U	U	10		υ	U	10	10
MW-11	trans-1,3-Dichloropropene	ug/L.		U	U	10		U	Ü	10		U	U	10		U	U	10	10
MW-11	Trichbructhese	ug/L		U	2	10	L	U	2	10		U	U	10		حا	U	10	10
MW-II	Vinyl Chloride	ug/L		U	U	10		U	Ü	10		U	U	10		C	U	10	10
	Xylenes (total)	ug/L		U	U	10	1	U	U	10		U	U	10	<u> </u>	υ	U	10	10
	1.1.1-Truchlumethane	w/L			U	10		U	2	10 -		U	U	10		Ü	U	10	10
MW-12	1,1,2,2 Tetrachlomethane	ug/L.			U	10	T	U	٦	10		U	Ü	10		U	Ü	10	10
	1,1,2-Trichlossethane	ug/L			v	. 10		U	5	10	<u> </u>	U	U	10		U	Ü	10	10
	1,1-Dichleugethane	ug/L			Ü	10	T	U	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1,1-Dichloroethene	Ug/L		$\overline{}$	U	10		U	Ü	10		Ū	Ü	to		Ü	Ü	10	10
	1,2-Dichlernethane	ug/L			U	10	T	Ü	U	10	 	Ü	w	10		Ü	Ü	10	10
	1,2-Dichloroethene (intal)	ug/L.			U	10		Ū	U	10		Ū	Ü	10		Ü	Ū	10	10
	1.2-Dichlaupinpane	ug∕l.		-	-	10	1	Ū	2	10		Ü	Ü	10		٦	Ü	10	10
		ug/L		 	U	10		U	2	10		Ü	Ŭ	10		Ü	Ü	10	10
	2-16-sations	ug/L		1	Ü	10	—	U	Ü	10		Ü	Ü	10	·	Ü	Ü	10	10
	4-Methyl-2-pentamone	ug∕t.			U	10		U	دا	10	 	Ü	Ü	10		Ü	Ü	10	10
MW-12	Accione	ug/1.		—	U	19		Ü	Ü	10		 -	Ü	10	-	۳	Ü	10	19
MW-12	Веплене	<u></u>	5.5	1		NA NA	 	Ü	Ü	10	2.0	7	-	10		Ü	Ü	10	10
	Brown lech knowethanc	ug/L.			υ	10	1	Ū	Ü	10		U	U	10		l ü	Ü	10	10
	Brownstorm	ug/L		1	5	10		U	U	10		Ü	Ū	10		ϋ	Ü	10	10
	Вонницинае	υgΛ.			U	10		Ū	Ü	10		Ü	Ü	10	<u> </u>	Ü	Ü	10	10
	Carbon Doubide	ug/L			2	10		Ü	U	10	 	Ü	Ü	10		Ü	Ü	10	10
	Carbon Tenachhunde	ug/L			10	10		U	2	10		Ü	Ü	10		Ü	Ü	10	10
	Chlorobenoine	wg/l.	5.0			NA.	4.0	1		10	6.0	1	H	10	5.0	7	1	10	10
	Chloriethane	- Jugit.			C	10		Ū	Ü	10		Ü	Ü	10		۳	Ü	10	10
	Chloroform	- WA			C	10		Ü	2	10	 	Ü	U	10		Ü	Ü	10	10
	Chlorottechanc	ug/l.		_	5	10		Ü	U	10		Ü	Ū	10	·	Ü	TÜ	10	10
	cn-1,3-Dichkaupropene	ug/L		1	-	10		Ť	Ü	10		Ü	Ü	10		Ŭ	Ü	10	10
	Dibromor bloomethate	ug/L			5	10	 	Ū	Ü	10		Ü	Ü	10	-	Ü	Ŭ	10	10
	Eshyl Benzene	ug/l.			5	10	 	Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	Methylene Chlorale	wy/L		_	Ü	10		Ŭ	Ü	10		Ü	Ü	10		Ť	Ü	10	10
MW-12		ug/L.			Ü	10	├	Ŭ	2	10		l ü	Ü	10		Ü	Ü	10	10
	Tetrachlmmethene	ug/i.		\vdash	Ü	10	 	Ü	Ü	10	·	Ü	ŭ	10		Ü	Ü	10	10
MW-12		w/L			Ü	10	 	۱ ٽ	Ü	10		Ü	Ü	10		ان	Ü	10	10
	trans-1,3-Dichloropropene	ug/L.			Ü	10		Ü	0	10	· · · · · · · · · · · · · · · · · · ·	Ü	ΙŭΙ	10		ü	Ü	10	10
	Trackloroethene	ug/L		-	2	10	 	Ü	Ü	10		"	Ü	10		Ü	Ü	10	
	Venyl Chloride	werk.			Ü	10	 	l ŭ	Ü	16		+	ΗŬ	10		"	Ü	10	10
	Xylenes (total)	ug/L		—	Ü	10	 	U	7	10		10	Ü	10		Ü	l ü	10	10
	i, i, i-Trackinguethane	ug/L		U	U	10	 	Ü	U	20	 	Ü	 	50		U	U		
	1,1,2,2-Tetrachloroethane	ug/L		ΙŭΙ	Ü	10	 	Ü	cle	20		7	Ü	50		Ü	Ü	10	50
	1.1.2-Trichlomethane	_		lΰ	Ü	10	 	Ü	2	20		+	1	50	ļ.,	U	<u></u>	10	50
		- well		10	+	10	 	l ü	-				_					10	50
	1,1-Dichloroethane	ug/l.		Ü	Ü	10		Ü	2	20		: د	Ų.	50	 	U	U	10	50
MW-13	1,1-Dichlaraethene	ug/L		Ü	U				<u>.</u>	20		= =	U	50 50		U	c	10	50
						10		lυ		20				541		υ			50
	1,2-Dichloroethate 1,2-Dichloroethete (total)	ug/L. ∫/I,gu		Ü	U	10		Ü	Ü	20		٥	Ü	50		U	Ü	10	50

	_				Event	,			Event				Event .				Event 4		Highest
	A	Units	Result	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Kesult	1.Q	DO	Detect Limit	Detection
Well	Analyte	_	Kesan	U			acsett	U	2	20	N. July	Ü	Ü	50	P. (2011)	Ü	Ü	10	50
	2 Butanone	ug/L			U	10		Ü	۳	20		Ü	Ü	50		Ü	1 0	10	50
	2 He vanone	uk√r.		U		10,	 	U		20	 	U	Ü	50		+ +		10	50
MW I3	4-Methyl-2-pentanone	ug/L		U.	U				۳	20		Ü	Ü	50			U		
MW-13	Accione	ug/l.		U	U	10	ļ	U	٥			-	-			U	U	10	50
	Benzene	ug/L	6.0	1		NA NA	170	 		20	610		ļ	50	33	 		10	610
	Bronnedic bloromethane	ug/L		U	U	10		U	٦	20	}	υ	υ	50		U	Ų	10	50
	Brotholoum	ug/L		U	U	10	_	Ü	٦	20	 	U	U	50		U	U	10	50
	Bronninchare	ug/L		U	U	10	L	U	۲	20		U	U	50		U	U	10	50
MW-13	Carbon Disultide	ug/L		U	U	10		U	>	20	 _	U	U	50		U	U	10	50
MW-13_	Carbon Fetrachloride	uµ∕l.		U	U	10	L	U	٥	20		<u>"</u>	U	50		U	U	10	50
	Chlorobenzene	บน/โ.		U	U	10	<u> </u>	٦	>	20	L	U	U	50		U	U	10	50
MW-13	Chloroethane	ug/L	97	<u> </u>		NA NA	330			20	<u> </u>	<u> </u>	U	570	160			10	570
MW-13	Chlotolorn	ug/L		U	U	10		U	٦	20	L	U	U	50		U	U	10	50
MW-13	Chloromethate	uy/1.		ับ	U	10		טו	٦	20	<u></u>	U	U	50		U	U	10	50
MW-11	cis 1,3-Dichloropropene	սբ/Լ.		U	U	10	L	U	U	20		U	U	50		U	U	10	50
MW-13	Dibromochloromethane	ug/L		Ü	U	10		U	5	20		U	U	50		U	C	10	50
MW-13	Ethyl Benzene	ug/L	T	U	U	10	L	U	U	20		U	U	50		U	U	10	50
MW-13	Methylene Chloride	ug/L		U	U	10		U	5	20		υ	U	50	1.0	7	1	10	50
	Styrene	ug/L		U	U	10		U	U	20		U	U	50		Ų	U	10	50
	Tetrachloroethene	ug/L		U	U	10		U	υ	20		U	Ū	50		U	Ū	10	50
	Toluene	ug/L		Ū	Ü	10	ļ	U	v	20		υ	U	50		U	Ü	10	50
	trans-1,3-Dichloropropene	Ug/L		Ū	Ū	10		U	Ü	20		Ü	Ū	50		Ü	Ü	10	50)
	Trichloroethene	ug/L		Ü	Ü	10		Ü	U	20		Ū	Ü	50		Ü	Ü	10	50
	Varyl Chiorale	ug/L		Ü	Ŭ	10		Ū	U	20	t	Ü	Ū	50		Ü	ů	10	50
	Xylenes (total)	uµ/L		tυ	Ü	10	 	Ü	Ü	20		Ü	Ü	50		Ü	Ü	10	50
	1.1.1-Trichloroethane	ug/L		l ŭ	Ü	100	 	Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	100
MW-14	1.1.2.2-Tetrachloroethane	ug/L		1 0	Ü	100	 	Ü	حزر	10		Ü	Ü	10		Ü	Ü	10	100
MW-14	1,1,2 Trichloroethane			۱ ŏ	Ü	100		Ü	٦	10		Ŭ	Ü	10		Ü	Ü	10	100
	1,1-Dichloroethane	Jun T		Ü	Ü	100		Ü	٦	10		Ü	l ü	10		Ü	Ü	10	1(10)
MW-14		ug/L_		Ιř	Ü	100	 	Ü	U	10	 	l ü	U	10		Ü	U	10	100
MW-14	1.1 Dichloroethene	uk/l.		l ii		100		Ü	٥	10	 	Ü	Ü	10		Ü	Ü	10	100
	1,2 Dichloroethane	ug/L		Ü	Ü	100	 	tü	Ü.	10		Ü	Ü	10		H U	5	10	100
	1,2-Dichloroethene (total)	ug/L		U	Ü	100	 	1 0	<u>ن</u> ت	10	 	Ü	Ü	10		l ü	U		100
MW-14	1,2-Dichloroptopane	ug/L	 	U	 0	100	 -	U	U	10	 -	Ü	Ü	10		_		10	100
	2-Butanone	ug/L				100		U	U	10		Ü				U.	U.	10	
	2-Hexanone	ug/L		U	U		 						l v	10		<u></u>	U	10	100
	4-Methyl-2-pentanone	ug/L		U	U	100	 	Ų	>	10		U	U	10		U	Ü	10	100
	Acetone	Ug/L		U.	U	100	ļ. —	1 +	<u> </u>	10			U	10		U	U	10	100
_	Benzene	nk/r	41	1	 	NA			اد	10	1.0	 	 	10		U	U	10	41
	Bromodichloromethane	ug/L		U	U	100		U	U	10		U	U	10		U	U	10	100
	Bromotorn	nk/r		U	U	100	 	U	Ü	10		U	Ų.	10		U	U	10	100
	Brottomethane	ug/L		U	U	100	<u> </u>	U	2	10	 	U	U	10		U	U	10	100
	Carbon Disulfide	uy/L	<u> </u>	U	U	100		U	U	10	ļ	U	U	10	<u> </u>	U	U	10	100
	Carbon Tetrachloride	uk/L		U	υ	100		U	U	10	<u> </u>	U	U	10	ļ	U_	U	10	100
	Chlorobenzene	nk/r		U	U	100		U	-	10		U	U	10		U	U	10	100
	Chloroethane	ug/L	1,000	L	L	NA NA	ļ	U	٧	10		U	LU	10		U	Ü	10	1,000
	Chloroform	ug/L		U	U	100		U	U	10		U	U	10		U	U	10 (100
MW-14	Chloromethane	ug/L		U	U	100		U	2	10	2.0)		10		U	U	10	100
	cis-1,3-Dichloropropene	ug/L		U	٦	100		<	U	10		U	Ü	10		د	υ	10	100
MW-14	Debromochloromethane	ug/L		υ	ح	100		U	U	10		U	U	10		U	Ū	10	100
MW-14	Ethyl Benzenc	nk/L		Ü	U	100		U	5	10		U	U	10		U	Ū	10	100
MW-14	Methylene Chloride	ug/L	14	7		NA		U	Ü	10		U	U	10		٦	Ū	10	14
	Styrene	Jyn J		U	υ	100		U	U	10		Ü	Ū	10		Ü	Ü	10	100
	Tetrachloroethene	ug/L		ī	Ū	· 100		Ū	Ü	10		Ü	Ü	10		Ü	l ü l		100

AHS\APE

1\1252\042\S-++97 Sampling Rpt\HighDetects xIs\VOC 1252\042\S-+

Appendix C Maximum Concentrations of Volatile Organics

Buscline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana

									-										
***		Limits	Result	140	Event	Petect Limit	Result	Tio	E TOTAL	Petect Limit	Remit	1.0	Kvent	Detect (Junit			Event		Highest
Well	Analyte		- Messan	17	7				100				DQ		Result	1.0	no	Detect Limit	Petection
MW-14		ug/L			Ü	100		U		10	<u> </u>	U	Ü	10	1.0	1	-	10	100
	trans-1.1-Dichloropropene	ug/L		U	\	100		10		10		U		10		U	Ü	10	100
VIM-14	Inchloroethene	wg/L			₩		 	U	U.	10		"	7	10		U	Ü	to	100
MW-14	Vanyl Chlande	ug/L		U		100		l u	Ü	. 10			Ų	10		U	U	10	100
	Xylenes (total)	w/L		U	U	100		·	Ų.			U	U	10	 	U	U	10	100
	1.1.1 Trichknischane	w/L			Ų.	10		U	U	10		10	Ų.	10	 	U	<u>u</u>	10	10
	1.1.2.2 Tetrachloroethane	we/L		U	U	10		U	 	10			U	10		U	C .	10	10
	1,1,2 Tochloroethane	we/L		1 "		10		1 0		10		U		10		U	Ü	10	10
	1,1-Dichlorocthane	w/L		╁╫	U	10	 	۱ ت	+	16		U	7	10		U	Ų.	10	10
MW-15	1,1-Dichloroethene	- w/L		1 "	Ü	10	 	1 5	픕	10		۱ "	ü			U	U	10	10
	1,2-Dickloroethane	well		1 0	"	10		۳	10	10		1 "		10	ļ	U	Ü	to	10
	1,2-Dichloroethene (total)	w/L		l U	l ü	10		Ü			!		Ų.	.0	 -	U	Ü	01	10
	1,2-Dichleropropune	- wel		_	ü	 		10	U	10		U	U	10		U	Ü	10	10
	2-Butanois	mg.		1 5	ŭ	 		Ü	1 6	10		1 "	U	10	 	U	U	10	10
MW-15	2-Hexamone	- well	L	10		10	 	U					Ų	10		U	Ų	10	10
	4-Methyl-2-pentanone	- wal			<u>u</u>		 		Ÿ.	10		U	U	10	 	U	Ü	10	10
MW-15	Acctual	ug/L.		U	U	10		U	U	10		U	۳.	10		U	U	10	10
	Berain	- up/L	3.0	1	 	. NA	3.0	1		10	3.0	-	<u> </u>	10	4.0	1		10	10
	Branch harmethane	ugiL		U	U	10	 	<u></u>	U	10		U	U	10	<u> </u>	U	Ü	10	10
MW-15	Brimstirm	ug/l.		U	Ü	10	 _	U	U	10		U	U	10	<u> </u>	U	U	10	10
	Brownerthate	- Mark		U	U	10	 	U	U	10	<u> </u>	U	U	10		U	UJ	10	10
MW-15	Carlein Distillate	- Jupil		U	U	10		U	U	10	Ĺ	U	U	10		U	U	10	10
MW-15	Carbon Tetrachholde	ug/L		U	U	10		U	U	10	<u> </u>	U	U	10		υ	U	10	10
MW-15	Chlorohenzene	ug/L		U	U	10	<u> </u>	U	J	10		U	U	10		U	U	10	10
MW-15	Chlorothate	up/L		U	U	10	<u> </u>	U	2	10	l	U	UJ	10		U	UI	10	10
MW-15	Chlassism	ug∕t.		U	U	10	<u></u>	U	د	10	<u> </u>	U	U	10		٦	U	10	10
MW-IS	Chloromethane	ug/L		U	U	10		U	U	14		U	U	10		υ	C	10	10
MW-15	cm-1,3-Dichluropropene	ug/L		U	U	10		U	U	10		U	Ü	to		U	U	10	10
MW-15	Debenous bloomsthate	ug/L		U	U	10		ีย	U	10		U	U	10		U	C	10	10
MW-15	Ethyl Benzene	ugil		U	U	10		U	U	10		U	U	10		U	C	10	10
MW-15	Methylene Chloride	ug/L.		U	U	10		U	U	10		U	U	10		U	C	ia	10
MW-15	Styrene	ugl		U	u	10		U	U	10		U	U	10		U	C	10	10
MW-15	Tetrackhouethene	- Jupl		U	U	10		U	2	10		U	V	10		U	U	10	10
MW-15	Toluene	ug/L		U	U	10		U	٥	10	1.0			10		U	U	10	10
MW-15	trans-1,3-Dichloropropene	ug/L		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-15	Truchimoethene	7		U	U	10		U	U	10		U	U	10		υ	U	10	10
MW-15	Viny) Chloride	upl.		U	U	19		U	U	10		U	V	10	i	U	U	10	10
MW-15	Xylenes (total)	ug/L		U	U	10	l	U	U	10		U	U	10		U	υ	10	10
MW-18	1,1,1-Trichlmoethunc	up/L		U	U	10		U	5	10		U	U	10		U	U	10	10
	1,1,2,2-Tetrachhorachane	we/L		U	U	10		U	U	10		U	U	19		U	U	10	10
	1,1,2-Teachhoroethanc	ug/L		U	Ü	10		U	U	10		U	U	10		U	Ü	lo	10
	1,1-Dichloroethane	we/L	Γ	U	Ü	10		U	U	10	1	U	U	10		Ü	Ū	10	10
	1,1-Dichloroethene	uge/L		U	U	10		U	U	10	T	Ü	U	10		Ü	Ü	10	10
	1.2-Dis bloomethate	ug/L.		Ū	Ū	10	T	Ťΰ	Ü	10	1	Ū	w	10	 	Ü	Ť	10	10
	1,2-Dichloroethene (total)	ug/L		Ü	U	10		Ü	Ü	10	 	ΙŪ	Ü	10	 	Ü	Ü	10	10
	1,2-Decknopropune	ug/L		T U	Ü	10	 	ΙŪ	Ť	1 10	 	Ιť	Ιŭ	10		Ü	Ŭ	10 ,	10
	2-Betannte	ug/L		ΤÜ	Ιŭ	1 10	 	۱ü	ΙÜ	10	 	Ιΰ	l ü	10	 	Ü	Ü	10	10
	2-16-samone	upl		Ťΰ	Ü	10	 -	Ť	Ť	10	 -	1 5	Ιŭ	10	 	Ü	Ü	10	10
MW-18		we/L	 	tΰ	Ü	10	 	۱ ΰ	Ü	10	 	1 0	Ü	10	 	U	Ü		
		wert		1 0	Ü	10	 	1 0	10	10	 	10	۱÷	10	 			10	10
MW-18				+ "	1 0	10	 	1 0	l ü	10	 	10			 	U	ς.	10	10
MW-18	Велиене	ug/L	 -	10	1 0	10		ᡰ᠊ᢆ	Ü		 	<u> </u>	U	10		U	Ü	10	10
MW-18	Bronodic bloromethane	ug/L	 				 		_	10		Ų.	Ü	10	 	U.	U	10	10
MW-JX	Bronidorn	ug/L	L	U	U	10	<u> </u>	U	U	10		U	U	. 10		U	U	10	10

AHSVAPE
JA12520042/Sept 97 Sampling Rpt/HighDetects.xls/VOC 1252042/221601

					Event				Event	· · · · · · · · · · · · · · · · · · ·			Event				Event 4		Highest
Well	Analyte	Units	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DO	Detect Limit	Detection
			1-1.5001	10	U	10		U	U	10		U	U	10		U	Ü	10	10
	Bromomethatic	ug/l.		1 0	1 0	10		l ö	Ü	10		υ	Ü	10		Ü	Ü	10	10
MW-1X	Carbon Disultide	ug/L ug/L	 	10	Ü	10		1 0	Ü	10	 	U	Ü	10		U	Ü	10	10
MW-IK	Carbon Tetrachloride Cidorobenzene		 	1 0	Ü	10	 	1 0	Ü	10		Ü	Ü	10		Ü	Ü	10	10
		ug/L ug/L		Ü	Ü	10		l č	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	Chloroethane	ug/L		1 0	Ü	10	 	l ü	Ü	10	 	Ι ΰ	Ü	10		l ü	Ü	10	10
MW-IX	Chlorotorm Chloromethatic	ug/L		T Ü	Ü	10	 	1 0	Ü	10	 	ΙŬ	Ü	10		Ü	Ť	10	10
				l ü	l ŭ	10		10	ϋ	10		۱ ٽ	Ιť	10		Ü	Ü	10	10
MW-IX	cis-1,3-Dichloropropene	ug/l.		10	Ü	10	 	l ü	Ü	10	 	Ť	Ü	10		Ü	Ü	10	10
	Dibromochloromethane			1 5	l ü	10	 	1 0	ŭ	10	 	tΰ	Ιŭ	10		Ü	Ť	10	10
	Ethyl Benzene Methylene Chloride	ug/L	 	1 0	Ü	10		l ŭ	Ü	10	 	Ι υ	ΙŬ	10		Ü	Ü	10	10
		ug/L		t ü	l ü	10	├	U	T U	10		Ιŭ	Ü	10		Ü	Ü	10	10
MW-IX	Stytene	ug/L		1 5	Ü	10	 	1 0	Ü	1 10		Ü	U	10		Ü	Ŭ	10	10
	Tetrachloroethene	ug/L	<u> </u>	1 0	Ü	10		1 0	Ü	10	 	l ü	Ü	10		Ü	Ü	10	10
	Toluene	ug/L	 -	1 0	Ü	10	 	U	Ü	10	 	Ü	U	10		l ü	Ü	10	10
MW-LX	trans (3-Dichlosopropene	ug/1.		1 5	l ü	10		U	Ü	10	 	1 0	Ü	10		Ü	Ü	10	10
	Trichloroethene	ug/L		1 5	Ü	10	 	1 0	1-5	10	 	l ü	U	10		5	l U	10	10
	Vinyl Chloride	ug/L.		1 5	U	10		1 0	Ü	10	 	ان ا	Ü	10		U	H	10	10
	Xylenes (total)	ug/L ug/L	 	10	Ü	10		1 0	Ü	10		10	10	10		U	Ü	10	10
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	 	10	ü	10		1 5	Ü	10	 	10	Ü	10		Ü	"	10	10
				1 0	Ü	10	 	U	Ü	10	 	Ü	U	10		Ü	Ü	10	10
	1.1.2-Trichloroethanc 1.1-Dichloroethanc	ug/L		1 5	l ö	10	 	1 0	Ü	10	 	T U	Ü	10	<u> </u>	Ü	ŭ	10	10
		ug/L.		1 0	Ü	10	 	l ü	Ü	10		U	l ü	10		Ü	Ü	10	10
	1.1-Dichloroethene	ug/L		1 5	 	10	 	บ	Ü	10	 	Ü	Ü	10		Ü	Ü	10	10
	1,2 Dichloroethane 1,2 Dichloroethane (total)	ug/L		1 0	l ö	10	 	l ü	Ü	10	 	Ü	Ü	10		"	Ü	10	10
	1,2-Dichloropropane	ug/L ug/L		T U	Ü	10		1 5	Ü	10	 	۱ü	Ü	10		U	۳	10	10
MW-19				1 0	Ü	10	 	Ιŭ	Ü	10	 	l ü	Ü	10		10	10	10	10
MW-19	2-Butanone	ug/L		Ιü	U U	10	ļ	1 0	Ü	10		l ü	Ü	10		10	Ü	10	10
	2-Hexanone	ug/L		1 0	Ü	10	}	 U	Ü	10	5.0	1	-	10		10	Ü	10	10
	4-Methyl-2-pentanone	ug/L		1 5	"	10	5.0	15	├ ╙	10	12	⊹	—	10		0		10	10
MW-19	Accione	ug/L	 	1 5	U	10	50	 ;		10	3.0	 	 	10	1.0	 	U 1	10	10
MW-19	Bearene	ug/L		1 5	1 0	10		10	i ii	10	 	10	U	10	1.0	1	÷	10	
_	Bronois blorous thane	ug/L		1 0	Ü	10		1 0	Ü	10		1 0	U	10					10
	Brottoforti	ug/L		1 5	Ü	10	 	1 5	Ü	10	 	1 0	t u	10		U.	Ų.	10	
MW-19	Bronomethane Carbon Disulfide	ug/L	 	10	10	10	 -	10	Ü	10		۳	0	10	 	U	U	10	10
	Carbon Tetrachloride	ug/L		1 0	 0	10	 	1 0	Ü	10		1 5	U	10		Ü	U	10	10
MW-19	Chlorobenzene	ug/L		10	1 0	10	 	1 0	ü	10	 	1 5	Ü	10		H	Ü	10	10
	Chlorocthane	ug/L	20	+ -	 "	NA NA	14	+	╁┷	10	13	+ +	┷	10	18	- '	۳-	10	20
	Chlorologia	ար/ւ	 -"-	U	U	10	 -	10	U	10	 "	1 :	υ	10	 ' -	U	U	10	10
	Chloromethane	ug/L	 	10	Ü	10	 	1 5	Ü	10		1 0	1 0	10		10	Ü	10	10
MW-19	cis-1,3 Dichloroptopene	ug/L		1 0	Ü	10	 	╁╬	Ü	10	 	10	Ü	10	 	"	Ü	10	10
	Dibromichloromethane	ug/L	 	1 5	Ü	10	 	1 0	Ü	10		1 0	l u	10	 -	U	U	10	10
	Ethyl Benzene	ug/L		1 5	U	10	 	1 0	Ü	10	 	1 0	10	10					10
MW-19	Methylene Chloride	ug/L	 	T Ü	 0	10	t	10	1 5	10	 	10	Ü	10		<u></u>	U	10	10
MW-19	Styrene	ug/L		10	0	10	 	╁╬	1 🖑	10	 	l ü	U	10		<u></u>	U		
MW-19	Tetrachloroethene	ug/t.	 	1 5	U	10		1 5	Ü	10	 	l ü	U	.10	 	U	Ų.	10	10
MW-19	Toluene	ug/L		1 5	1 0	10		10	Ü	10		l ü	Ü	10	 	U	U	10 (10
MW-19	trans-1,3-Dichloropropene			10	1 0	10	 	1 🖰	1 0	10	 	U		10		U	U	10	10
MW-19	Trichloroethene	ug/L	 	1 0	U	10		1 ु		10	 		ļ <u>u</u>		 	U.	U	10	10
MW-19		ug/L	 	10	 U	10	 		U.		 	l U	U	10	<u> </u>	U	U	10	10
	Vinyl Chloride	ug/t.	 				 	Ų.	Ÿ	10	 	U	U.	10		U	U	10	10
MW-19	Xylenes (total)	ug/l.		U	U	10		U	U	10		l U	U	10		U	U	10	10
MW-22	1.1.1 Erichloroethane	ug/L		U.		10	 	l u	Ü	10	 	l u	UI	10		U	Ľ	10	10
MW-22	1,1,2,2/Tetrachloroethane	ug/1.	I	<u>l</u> v	U			U	U	10		U	U	10	L	L U	U	10	10

					Event	1	T		Event				Event	3			Event	1	Highest
WeB	Analyte	Units	Result	1.0			Result	I.Q		Detect Limit	Remit	IQ			Result	LQ	_	Detect Limit	Detection
	1,1,2-Trichlomethane	ug/L		Ū	Ü	10		Ü	Ū	10	 	U	Ü	10		U		10	10
	1.1-Dichloroethane	ug/L		Ū	Ü	10		Ü	Ū	10		Ū	Ū	10		Ü	Ü	10	10
	1.1-Dichloroethene	w/L		Ü	Ü	10		Ū	Ü	10	 	Ü	Ū	10		Ü	Ü	10	10
	1,2-Dichloroethate	ugh		Ū	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1.2-Dichloroethene (total)	ug/L		Ū	Ü	10		Ü	Ü	10		Ū	ü	10		Ü	Ü	10	10
	1,2-Dichkoropropane	ug/L		Ü	Ü	ia		Ü	Ü	10	 -	Ü	T U	HO .		7	Ü	10	10
	2-Butanese	ug/L		Ü	Ü	10		Ü	Ü	10		Ť	Ŭ	iö	····	<u> </u>	Ü	10	10
	2-Hesanone	wer.		Ü	Ü	10		Ť	Ü	10		Ü	ŭ	io		2	l iii	10	10
	4-Methyl-2-pentanone	ugi.		Ü	Ü	10		Ü	Ü	10		Ŭ	Ü	10		Ü	Ü	10	10
	Accione	ug/L		Ü	Ü	10		Ù	Ü	10		ŭ	Ü	10		-	٠	10	10
MW-22		ug/L		Ū	Ü	10	····	Ů	Ü	10		Ť	Ť	10		Ü	Ü	10	10
	Brown de his conscilianc	w/L		Ü	Ü	io		Ů	Ü	10		Ü	ŭ	10		7	Ü	10	10
	Виниминя	wit		Ü	Ü	10		Ü	Ü	10		۱ŭ	Ü	10		Ü	Ü	10	10
	Bromonechiale	ug/L		Ü	2	10		Ů	ш	10		Ü	Ü	10		7	Ü	10	10
	Carbon Disultide	1 191		Ŭ	2	10	-	Ŭ	Ü	10		Ü	ř	10		7	ü	10	10
	Carbon Tetrachbride	- up/L		l ü	Ü	10		Ť		10		+	Ü	10		1	Hö	10	10
		ug/L		Ü	۳	10		Ü	"	10		Ü	1	10		۳	Ü	10	10
	Chlorobenzene Chloroethane	ug/L		Ü	٥	10		Ü	Ü	10		H	l iii	10		۲	Ü	10	10
		ug/L		۳	-	10		Ü	Ü	10	3.0	H	۳-	10		Ü	T U	10	10
	Chloroform Chloromathon;	ug/L		۳	۳	10		ŭ	۳	10	3.0	÷	Ü	10		1	 	10	10
		wy/L		Ü	-	10		Ü	Ü	10		Ü	٣	10		+	Ü	10	10
	cis-1,3-Dichloropropene			·	Ü	10		ŏ	0	19		"	1	10		7	Ü		
	Dibramachkeromethane	ug/L ug/L		H	-	16		ŭ	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	Ethyl Benzene	wert.		0	0	10		Ü	Ü	10		Ü	داد	10		7	U	10	10
	Methylene Chloride	wert.		-	Ü	10		Ü	Ü	10		Ü	2	10		7	H U	10	10
MW-22		up/L		- 5	Ü	10		Ü	Ü	10		۳	 0	10		7	Ü		10
	Tetrachloroethene	ug/L		-	Ü	10		Ü	Ü	10		Ü	2	10		7	U	10	
MW-22		ug/L		7	Ü	10		Ü	۳	10		+	75	16		능	Ü		10
	trans-1,3-Dichloropropene			-	Ü	10		Ü	5	10		7	l ü	10		3		10	10
	Trichloroethene	ug/L.		7	-	. 10		Ü	7	10		U	₩.		_	_	U	10	10
	Vinyl Chloride	well		Ü	Ü	10		Ü	Ü	10		Ü	Ü,	10		2	U	10	10
	Xylenes (total)			Ü	Ü	10		Ü	Ü	10		۳	_					10	
	1,1,1-Trichloroethane	w/L		-	U	10		Ü	"	10			-:	10		2	U	10	10
	1,1,2,2-Tetrachloroethane	ug/L		+	Ü	10		Ü	Ü	10			2	10		Ü	Ü	10	10
	1,1.2-Trichloroethane	ug/L		-5	Ü	10		Ü	Ü	10		\vdash		10		Ų.	Ü	10	10
	1,1-Dichloroethane	ug/L		Ü	-	10		Ü	-	10		_	U	10		U	U	10	10
	1,1-Dichloroethete	we/L		٣	2	10		Ü	Ü	10			23	10		۳	Ų	10	10
	1,2-Duckhreichung	ug/L		-	Ü	10			Ü					10		2	U	10	10
	1,2-Dichlorocthene (total)	up/L		"	Ü	10		U	Ü	<u>'</u>		-	:	10		2	U	10	10
	1,2-Dickloropropane	<u> </u>		-	<u> </u>	10		<u> </u>	<u> </u>	10			: '	LO LO		> :	U	10	10
	2-Butanina	ug/L		- :	Ü				_			\vdash	5	10		-	۳	10	10
	2-Hexamone	1 44			-	10		<u></u>	Ü	10			S	10		: ح	U	10	10
	4-Methyl-2-pentanone	- well		<u></u>		10		2	U	10				10	_	U	Ü	10	10
	Accione	ug/L		Ü	U	10		ב	יכ	10			-	, 10		U	U	10	10
	Benzene	- ug/L		U	Ų.	16		۳	<u></u>	10			5	10		υ	U.	10	10
	Bromodickloromethane	- we/L		U.	U	10		2	<u>ט</u>	10			Ü	10		U	U	10	10
	Brannaciform	W/L		U	U	10		U	U	10			5	10		U	U	10 ,	10
	Becommethus.	- WL		U	U	10		U	U	10			٥	10		U	U	10	10
	Carles Disellate			U	U	. 10		U	U	10			ح	io		٥	2	10	10
	Curbon Tetrachhorale	ug/L		Ľ	U	10		٧	U	10		لــــــا	>	10		U	U	10	10
MW-23	Chlorohenzene	up/L		U	U	10		ح	υ	10			5	10		Ü	٦	10	10
MW-23	Chloroethane	ug/l.		U	_υ	10		۲	U	10			5	10		U	5	10	10
MW-23	Chloroform	ug/l.		υ	U	10		U	υ	10		1	c	10		Ü	U	10	10
MW-23	- WILLIAM			Ü	U	10		5	U	10		_	Ü						

					Event		·		Event				Event.	1			Event		Highest
Well	Analyte	Units	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DO	Detect Limit	Detection
	cis-1,3-Dichloropropene	ug/L	KESUK	U	U	10	- Count	U	U	10		1	2	10	1	Ü	U	10	10
				U	U	10		υ	Ü	10		1	Ü	10		Ū	Ü	10	10
MW-21	Dibromochloromethane Ethyl Benzene	ug/L ug/L	 	Ü	Ü	10		Ι υ	Ü	10	 	 	Ŭ	10		Ü	Ü	10	10
	Methylene Chloride	ug/L.		Ü	Ü	10		lυ	υ	10	-	1 1	Ü	10		Ü	Ü	10	10
	Styrene	ug/L		ΙŬ	Ü	10		Ť	Ü	10	 	-	Ü	10		Ü	Ü	10	10
MW-21	Fetrachloroethene	ug/L		۱ů	ΙŬ	10		Ť	Ü	10		1	Ü	10		Ü	Ü	10	10
	Toluene	ug/L		Ť	υ	10		T Ü	Ü	10	t		Ü	10		Ü	Ū	10	10
	trans/1,3/Dichloroptopene	ug/L		ΙÜ	Ü	10	 	l ū	Ü	10		1	Ū	10		U	U	10	10
	Truchloroethene	ug/L	 	Ü	Ü	10		ΙŬ	Ū	10			U	10		Ü	U	10	10
	Vinyl Chanak	ug/L	 	Ü	Ü	10		T Ū	Ü	10			Ü	10		U	ט	10	10
	Xylenes (total)	ug/L		Ü	Ü	10		Ū	Ü	10	·	1	Ū	10		U	2	10	10
	1.1.1 Trichloroethane	ug/L		ΙŪ	Ü	10	 	Ū	Ü	10		U	Ü	10		Ü	0	10	10
	1.1.2.2-Tetrachloroethane	ug/L		Ū	Ü	10		ΤŪ	Ū	10		Ū	Ü	10	i	Ū	Ü	10	10
	1.1.2-Trichloroethane	ug/L.		ŧΰ	Ü	10		Ü	Ū	10		U	Ü	10		Ū	U	10	10
	1.1-Dichloroethane	ug/L		Ü	Ü	10		ΙŪ	Ü	10		Ü	ū	10	· · · · · · · · · · · · · · · · · · ·	Ü	U	10	10
	1.1-Dichloroethene	Ug/L	 	Ü	Ü	10		Ŭ	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1.2 Dichloroethane	ug/L		Ü	Ü	10		υ	Ü	10		Ť	Ü	10	†	Ü	Ü	10	10
	1,2-Dichloroethene (total)	ug/L	-	Ü	Ü	10		Ι ΰ	ů	10	 	Ü	Ü	10		Ü	t	10	10
	1,2-Dichloropropane	ug/L		ΙŬ	Ü	10	 	T u	Ü	10		υ	Ü	10		Ū.Ū	Ū	10	10
	2-Butanone	ug/L		Ü	Ü	10	 	Ü	Ū	10		Ü	Ū	10	·	Ü	Ü	10	10
	2 Hexanone	ug/L		Ü	ŭ	10		Ťů	Ü	10		Ü	Ü	10		Ū	Ŭ	10	10
	4-Methyl-2 pentanone	ug/L	 	ΙÜ	Ι ΰ	10	 	Ť	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	Acetone	ugA.	 	Ü	υ	10		۱ ٠	Ū	10		1	Ū	10		Ü	Ü	10	10
MW 24		ug/L		ΙŪ	Ū	10		T Ū	Ū	10	 	U	Ü	10		Ū	Ü	10	10
	Bromodichloromethane	Ug/L		Ü	Ū	10		Ū	Ü	10		Ū	Ü	10		Ū	Ü	10	10
	Bronotom	ug/L		Ü	Ü	10	1	U	Ū	10		U	Ü	10		U	Ü	10	10
	Brotomethane	ug/L		Ū	U	10	1	Ü	Ü	10	—	Ü	Ū	10		Ū	Ü	10	10
	Carbon Disultide	ug/L		Ü	Ü	10		U	Ü	10	1	Ü	Ū	10		Ü	U	10	10
	Carbon Tetrachloride	ug/L		Ū	Ū	10	 	Ū	U	10		U	Ü	to	·	U	U	10	10
	Chlorobenzene	ug/L		Ū	U	10		U	Ü	10	1	U	U	10	1	U	Ū	10	10
	Chloroethane	ug/L		Ū	Ü	10		Ü	Ü	10		Ü	w	10		Ü	Ū	10	10
	Chlorotorni	ug/l,		Ü	Ü	10	1	U	U.	10	 	U	Ü	10	-	U	Ū	10	10
	Chloromethane	ug/L		Ū	U	10		U	U	10		U	U	10		Ū	Ü	10	10
	cts-1,3-Dichloropropene	uz/L		Ū	Ü	10	1	U	U	10	 	U	U	10	i	Ū	Ü	10	10
	Dibromochlosomethane	ug/1.		Ū	U	10	1	U	Ü	10		U	U	10		U	Ü	10	10
	Ethyl Benzene	ug/l.		Ü	Ü	10	 	U	Ū	10	· · · · · ·	U	Ū	-10		Ū	U	10	10
	Methylene Chloride	ug/L		Ü	Ü	10	1	Ū	Ū	10	·	U	U	10		Ü	Ü	10	10
	Stytene	ug/t.		Ü	U	10		Ü	Ū	10		U	Ü	10		Ū	Ü	10	10
	Tetrachloroethene	ug/L		Ü	Ü	10		U	Ü	10		U	Ü	10		Ū	Ü	10	10
	Toluene	ug/L		Ü	Ü	10		Ü	U	10	T	Ü	Ü	10		Ü	Ü	10	10
	trans-1,3-Dichloropropene	ug/L.		U	U	10		Ü	Ū	10		U	Ü	10		Ü	Ü	10	10
	Trichloroethene	ug/L.		U	Ü	10		Ū	Ü	10	1	Ū	Ü	10		Ū	Ū	10	10
	Viayl Chloride	ug/L		Ü	Ū	10		Ü	Ū	10		Ü	Ü	10		Ū	υ	10	10
	Xylenes (total)	ug/L		Ü	v	10		U	U	10		U	Ū	10		Ü	Ü	10	10
	1.1.1-Trichloroethane	ug/L		U	Ü	10		U	Ū	10		Ü	Ü	10		Ü	Ü	10	10
	1,1,2,2-Tetrachloroethane	ug/L	$\overline{}$	U	U	10		U	U	10	T	Ū	v	01		Ü	Ü	10 ,	10
	1,1,2-Trichloroethane	ug/L.		Ü	Ū	10		U	U	10	T	Ü	U	10		U	U	10	10
	1,1-Dichloroethane	ug/L		U	U	10		U	U	10		Ū	٦	10		U	U	10	10
	1,1-Dichloroethene	ug/L.		U	U	10		υ	ΰ	10		Ü	U	10		Ü	Ü	10	10
	1,2-Dichloroethane	ug/L		U	Ū	10		Ü	Ü	10	1	Ū	5	10		٦	Ü	10	10
	1,2-Dichloroethene (total)	ug/L		Ū	U	01		U	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW-28	1,2 Dichloropropane	ug/L		U	Ū	10		U	Ü	10	<u> </u>	Ü	υ	10		Ü	Ü	10	10
	2-Butanone	ug/L		Ü	ii.	10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	10	10

		T			Event	1			Event :	3	T		Event	3		_	Event	(Highest
Well	Analyte	Links	Kesult	I.Q	DQ	Detect .imit	Result	1.0	DQ	Detect Limit	Remit	1.0	DQ	Detect Limit	Result	1.0		Detect Limit	Detection
	2-16 vanone	ug/l.		Ü	٦	10		U	U	16		Ū	Ū	10		Ü	_	10	10
	4-Methyl-2 pentanone	ug/L		Ū	5	10		Ū	U	IO		Ū	Ū	10		U	Ů	10	10
MW-28	Acctore	ug/1.		Ü	-	10		Ü	U	10		1	Ü	10		۲	Ū	10	10
MW-28		ug/L		Ü	Ü	10		U	U	30	 	Ü	Ū	10		Ü	Ť	10	10
	Heumalic bloromethane	WAY.		Ū	Ü	10		Ü	5	10		Ü	Ū	10		-	Ŭ	10	10
	Brantunfenten	ug/L		Ü	υ	10		U	U	10	1	Ü	Ū	10		Ü	Ū	10	10
	Brommuchanc	wg/L		Ü	U	10		U	U	10		U	Ü	10		U	w	10	10
	Carbon Doublide	ug/L		Ü	5	10		U	U	10		U	Ū	10		U	Ü	10	10
	Carbon Tetrachhoide	ug/L		U	٦	10		U	U	10		U	U	10		U	U	10 .	10
	Chlorobenzene	Ugit		U	0	10		U	V	10	1	U	U	10		٦	U	10	10
MW-28	Chloroethane	ug/L		Ü	V	10		U	V	10		U	W	10		v	W	10	10
MW-28	Chlorotorm	ug/L		Ü	U	10		U	U	10		Ü	Ü	10		٥	Ū	10	10
	Chlorometikate	ug/L		V	v	10		Ü	v	10		U	U	10		U	U	10	10
MW-28	en-1,3-Dichloropropene	wa/L		U	5	10		U	U	10		U	U	10		2	Ū	10	10
	Debrugue blummethane	ug/L		Ü	U	10		U	U	10		Ū	U	10		Ü	Ü	10	10
	Ethyl Benzene	ug/L		Ü	5	10		Ü	Ü	10	<u> </u>	Ü	Ü	10		Ü	Ŭ	10	10
	Methylene Chlunde	ug/L		Ü	Ü	10		Ü	Ü	10	— —	ΙŪ	Ü	10		Ü	Ü	10	10
MW-2H		ug/L		Ů	0	10		Ü	U	10		Ť	Ü	10		Ü	Ü	10	10
	Tetrachloroethene	- Jug/L		Ü	U	10		U	U	10		Ū	Ü	10		U	Ū	10	10
MW-28		ug/L		Ū	٦	10		U	U	10		Ü	Ü	10		V.	Ŭ	10	10
	trans-1,3-Da kloropropere	ug/l.		Ü	U	10	1	Ü	U	10	1	Ū	Ū	10		U	Ü	10	10
	Trachhorachene	Wg/L		Ū	U	10		Ü	Ü	10	1	Ŭ	Ü	10		Ü	ŤŮ.	10	10
	Vinyl Chloride	ug/L		Ü	2	10		Ü	-	10		Ť	۱Ť	10		Ü	Ü	10	10
	Xylenes (total)	upL	-	Ü	Ü	10		Ü	Ü	10	f	ΙŪ	Ü	10		Ü	Ü	10	10
	1.1.1-Trichlorochane	ug/L		Ū	Ü	10		Ü	Ü	10	 	Ü	ū	10		Ü	Ü	10	10
	1.1.2.2-Tetrachluroethane	wel		Ū	Ü	10		Ů	Ü	10		Ŭ	Ü	10		Ü	Ü	10	10
	1.1.2-Trichforeethane	ugh		Ü	U	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1,1-Dichlorocthane	ug/L		Ť	Ü	10		Ť	Ü	10		Ü	ü	10		7	Ü	10	10
	1.1 Dickloroethene	ug/L		Ů	-	10		Ü	Ü	10		ΙÜ	T U	10		Ü	Ů	10	10
	1.2-Dichloroethage	ug/L		Ü	Ü	10		Ü	U	10	 	Ť	Ü	10		۳	Ü	10	10
	1,2-Dickloroethene (total)	we/L		Ū	5	io		Ū	C	10	 	۱ij	ü	10		5	Ü	10	10
	1,2-Dichloropropane	ug/L		Ū	U	10		Ť	Ü	10		Ť	Ü	10		Ü	Ü	10	10
	2-Hotanone	ug/L		Ú	Ü	10		Ū	Ü	10	 	Ü	Ü	10		Ü	Ü	10	10
MW-29	2-16-ramone	ug/L		Ū	-	10		J, U	Ü	. 10		Ü	u	10		Ü	Ü	10	10
	4-Methyl-2-pentamone	ug/L		Ù	U	10	-	Ü	Ü	10		Ť	Ť	10		Ü	Ü	10	10
MW-29		us/L		Ü	U	10		Ü	Ü	10	 	Ť	Ü	10		-	Ü	10	10
MW-29		ug/L		Ŭ	-	10		Ü	Ü	10	3.0	Ť		10		Ü	 U	10	10
	Beautichinenichan:	ugh.		Ü	-	10		Ū	Ü	10	 	Ü	U	10		Ü	Ü	10	10
	Beautodonus	ug/L	-	Ū	Ü	10		Ü	Ü	10	 	Ü	Ū	10		Ü	l ü	10	10
	Beomagachate	ug/L.		Ū	Ü	10		Ü	3	.0		ŭ	Ū	. 10		Ü	Ü	10	10
	Carbon Doublink	ugi.		Ū	Ü	10		Ü	-	10	 	Ü	Ü	10		Ü	Ü	10	10
	Carbin Testachharak	ug/L		Ŭ	Ü	10		Ü	Ü	10	 	ř	Ü	10		U	Ü	10	10
	Capragations	ug/L	<u> </u>	Ŭ	Ü	10		Ť	Ü	10		Ü	Ü	10		"	l ü	10	10
MW-29	Chlorathan:	- Well	2.0	 	<u> </u>	10		Ü	-	10		Ü	l ü	10		Ü	"	10	10
	Cpparateum f marateum	ug/L	***	Ú	U	10		٣	Ü	10	 	Ü	ü	10		U	Ü	10	10
	Chlorogethane	ug4		Ü	U	10		Ü	Ü	10		Ü	۳	10		U	Ü	10 1	10
	cm-1,3-Decklorograpene	1 100		Ü	۳	10		ü	Ü	10	 	Ü	Ü	10		U	l u	10	10
	Debressenchlersmerhane	ug/L		Ü	U	10		Ü	Ü	10	 	Ü	H	16	·	U	Ü		
		ug/l.		Ü	٣	10		T i	Ü	10		10	Ü	10		Ü	ستسه	10	10
	Hibyl Benzene	ug/L		Ü	"	10	 	1 0	Ü	10	 	H	10				U	10	10
	Methylene Chhoule			U	"	10		۳	U	10	 			10		U	Ų.	10	10
MW-29	Styrene	ug/L.		10	-	10	 	- :-	-	10		U	U	10		U	Ų.	10	10
MW-29	Tetrachloroethene	ug/L.			7	10	 		_			U	U	10		U	U	10	10
MW-29	Toluene	ug/t.		U	U	10		U	U	10		U	U	10		U	_u	10	10

					Event		r ——		Event	,			Event	3			Event	4	Highest
Well	Analyte	Units	Kesult	1.0	DO	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	100	Detect Limit	Result	1.Q	_	Detect Limit	Detection
	trans-1,3 Dichloropropene	_		U	U	10	-	U	-	10		U	U	10		U	U	10	10
	Trichloroethene	ug/l.		U	Ü	10	 	Ü	٦	10		Ü	Ü	10		U	Ü	10	10
	Vinyl Chloride	ug/L		U	Ü	10		 U	Ü	10		l ü	υ	10	 	Ü	Ü	10	10
		υμ/1. /1	 	l ü	Ü	10		U	Ť	10		Ι υ	Ü	10	 	Ü	Ü	10	10
	Xylenes (total)	ug/L		U	U	10		T Ü	Ü	10		Ü	Ü	10	·	Ü	Ŭ	10	10
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/t.		T U	Ü	10		Ü	Ü	10		lü	Ü	10		Ü	 ~	10	10
	1.1.2-Trichloroethane	ug/l.		Ü	Ü	30	 	۳	Ü	10	 	Ü	Ü	10		Ü	U	10	10
	1,1-Dichloroethane	ug/t.		10	10	10		+ ु-	Ü	10		 "	۱ů	10		U	Ü	10	10
	1,1-Dichloroethene	ug/l.		1 0	Ü	10	 	Ü	Ü	10		l ü	Ü	10	 	Ü	Ü	10	10
	1,2-Dichloroethane	ug/L ug/L	· · ·	l ü	Ü	10		Ü	٦	10	 	Ü	UJ	10		Ü	Ť	10	10
	1,2-Dichloroethene (total)	ug/L		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	 	Ü	Ü	10	10
	1,2 Dichloropropane	ug/L		Ü	Ü	10		ϋ	"	10		Ü	Ü	10		٦	Ü	10	10
	2 Butanone	ug/L		Ü	Ü	10		Ü	٠	10	 	Ü	Ü	10		Ü	Ü	10	10
	2-Hexanone	ug/L		U	Ü	10		Ü	Ü	10		Ť	Ü	10		Ü	<u> </u>	10	10
	4-Methyl-2-pentanone	ug/L		1 0	Ü	10		Ü	Ü	10	 	Ü	Ū	10		Ü	1	10	10
	Acetone			Ü	Ü	10		Ü	Ü	10		υ	Ü	10		Ü	U	10	10
	Benzene	ug/l.		Ü	Ü	10		l ü	Ü	10	 	Ü	Ü	10		Ü	Ü	10	10
	Broundichloromethane	ug/L		U	H	10		U	Ü	10	 	l ü	l ü	10		Ü	Ü	10	10
	Bronnotorni			Ü	l ö	10		Ü	Ü	10	 	Ü	Ü	10		, 0		10	10
	Bromonethane	ug/L		U	٣	10		Ü	5	10	 	Ü	Ü	10		U	t u	10	10
		ug/L		U	Ü	10		Ü	<u> </u>	10	 	Ü	Ü	10	 	U	Ü	10	10
	Carron Disulfide	ug/L		U	-	10		U	Ü	10	 	U	Ü	10	 	U	Ü	10	10
	Carbon Tetrachloride	ug/L		U	+	10		U	Ü	10		Ü	Ü	10	<u> </u>	U	 -	10	10
MW-30	Chlorobenzene Chloroethane	ug/L		1 0	1	10		Ü	Ü	10	 	l ü	Ü	10		Ü	10	10	10
MW-30		ug/L		U	١٠	10	1.0	1		10		1 0	U	10		U	Ü	10	10
MW-30	Chlorotom	ug/L		U	1	10	1.9	1 0	- C	10		Ü	Ü	10	 	Ü	Ü	10	10
	Chloromethane	ug/L		Ü	Ü	10		U	Ü	10		Ü	l ö	10	<u> </u>	U	U	10	10
	cis-1,3-Dichloropropene Dibromochloromethane	ug/L		U	岩	10		٠,	-	10		H ₀	Ü	10		"	Ü	10	10
	Ethyl Benzene	ug/L		Ü	U	10		10	Ü	10	 	Ü	Ü	10	 	Ü	1	10	10
	Methylene Chloride	ug/L		U	H	10		"	Ü	10	 	Ü	Ü	10		Ü	U	10	10
		ug/L		U	10	10		U	<u> </u>	10	 	10	Ü	10		Ü	 	10	10
	Stytene Tetrachloroethene	ug/l.		Ü	-	10		Ü	-	10		1 0	Ü	10	ļ	U	├ ──	10	10
	Toluene	Ug/L		-	۳	10		l ü	7	10	 	10	Ü	10		۳	-	10	10
		ug/l.		U	H	10		Ü	Ü	10		10	U	10	 	10	U	10	10
	trans-1,3-Dichloropropene Trichloroethene	ug/L		- u	Ü	10		l ü	U	10	 	1 0	Ü	10	 	۳	U	10	10
_	Vinyl Chloride	ug/L		1 5	Ü	10		t ü	Ü	10		 0	Ü	10		٣	U	10	10
	Xylenes (total)			U	U	10		Ü	"	10		Ü	Ü	10		"	<u> </u>		10
	1,1,1-Trichloroethane	ug/L		1 0	H	10		10	5	10	 	U	+	10	 	Ü	U	10	10
	1.1.2,2-Tetrachlorocthane			Ü	1	10		Ü	-	10	 	10	Ü	10	 	۳	Ü	10	10
	1,1,2-Trichloroethane	ug/L		U	٣	10		U	-	10	 	 " -	U	10		۳	+ +	10	10
	1,1-Dichloroethane	_		Ü	H	10	 	Ü	0	10		10	U	10	 	۳	l U		
	1,1-Dichloroethane	ug/L				10			Ü	10		_	_			_		10	10
		ug/l.		U	U	10	 	U	Ü		 	U.	U	10		Ü	U	10	10
	1,2-Dichloroethane	ug/L		 U		10		Ü	۳	10		<u>!</u>	U	10		<u></u>	U	10	10
	1.2 Dichloroethene (total)	ug/l.		_	L.			_			 	Ų	U	10		U	U	10	10
	1,2-Dichloropropane	ug/L		U	Ų.	- 10		U	۳.	10		U	U	10		U	U	10	10
	2 Butanone	ug/l,		U	U	10		U	: د	10		U	U	10		U	U	10 1	10
	2-Hexanone	ug/L.		U.	U	10	 	U	<u>.</u>	10		U.	U	10	ļ	U	U	10	10
	4-Methyl-2-pentanone	ug/L		U	U	10		U	2	10		U	U	10		U	Ų	10	10
	Acctone	ug/t.		Ų.	Ų.	10	 	U	ب	30	<u> </u>	U	U	10		U	U	10	10
	Benzene	ug/L		U	U	10		U	: د	10	<u> </u>	U	U	10		υ	U	10	10
	Brounds bloromethane	ug/L,		U	U	10		U	۲	10	<u> </u>	U	U	10	ļ	U	U	10	10
	Bromoform	ug/l.		U	U	10		U	2	10	<u> </u>	U	U	10		U	U	10	10
MW-31	Bromomethane	ug/L	<u> </u>	U	U	10	L	ט	U	10	1	U	U	10	[υ	IJ	10	10

なる

																			
	1	1		1	Event			1 1 5	Event		 _		Event				Event		Highest
Well	Analy te	Units	Result	1.0	8	Detect Limit	Result	1.0	DQ	Detect J.imit	Result	1.0	DQ	Detect Limit	Result	LQ	_	Detect Limit	Detection
MW-31	Carbon Disultale	ug/L		٦	٦	10	L	U	U	10	L	U	U	10		U	U	10	10
MW-31	Carbon Tetrachloride	wg/L		U	ح	10		U	U	10		U	U	10		U	U	10	10
MW-31	Chlurchenzene	ug/L		U	٦	10	<u> </u>	U	U	10		U	U	10		U	U	10	10
MW-31	Chlorocthanc	uy/L.		υ	υ	10		U	ַט	10		V	UJ	10		U	UJ	10	10
MW-11	Chlerotorne	ug/L_		U	ح	10		U	U	10		U	V	10		U	C	10	10
MW-31	Chiarmethane	ug/t.		U	٥	10		U	U	10		U	U	10		U	U	10	10
MW-TI	cu-1,3-Dichloropropene	ug/L		C	٥	10		U	U	10		U	U	10		U	U	10	10
MW-31	Dirementhementhane	ug/L		U	5	10		U	U	10		U	U	10		U	U	10	10
MW-31	Ethyl Benaene	ug/L.		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-31	Methylene Chloride	ug/L		U	ح	10		U	U	10		U	U	10		U	U	10	10
MW-31	Stylene	wg/L		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-31	Tetrachloroethene	mg/L		U	U	10		IJ	U	10		U	U	10		Ū	U	10	10
MW-31	Toluene	ug/L		Ü	υ	10		U	U	10		U	ΰ	10		Ū.	Ü	10	10
MW-11	trans-1,3-Dichloropropene	wg/L		T _U	٥	10		U	U	10		U	Ū	1.7		Ū	Ü	10	10
	Tuchloroethene	ug/L		Ü	-	10		U	U	10		U	U	10	1	Ü	Ū	10	10
	Vinyl Chloride	wg/t.		Ü	U	7		Ū	Ü	10	T	Ü	Ü	10	<u> </u>	Ü	Ü	10	10
MW-31	Xylenes (total)	ug/L.		۲ij	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	1,1,1-Trucklomethane	ug/L		├ ~	Ü	10		Ü	Ü	10		Ü	Ť	10		Ü	Ü	10	10
MW-32		ug/L		1	Ü	10		U	U	10		Ü	Ü	10		Ü	Ü	10	10
_	1,1,2-Truchloroethane	ug/L		_	Ü	10		Ü	Ü	10		Ü	Ü	10		Ť	Ü	10	10
		we/L		1	Ü	10		υ	Ü	10		Ü	Ü	10		ΐ	H	10	10
	1,1-Dichloroethane				Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	1 0		10
	1,1-Dichloroethene	we/L			Ü	10		Ü	۳	10								10	
	1,2-Dichloroethane	- MAV						Ü	۳			U	U)	10		U	U	10	10
	1;2-Dichloroethene (total)	ug/L		-	2	10				10		U	Ü	10		V	Ų.	10	10
	1,2-Dichloropropane	ug/L		1	Ü	10		U	U.	10		U	U	10		U	U	10	10
	2-Butaning	- m/L		-	Ü	10	<u> </u>	U	Ü	10		U	U	10		<u></u>	U	10	10
	2-Hexamme	- Py/L		-	Ü	10		U	U	10		U	٧	10		U	U	10	10
MW-32	4-Methyl-2-pentanone	Mp/L		1—1	ט	10		U	U	10	ļ	U	U	10		Ü	U	10	10
MW-32	Accione	ug/L			ح	10	5.0	1	1	10		<u> </u>	U	10		U	U	10	10
MW-12	Велене	ug/L		1	٧	10		U	U	10		U	ט	10		Ų.	U	10	10
MW-32	Bennindichloromethane	w/L		$ldsymbol{\sqcup}$	u	10	<u> </u>	U	U	10		U	ט	10	!	Ü	U	10	10
MW-32	Branciann	ug/L			٥	10		U	U,	10		U	υ	10		U	U	10	10
MW-32	Bromonethane	ug/L			Ü	10		U	U	10		υ	U	10		U	W	10	10
MW-32	Carbon Disaltule	ug/L		L	U	10		U	U	10		U	U	10		U	U	10	10
MW-12	Carbon Tetrachbitisk	ug/L.			U	10		U	U	10		U	U	10		U	U	10	10
MW-32	Chlorobenzene	ug/L			U	10		U	U	10	1	U	U	10		ט	U	10	10
MW-32	Chloroethane	ug/L_			ט	10		U	U	10		U	3	10		U	W	10	10
MW-32	Chlestedents	ug/L			υ	19		U	U	10		U	U	10		U	U	10	10
MW-32	Chloremethane	ug/L			U	10		٦	U	10		U	٦	10		บ	U	10	10
MW-32	cis-1,3-Dichloropropene	ug/L			U	10		U	٦	10		U	IJ	10		U	U	10	10
	Dibromechloromethane	wy/L			U	10		U	U	10		U	U	. 10		U	U	10	10
	Ethyl Benzene	wel.			U	10		Ų	U	10		U	U	10		U	U	10	10
	Methylene Chlorde	ug/L			U	10		U	U	10	· ·	U	U	10		Ū	Ū	10	10
	Styrete	14/1			U	10		U	U	10		Ü	Ü	10		Ü	Ü	10	10
MW-32	Tetrachlorocthete	ug/L.			Ü	10		Ū	U	10		Ü	Ū	10		Ü	Ü	10	10
	Tolucac	ug/L		\vdash	Ü	10	3.0	1	-	10		Ü	Ü	10		Ü	Ü	10 ,	10
	trans-1,3-Dichlampropene	ug/L		1	Ü	10		Ü	Ü	10		ΰ	Ť	10		Ŭ	Ü	10	10
	Trichi-rections	wel		\vdash	Ü	10		Ü	Ü	10	<u> </u>	Ü	Ü	10		Ü	Ü	10	10
	Vinyl Chloride	ug/L		1	Ü	10		Ü	Ü	10		U	Ü	16		Ü	1	10	
		ug/L		1	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	8		10
	Xylenes (unal)			10	Ü	10		Ü	Ü	10	 	U	"				_	10	10
MW-33	1.1.1-Trichloroethane	ug/i.		Ü	U	10		۳	Ü	10				10		U	<u> </u>	10	10
	1,1,2,2 Fetrachloroethane	ug/L.					 					U.	U	10		U	U	10	10
MW-33	1,1,2-Trichloroethanc	ug/L		U	U	10	<u> </u>	U	U	10	<u> </u>	U	U	10		U	U	10	10

					Event				Event 2	,			Event				Event	4	Highest
Well	Analyte	Units	Hesult	1.0	DQ	Detect Limit	Kesuk	1.0	hQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Detection
	L.I-Dichloroethane		MESON	U	<u> </u>	10	- N. Adm	Ü	υ	10		Ü	U	10		,,,	Ü	10	10
·		ug/L ug/L		Ü	U	10		 	Ü	10	 	Ü	Ŭ	10		Ü	1 0	10	10
MW-13	1.1-Dichloroethene	ug/L		Ü	Ü	10		U	Ü	10	 	Ιŭ	Ť	10		Ü	Ü	10	10
				0	U	10		U	Ü	10	 	Ü	Ü	10		Ü	Ιŭ	10	10
	1.2 Dichloroethene (total)	ug/L.		Ü	U	10	<u> </u>	Ι υ	Ü	10	 -	Ιΰ	۱ ٽ	10		Ü	U	10	10
MW 11	1.2 Dichloropropane	ug/L		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		۳	Ü	10	10
MW-33	2-Butanone	ug/L		l ö	۳.	10	····	1 5	Ü	1)	 	l ü	l ü	10		+	1 0	10	10
MW-13	2-Hexanone	Ug/L		U	ان	10		10	Ü	10	 	1 5	tΰ	10		۳	1 0	10	10
MW-31	4-Methyl-2-pentanone	ug/L								10	 	۲,	Ü	10	<u> </u>	7	1 0	10	10
MW 33	Acctone	ug/L		U U	ט	10	8.0	1:	U	10	 	10	10	10	10	7	15	10	10
	Benzene	ug/L		Ü	+			10	Ü	10	 -	1 0	Ü	10		+	t	10	10
MW-33	Bromodichloromethane	nk/r			_	10	 				 					+			
MW-33	Becausedous	ug/L		U	2	10		U	U	10		Ų.	Ų.	10			<u> </u>	10	10
MW-33	Bromonethane	nk/r		U	U	10		U.	IJ	10	 	Ų.	Ų.	10		2	l u	10	10
MW-33	Carbon Disultide	ug/L_		U	۳	10		 "	l u	10	 	Ų	U	10		2	U	10	10
MW-13	Cathon Tetrachloride	սչ/Լ,		U	U	10		Ų.	U	10	ļ	U	U	10	ļ	U	U	10	-10
MW-33	Chlorobenzene	ug/L		U	U	10		U	U	10		Ü	U	10	 	2	υ	10	10
MW-31	Chloroethane	uk/L		U	U	10		U	U	10	 	U	L.U	10		U	U	10	10
MW-33	Chlorototti	uk/L		U	U	10		U	U	10		V	U	10		U	U	10	10
MW-33	Chloromethane	ug/L_		U	٥	10		U	U	10	 	U	U	10		2	υ	10	10
MW-33	cts-1,3-Dichlotopropene	ug/L.		U	U	10		U	U	01	ļ	U	<u> </u>	10		U	U	10	10
	Dibromochloromethane	ug/L		U	U	10		U	U	10	 	U	υ	10		٥	U	10	10
MW-33	Ethyl Benzene	ug/L		U	U	10		U	U	10		Ü	U	10		U	U	10	10
	Methylene Chloride	ug/L_		U	v	10	L	U	U	10	L	U	U	10		U	U	to	10
	Styrene	ug/L		U	ט	10		U	U	10	!	U	U	10		2	U	10	10
MW 11	Tetrachloroethene	ug/L		U	U	10		U	U	10		U	U	10		٥	U	10	10
MW-H	Tobiene	ug/L.		U	U	10		U	٦	10	l	U	U	10		٦	U	10	10
MW 33	trans-1,3-Dichloropropene	ug/L		U	U	10		U	U	10	<u> </u>	U	U	10		U	U	10	10
MW-33	Trichloroethene	ug/L		U	υ	10		U	U	_10	L	Ų	U	10		٦	U	10	t0
MW-11	Vinyl Chloride	ug/L.		U	ح	10		U	บ	10		U	U	10		٥	Ū	10	10
MW-33	Xylenes (total)	ug/L_		U	ح	10		U	U	10		U	U	10		ح	U	10	10
MW-34	1,1,1-Trichloroethane	ug/L		U	٥	10		U	Ü	10	l	U	Ü	10		٦	U	10	10
MW-14	1.4.2.2-1 etrachforoethane	ug/L		U	>	10		U	Ŭ.	10		U	U	10		ح	U	10	10
MW-34	1,1,2-Trichloroethane	ug/L		U	U	10		U	U	10		U	ุ U	10		U	U	10	10
MW-14	L.I-Dichloroethane	υg/L		υ	٦	10		U	U	10		U	U	10		Ü	Ū	10	10
MW-14	1,1-Dichloroethene	uk/L		U	U	10		U	U	10		U	U	10		٦	U	10	10
MW-14	1,2-Dichloroethane	ug/L		U	U	10		U	C	10		Ų	Ü	10		U	U	10	10
MW-34	1.2-Dichloroethene (total)	ug/L_		υ	U	10		U	U	10		U	U	10		U	Ü	10	10
MW-14	1,2-Dichloropropane	ug/L		U	U	10		U	U	10		U	U	10		υ	U	10	10
MW-14	2-Butanone	ug/L		U	U	10		U	U	10		U	U	10		U	U	10	16)
MW-34	2-Hexanone	ug/L		U	U	10		υ	U	10		U	U	10		U	U	10	10
MW-34	4-Methyl-2-pentanone	ug/L_		Ü	U	10		U	U	10		Ū	U	10		υ	ΰ	10	10
MW-34	Acetone	ug/L		(1	υ	10	7.0	J		10		U	U	10		U	U	10	10
MW-34	Benzene	ug/L		Ū.	U	10		U	U	10	1	Ū	U	10		U	l u	10	10
MW-14	Bromedichloromethane	ug/L.		U	U	10		U	U	10		U	U	10		C	υ	10	10
MW-34	Bronwiggen	ug/L		U	U	10		U	Ü	10		Ü	U	10		U	Ü	10	10
MW-34	Bronsomethane	ug/L.		Ū	U	10		Ü	Ü	10		Ü	Ü	10		U	Ü	10 ,	10
	Carbon Disultide	ug/L		Ü	U	10		U	Ü	10		Ü	Ū	10		٦	Ü	10	10
	Carbon Tetrachloride	J/Nn		U	υ	10		Ū	Ü	10	<u> </u>	Ŭ	Ū	10		Ü	Ü	10	10
	Chlorobenzene	ug/L		Ù	Ü	10	· · · · · ·	Ü	Ü	10	t	Ü	Ü	10		Ü	Ü	10	10
	Chloroethane	ug/L.		Ü	Ü	10		Ū	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW-34	Chloroterm	ug/t.		lΰ	Ü	10		Ü	ΰ	10		Ü	υ	10		Ü	Ü	10	10
	Chloromethane	ug/L		Ü	U	10		Ü	ŭ	10	 	U	u	10		U	1 0	10	10
	cis-1,3-Dichloropropene	ug/L		Ü	-5	10		Ü	Ü	10	 	l ü	U	10	Ь	U	Ü		
A11 11 1 14	ferent as action of male inc	T okir				10	L			100	L	, v		10	L		<u> </u>	10	10

		T			Event				Event	,	T		Krent				Event 4		Highest
Well	Analyte	Units	Result	I.Q	DO	Detect Limit	Result	Tio	PQ	Detect Limit	Remit	LQ	DO	Detect Limit	Result	14		Detect Limit	Detection
	Dibronochloronethane	we/L.		U	U	10		U		10		Ü	10	16		7	17	10	10
	Ethyl Benzene	ug/L		Ü	7	10		Ü	ŭ	1 10		Ť	١ů	10 -		Η̈́	 ŏ 	10	10
	Methylene Chloride	ug/L		Ü	Ü	10		Ť	Ŭ	10		1 0	Ü	10	 	Ü	l ŭ l	10	10
MW-34		w/L	·	Ü	Ü	10		Ü	Ť	10		ΙŬ	ΙŬ	10		Ü	 Ŭ 	10	10
	Tetrachloroethene	ug/L		Ü	Ü	10		T U	Ü	10	 	Ü	Ιŭ	10		۳	l ö l	10	10
MW N		MAT.		Ť	Ü	10		l ö	۱ ٽ	10		u	Ü	10	1.0	۲,	 ; 	10	10
		wet.		Ü	Ü	10		l ö	ĺů	10		Ü	Ü	10		H	+		10
	trans-1.3-Dichloropropene			10	- 11	10		Ü	Ü	10								10	
	Trichloroethene	ug/L		Ü	"							U.	L <u>u</u>	10		U	U.		10
	Vinyl Chluride	<u></u>				10		U	U	10	}	V	U	10		۳	U	10	10
	Xylenes (total)	WA.		Ų.	U	10		L U	l ü	10		U	U	10		U	U	10	10
	1,1,1-Trichloroethane	w/l.		U	٧	10		U	<u>u</u>	10		U	U	10		٦	UI	10	10
MW-36	1,1,2,2-Tetrachloroethane	mg/L		U	U	10		U	U	10		U	٧	10		υ	u	10	10
MW-16	1,1,2-Trichlanethane	apl.		U	U	10		U	U	10	<u> </u>	U	U	10		υ	U	10	10 3
MW-36	1,1-Dichloroethane	ug/L		Ų	7			U	Ü	10		U	5	10		5	U	10	10 2
MW-36	1,1-Dicktoroethene	wg/L		C	>	10		U	U	. 10		U	U	10		U	U	fo	10 😘
MW-36	1,2-Dichloroethane	ug/L		U	V	10		U	U	10		U	Ų.	10		٥	U	lo lo	10
MW-36	1,2-Dichloroethene (total)	wg/L.		U	U	10		Ü	บ	10		U	٥	10		5	U	10	10
MW-36	1,2 Dichloropropane	ug/L		U	٦	10		U	U	16		U	U	10		U	Ü	_ 10	10
MW-16	2 Butanene	we/L		U	U	10		U	U	10		U	5	10		U	U	\$40	10
MW-16	2-Hexanone	ug/L		U	U	10		Ŭ.	U	10		U	U	10		U	UJ	10	10
	4-Methyl-2 pemanone	ug/L		V	υ	10		U	Ü	10		U	5	10		2	U	10	10
MW-16	Accuse	mg/L		U	U	10		U	U	10		U	2	10		U	U	10	10
	Benzene	W/L		U	٦	10		Ü	U	10		U	5	10		Ü	U	10	10
MW-36	He or make his rome thane	W/L		U	5	10		U	Ü	10		U	Ü	10		Ü	Ü	10	10
	Bremsterm	44/1.		Ü	Ü	10		Ū	U	10		Ü	5	10		Ü	Ü	10	10
	Menungthine			Ü	Ü	10		Ú	Ti-	10	t	Ü	U	19		Ü	l ü l	30	10
MW-36	Caton Doubles	ug/l.		Ü	Ü	10		Ū	Ü	10		Ü	Ü	10		U	i i	10	10
	Carbon Tetrachloride	ug/L		Ü	Ü	10		l ŭ	Ü	10		Ü	U	10		Ü	l üi l	10	10
	Cppendynasis	ug/l.		Ü	2	10		ů	Ü	10		Ü	Ü	10		Ü	l öll	10	10
MW-36	Chloroethane	- T		Ť	· U	10	<u> </u>	Ü	Ü	10	 	Ü	Ü	10		U	Ü		10
	Chlorotoem			Ü	Ü	10		Ü	Ü	10	 	"	"	10	<u> </u>	Ü	1		10
				Ü	ü	30		l ü	l ü	10	 	Ü						10	
	Chloromethane	wa.		Ü	u	10		Ü	_		<u> </u>		U	10		U	U	to	10
-	ca-1, 1-Dichlampuspene	ug6.							U	10		U	U	10		יי	U	10	10 5
	Debroom blopatethate	WAL.		<u>u</u>	ב ט	10		U.	U	10	 	U	Ü	HO		כ	U	10	10
	Fahyi Benzene	- WL				10			U	10	 	U	U	10		U	U	10	10
MW-36		m/L		U	U	10		U	U	10		U	U	10		U	W	10	10
	Stytene	110/		U	U	10		U	U	10	ļ	U	٦	10		_	L V	to	10
	Tetrachhunethene	191		U	U	10		U	U	10	<u> </u>	U	U	10		ב	U	10	10
		19g/L		U	U	10	1.0	1	1	10		U	٦	. 10		٧	Ü	10	10
	trans-1,3-Dichloroprojette	-		U	U	10		U	U	Le		U	۳	10		U	U	10	10
	Teachbasecthene	we/t.		U	2	10		U	U	10	<u></u>	U	5	10		9	Ü	10	10
	Vinyl Chhride	- MAY		U	U	10		U	U	10		٦	>	10		U	U	10	10
MW-36	Xylenes (total)	wg/L		U	U	10		U	U	10		U	2	10		٥	U	10	10
MW-37	1,1,1-Trichhampthane	- Juge		5		1.0		U	U	10		U	٥	10			U	10	10
MW-37	1,1,2,2-Tetrachhouethate	ugA		U		1.0		U	U	14		U	د	10			U	10	10
MW-17	1,1,2-Trichlamethate	ugil.		2		1.0		U	U	10		٥	د	IÓ			U	10 ,	10
MW-37	1,1-Dichloposphore	upl		U	υ	10		U	U	1.0		· U	Ú	10			U	10	10
	4.1-Daybbongthene	ugt.		U		1.0_		V	V	10	-	U	U	10			UT	10	10
MW-37	1,2-Dachlorogthane	ug/L		Ü	U	10		U	Ü	1.0		U	3	10			Ü	10	10
	1.2-Dis fabroschene (total)	1991.		U		1.0		U	Ü	10		Ü	Ü	10			Ü	10	10
MW-37		υμ/l.		ũ		1.0		Ü	Ü	10		Ü	Ü	10			Ü	10	10
MW-37	2-Виционе	ug/l.		Ü	R	5.0		Ü	Ť	10		U	Ü	10			w l	10	10
		<u>ug/1.</u>		Ü	R	5.0		1 5	١ ٠	10		 	U	10	<u> </u>		湠		
MW-37	2-He samme				_^_	L	L	٠,	<u> </u>	<u>'''</u>	L	لــــــــــــــــــــــــــــــــــــــ	_ں	19			LUI.	10	10

		, 			B2				Event	•			Event				Event		48.4
		1			DQ	Detect Limit	Result	1.Q	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.Q	DQ	Detect Limit	Highest Detection
Well	Anulyte	Units	Result	1.0		5.0	RC340R	U	7	10	NC30II	Ü	U	10	W. Land	1.7	17	10	10
MW-17	4 Methyl-2 pentanone	ug/L		U	R	5.0		1 0	۳	10	 	U	Ü	10		-	Ü	10	
MW 37	Acctone	υμ/L		U	K	010		U	7	10	 	U	U	10	 	 	U	10	10
MW 17	Benzene	ug/L		10	 	1.0		l ü	Ü	10	 	Ü	Ü	10		-	U	10	10
MW 17	Beamodichbusingthane	ug/L		U	├	1.0		1 0	- 0	10	 	Ü	Ü	10	 	_	Ü	10	10
	Bronotom	ug/L		Ü	 	1.0		t ü	U U	10	 	Ü	lΰ	10	 	-	+	10	10
MW-17	Bromonichane	ug/L		1 0	├ ──	1.0	 	Ü	Ü	10	 	Ü	Ü	10	 		Ü	10	10
MW 17	Carbon Disullide Carbon Tetrachloride	ug/L		l ü	 	1.0	 	l ü	Ü	10	 -	Ü	Ü	10	 	 	Ü	10	10
MW-17	Chlorobenzene	ug/L		۱ ۵	 	1.0	 	T U	Ü	10		Ü	Ü	10	 	 -	٣	10	10
MW-17	Chloroethane	ug/L		۱ ۵	├-	1.0	 	ΙÜ	บ	10	 	Ü	Ü	10	 	 	Ü	10	10
MW 37	Chlorotoriu	ug/L		Ιŭ	 	1.0	 	Ü	Ü	10	 	Ü	Ü	10	 	├	Ü	10	10
MW-37	Chloromethane	սաչՆ		1-0	U	1.0	 	Ü	Ü	10	 	Ü	Ü	10	 	-	Ü	10	. 10
		ug/L.		1 0	٠,	1.0		υ	Ü	10	 	Ü	Ü	10	 	 	l i	10	10
	cm-1,3-Dichloropropene	ug/L		Ü		1.0		U	Ü	10		Ü	Ü	10		 -	1	10	10
	Dibronio hioromethane	ug/L	- 	10	┝┈	1.0	 	l Ü	U	10	 	Ü	Ü	10		-	5	10	10
MW-37	Ethyl Benzene	ug/L	·	l ü		2.0	 	1 0	Ü	10	 	U	U	10	 	 	-	10	
	Methylene Chloride	ug/L.		U		1.0		Ü	Ü	10		U	Ü	10	 		Ü	10	10
MW-37	Styrene	ug/L		U	- -	1.0		Ü	-	10		Ü	Ü	10		├	۳	10	
MW 17	Tetrachloroethene	up/L	<u></u>	1 0	├	1.0		1 5	Ü	10		Ü	U	10		 -	H	10	10
MW-37	Toluene	ug/L		l ö		1.0		l ü	Ü	10		"	U	10			1	10	
MW 17	trans/1,3/Dichloropropene	ug/L		U	-	1.0		10	Ü	10		l ö	U	10	 	-	"	10	10
MW-37	Trichloroethene	U)¿/L	ļ	10	 	1.0	 	10	Ü	10	 	Ü	U	10	 	├	۳	10	10
MW-17	Vinyl Chloride	ug/L		10		1.0	 	Ü	v	10		"	U	10		-		10	10
MW 18	Xylenes (total)	ug/L		U		1.0		Ü	U	10		U	U	10	 	U	Ü	10	10
NIW IN	1,1,1 Trichloroethane	ug/L		U		10		1 0	<u> </u>	10	 	l ü	Ü	10	 	Ü	۳	10	10
NIW 18	1,1,2,2-1 etrachloroethane 1,1,2. Urchloroethane	ug/L		l ü	 	10		Ü	Ü	10	 	Ü	Ü	10	 	Ü	Ü	10	10
	1.1-Dichloroethane	ug/L		10	 	1.0	 	Ü	υ	10	 	Ü	U	10		Ü	Ü	10	10
NIW IX	1,1-Dichloroethene	ug/L		l Ü	-	1.0	 	l ŭ	Ü	10	 	Ü	Ü	10	 	Ü	Ü	10	10
	1,2-Dichloroethane	ug/L		U	-	1.0		Ü	Ü	10		Ŭ	l u	10	 	v	Ü	10	10
	1,2 Dichloroethene (total)	ug/L		0		1.0		1 0	Ü	10		Ŭ	Ü	10		Ü	Ŭ	10	10
MW-1K	1,2 Dichloropropane	ug/L		Ü	-	1.0		Ü	Ü	10	 	Ü	Ü	10	 -	Ü	Ü	10	10
MW-38	2-Butanone	ug/L		T U	 	1.0		Ť	Ü,	10		Ü	Ü	10		Ü	ΙŬ	10	10
MW-38	2-Hexanone	ug/1.		Ť	-	5.0	 	Ť	Ü	10	 	Ü	Ü	10	 	Ü	Ŭ	10	10
MW-18	4-Methyl-2 pentanone	ug/L		Ü	K	5.0		i	Ü	10	 	Ü	Ü	10	 	Ü	Ü	10	10
	Acctone	ug/L	8.0	٠-	i i	NA NA	 	Ü	Ü	10		ΙÜ	Ü	10	 	۱ ٽ	Ü	10	10
	Benzene	ug/L	B.37	lυ	 	1.0	 	10	Ü	10		Ü	Ü	10	 	Ü	Ü	10	10
	Bromodic bloromethane	ug/L		Ü	U	1.0		Ü	2	10		Ü	U	10		Ü	Ü	10	10
	Bronotom	ug/L		Ü	'	1.0		l ü	0	10	 	Ü	Ü	10		Ü	Ü	10	10
	Brothonicthane	ug/L		υ		1.0		Ü	٦	10		Ü	Ü	10		Ü	Ü	10	10
	Carbon Disultate	ug/L		Ι ΰ	-	1.0		υ	Ü	10		Ü	Ü	10		Ü	1	10	10
MW-38	Carbon Tetrachborde	ug/L		U	-	1.0		T U	U	10		Ü	Ü	10		Ü	Ü	10	10
NIW-3K	Chlorobenzene	սբ/1.		Ü	 	1.0		Ü	Ü	10		l ü	U	10		U	+	10	10
	Chloroethane	ug/L		Ü	 	1.0		Ü	7	10		Ü	Ü	10		U	-5-1	10	10
MW-3K	Chlorotom	ug/L		U	 	1.0		Ü	٦	10	 	Ü	Ü	10		Ü	-	10	10
MW-38	Chloronethane	ug/L	0.80	1-5	Ū	NA NA		Ü	Ü	10		Ü	U	10		Ü	-	10	10
NIW-3x	cis-1.3 Dichloropropene	ug/L	17.007	Ú	۳,	1.0	 	l ü	5	10	 	Ü	0	10		U	Ü	10	10
MW-38	Dibromochloromethane	ug/L		U	_	1.0		l ö	Ü	10	-	Ü	Ü	10		U	U	10	10
MW-1K	Ethyl Benzene	ug/L		U		1.0		1 0	٥	10	 	Ü	U	10		1	Ü	10	10
MW-3x	Methylene Chloride		0.30	t "	Ū	NA NA	 	1 0	0	10	 	U U	_		<u> </u>		_		
MW-3K	Styrene	ug/L ug/L		t	۳-	1.0		U	"	10		v	<u> </u>	10		Ü	· ·	10	10
MW-18	Tetrachloroethene			U		1.0		Ü	Ü	10		U	ינ	10		2	U	10	10
MW-38		ug/L		U		1.0	 		_				U	10	<u> </u>	۲	U	10	10
	Toluene	ug/L		 +	├	10	 	 U	- C	10	ļ	Ü	U	10		Ü	U	10	10
NIW-38	trans-1.3 Dichloropropene	ug/L		ι_υ		111	L		<u> </u>	10	<u> </u>	U	U	10		U	U	10	10

Appendix C

	₁				Event				Event :	,	Τ		Event	1	Γ		Event		Highest
Well	Analyte	Units	Result	10	DQ	Detect Limit	Result	IQ	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0		Detect Limit	Detection
	Trichloroethene	ug/l.		Ū	_	1.0		U	U	10		U	Ū	10		U		to	10
	Vinyl Chlorak	ug/L		U		1.0		U	٥	10	_	Ü	Ü	10		Ū	U	10	to
MW-38	Xylenes (total)	ug/L		U		1.0		U	U	10		Ū	Ü	10		Ü	Ü	10	10
	1.1.1 Tra bloroethane	ug/L		U		1.0		U	C	10	 	U	Ü	10		Ū	Ū	10	10
MW-39	1.1.2.2-Tetrachlorocthane	ug/L		U		1.0		U	υ	10	T	U	U	10		Ü	Ū	10 ,	10
	1,1,2-Trichloroethane	ug/L		Ü		1.0		U	U	10	<u> </u>	υ	U	10		Ü	Ū	10	10
	1.1-Dichloroethane	ug/L	0.30		1	NA		U	U	10		U	U	10		Ü	U	10	10
MW-39	1,1-Dichloroethene	ug/L		U		1.0		C	U	10		U	U	10		U	U	10	10
	1,2-Dichlorisethane	ug/L	0.70	1	U	NA .		U	٦	10		U	W	10		U	U	10	10
MW- 19	1,2-Dichloroethene (total)	ug/l.		U		1.0	3.0	1	1	10	4.0	1		10	4.0	1		10	10
MW-39	1,2-Dichloropropane	ug/L		U		1.0		U	5	10		U	U	10		υ	U	10	10
MW-19	2-Butanone	ug/L		U		5.0		U	U	10		U	U	10		υ	U	10	10
MW-19	2-Hexanone	ug/L		U		5.0		υ	C	10		υ	U	10		Ü	U	10	10 ' +
MW-14	4-Methyl-2-pentanone	ug/L		U	R	5.0		C	U	10		U	U	10		U	U	10	10 🐒
MW-19	Acetone	ug/L	8.0	U	R	1.0		C	U	10		U	U	10		υ	U	10	10 🚓
MW-39	Benzene	ug/t.	12			NA	4.0	Ī	J	10	5.0	-		10	4.0	1		10	12
MW-39	Bromodichloromethane	ug/L		U	υ	1.0		υ	IJ	10		υ	U	10		ح	U	10	10
MW-39	Bronstorn	ug/L		U		1.0		U	ט	10		U	U	10		Ü	C	10	10
MW-39	Bromomethane	ug/L		U		1.0		U	U	10		U	U	10		. 0	U	10	10
MW: 19	Carbon Disultide	ug/L		U		1.0		υ	U	10		U	U	10		U	U	10	10
MW-19	Carbon Tetrachloride	ug/L		U		1.0		C	U	10		Ü	U	10		U	U	10	10
MW-19	Chlorobenzene	ug/L		Ü		1.0		U	U	10	•	U	Ü	10		٦	U	10	10
MW: 19	Chloroethane	ug/L	5.0			NA		C	U	10	3.0	7	1	10	2.0	J		10	10
MW-19	Chlorotom	ug/L		U		1.0		S	C.	10		Ü	U	10		دا	U	10	10
MW-19	Chloromethane	ug/L.	1.0		υ	NA_		C,	C	10		U	U	to		٦	Ü	10	10
MW 19	cts-1,3 Dichloropropene	ug/L.		Ü		1.0		C	U	10		U	U	10		υ	U	10	10
MW 19	Dibronochloromethane	ug/L		IJ		1.0		C	U	10		U	U	10		J	U	10	10
MW 19	Ethyl Benzene	wg/L		U	>	1.0		υ	U	10		Ū	U	10		υ	U	10	10
MW 19	Methylene Chloride	ug/L	0.40		5	NA		C	U	10		Ü	U	10		υ	Ü	10	10
MW-19	Styrene	ug/L		U		1.0		Ü	U	10		U	U	10		V	Ü	10	10
AIW-19	Fetrachloroethene	ug/L		U		1.0		Ü	U	10	1	U	U	10		บ	U	10	10
MW 19	Toluene	ug/L		U		1.0		U	2	10		Ü	U	10		U	U	10	10
MW-19	trans-1,3 Dichloropropene	ug/L_		U		1.0		U	5	10		U	Ü	10		U	Ü	10	10 %
MW-19	Trichloroethene	ug/L		U		1.0		U	Ü	10		U	U	10		U	Ū	10	10 🐉
MW-19	Vinyl Chloride	ug/L	0.90	1		NA		U	U	10		U	U	10		U	U	10	10 7
MW-39	Xylenes (total)	ug/t.		U		1.0		U	ט	10		U	U	10		U	U	10	10
MW: 40	1.1.1 Teichloroethane	ug/L		U		1.0		U	U	10		U	٦	10			5	10	10
MW 40	1,1,2,2 Tetrachloroethane	ug/L		U		1.0		U	٦	10		U	U	10			U	10	10
MW: 40	1.1.2-Trichloroethane	ug/L		U		1.0	Ĺ	Ü	U	10		Ü	2	10			Ŭ	10	10
MW-40	1,1-Dichloroethane	ug/L		U		1.0		U	5	10		U	U	10			Ū	10	10
MW-40	1,1-Dichloroethene	ug/L		U		1.0		U	U	10		U	U	10			5	10	10
MW-40	1,2-Dichloroethane	ug/L		U		1.0		U	=	10		υ	UJ	10			U	10	10
MW-40	1,2-Dichloroethene (total)	ug/L		U	L	1.0		Ü	٦	10		U	U	10			U	10	10
MW-40	1,2-Dichloropropane	ug/L		U		1.0		U	5	10		U	J	10			U	10	10
MW 40	2-Butanone	ug/L		U	R	5.0		U	٦	10		U	٦	10			UJ	10	10
MW-40	2-He sanone	ug/L		U	R	5.0		6	C	10		U	υ	10			IJ	10 1	10
MW 40	4-Methyl-2-pentanone	ug/L		U	R	5.0		U	2	10		U	٦	10			UJ	10	10
MW-40	Accione	ug/l.	9.0		R	NA NA		C	C	10		U	٦	10			U	13	13
MW-40	Benzene	ug/L		5		1.0		C	C	10		U	5	10			U	10	10
MW-40	Bromodichioromethane	ug/t.		U		1.0		G	C	10		U	U	10			U	10	10
MW-40	Bronoform	ug/L		U		1.0		C	C	10		U	ح	10			U	10	10
MW-40	Bromomethane	ug/l.		Ü		1.0		U	U	10		U	٥	10			Ü	10	10
MW: 40	Carbon Disultate	ug/L		U		1.0		U	C	10		U	U	10			U	10	10

					Event				Event :	2			Event	·	T	-	Event 4		Highest
Well	Analyte	Units	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
	Carbon Tetrachloride	uy/l.		Ü		10		U	U	10		U	U	10			U	10	10
MW 40	Chlorobenzene	ug/L		U		1.0		U	U	10		U	U	10			U	10	10
MW-40	Chloroethane	υμ/l.		U		1.0		U	U	10		U	IJ	10			U	10	10
MW-40	Chlorotorm	ug/t.		U		1.0		υ	υ	10		U	U	10			U	10	10
MW-40	Chloromethane	ug/l.			U	1.0		U	U	10		U	U	10			U	10	10
MW 40	cis-1,3-Dichloropropene	ug/l.		Ü		1.0		U	U	10		U	U	10			U	10	10
MW-40	Dibrotto, bloromethane	ug/L		U		1.0		U	U	10		U	U	10			U	10	10
MW-40	Ethyl Benzene	ug/L		U		1.0		U	U	10		U	U	10			U	to	10
MW-40	Methylene Chloride	ug/L		U		2.0		U	J	10		U	U	10			υ	10	10
MW 40	Styrene	ug/L		U		1.0		U	5	10		U	U	10			U	10	10
MW-40	Fetrachloroethene	ug/L		U		1.0		U	ט	10		υ	υ	10			υ	10	10
MW-40	Foluene	ug/L		U		1.0		U	5	10		U	U	10			U	10	10
MW 40	trans-1,3 Dichloropropene	ug/L		U		1.0		U	٥	10		U	U	10			U	10	10
MW-40	Trichloroethene	ug/L		υ		1.0		U	ح	10		U	U	10			U	10	10
MW-40	Vinyi Chloride	ug/L		U		1.0		U	٥	10		U	U	10			U	10	10
MW-40	Xylenes (total)	ug/L		U		1.0		U	5	10		U	U	10			U	10	10
MW-41	1.1.1 Trichloroethane	ug/L		υ		1.0		υ	٦	10			υ	10		υ	U	10	10
MW-41	1.1.2.2-Tetrachloroethane	ug/L		U		1.0		U	د	10			U	10		U	U	10	10
MW-41	1.1.2-Trichloroethane	υgΛ.		υ		1.0		U	٦	10_			U	10		U	U	10	10
MW-41	1,1 Dichloroethane	ug/l.		U		1.0		U	٥	10			U	10		U	U	10	10
MW-41	1.1 Dichloroethene	ug/L		U		1.0		U	د	10			U	10	L	U	U	10	10
MW-41	1.2 Dichloroethane	ug/L		U		1,0		U	ح	10			IJ	10_		U	U	10	10
MW 41	1.2 Dichloroethene (total)	ug/l.		U		1.0		U	٥	10			U	10		U	U	10	10
MW 41	1,2 Dichloroptopane	ug/L		U		1.0		U	٥	10			U	10		U	U	10	10
MW 41	2-Butanone	ug/L		IJ	R	5.0		Ţυ	5	10			U	10		U	C	10	10
MW 41	2-Hexanone	ug/L		U	R	5.0		บ	د	10			U	10		U	U	10	10
MW-11	4-Methyl 2-pentanone	ug/L		U	R	5.0		U	حا	10			U	10		U	U	10	10
MW-11	Acctone	ug/l.	1.0		R	NA		U	ح	10		<u> </u>	U	to		U	U	10	10
MW-41	Henzene	ug/L		υ		1.0		U	ح	10			U	10		U	U	10	10
MW-41	Bromodichloronethate	ug/L		U		1.0		U	٦	10			U	10		U	U	10	10
MW-41	Brounderm	ug/L		U		1.0		U	ט	10			U	10		U	U	10	10
MW-41	Bromonichane	ug/l.		U		1.0		U	ע	10		<u> </u>	U	10		U	U	10	10
MW 41	Carbon Disultide	ug/L		U		1.0		U	٦	10		<u> </u>	U	10	!	U	U	10	10
MW-41	Carbon Tetrachkonde	ug/L		U		1.0		U	٦	10			U	10		U	U	10	10
MW-41	Chlorobenzene	ug/t.		U		1.0		U	ح	10		<u> </u>	U	10		U	U	10	10
MW-41	Chloroethane	ug/l.		U		1.0		U	2	10	}	1	UJ	10		U	U	10	10
MW-41	Chlorotorn	ug/L.		U	L	1.0	<u> </u>	U	U	10		↓	l u	10	 	U	U	10	10
MW-41	Chloromethane	ug/L			U	1.0		U	٦	10		ļ	U	10	<u> </u>	U	U	10	10
MW-41	cts-1,3-Dichloropropene	ואַניי		U		1.0	<u> </u>	U	U	10		┞—	U	10		U	U	10	10
	Dibromochloromethane	ug/L		U	_	1.0		U	٦	10			U	10	ļ	l u	U	10	10
MW-41	Ethyl Benzene	ug/L		U	 	1.0		U	U	10	<u> </u>	} —	υ	10	<u> </u>	U	U	10	10
_	Methylene Chloride	ug/L		U	 	2.0	 	U	U	10	L	₽-	U	10	ļ	U	U	10	10
MW-41	Styrene	ug/L		U		1.0		Ų	υ	10	<u> </u>	 	Ü	10		U	l u	10	10
MW-41	Tetrachloroethene	ug/L		U	<u> </u>	1.0	<u> </u>	U	ح	10		┞—	U	10		U	U	10	10
MW-41	Toluene	ug/L		U	 	1.0		U	ט	10	<u> </u>	↓	U	10	ļ	U	L _U	10	10
MW-41	trans 1,3-Dichloropropene	uy/L		U	 	1.0		U	U	10		1	U	10	<u> </u>	U	Ü	10 1	10
	Trichloroethene	ug/L		U		1.0		U	U	10		↓	Ų.	10		U	Ľ	10	10
	Vinyl Chloride	ug/L		U		1.0	<u> </u>	U	2	10	 _	₩	U	10	 	U	C	10	10
MW-41	Xylenes (total)	ug/t.		<u>u</u>	 _	1.0		U	٦	10		<u> </u>	U	10	<u> </u>	U	U	10	10
	1.1.1-Trichloroethane	ug/L	ļ. <u> </u>	U	├	1.0		U	٥.	10		!	U	10		U	U	to	10
MW-42	1,1,2,2 Tetrachloroethane	ug/L.		U	<u> </u>	1.0		<u>u</u>	U	10	ļ	↓	U	10		U	U	10	10
MW 42	1.1.2 Trichloroethane	ug/L		U	├ ─	10		U	Ü	10	<u> </u>	 	U	10		U	U	01	10
MW-42	1.1 Dichloroethane	ug/L		U	<u> </u>	10	L	U	U	10	L	<u> </u>	U	10		U	ן ט	10	10

1252042.7

					Event		,		Event 7	,			Event	1			Event		Highest
Well	Analyte	()mits	Result	1.0	bo	Detect Limit	Result	TIQ	DQ	Detect f.lmit	Result	IA	DO	Detect Limit	Result	1.0	_	Detect Limit	Detection
	1,1-Dichloroethene	ug/L		U		1.0		U	7	10		 \	U	10		U	U	10	10
	1,2-Dichloroethane	ug/L		Ι υ	U	1.0		Ü	Ü	10		┢	Ü	10		T U	Ü	10	10
	1,2 Dichloroethene (total)	ug/L		Ü	┝╩	1.0		Ü	Ü	10		├~	Ü	10		ᡰ᠊ᢆ	Ü	10	10
	1,2-Dichloropropane	ug/L		Ü	 	1.0		Ü	Ü	10	 	┼~~	Ü	10		Ü	Ü	10	10
MW-42		Ug/L		۱ υ	K	5.0		υ	Ü	10	 	 	Ü	10		Ü	Ü	10	10
MW-42	2-Bulanine	ug/L		1 0	├ ~	5.0	 	Ü	H	10	 	 -	Ü	10		U	UJ	10	10
	2-Hexanone			Ü	R	5.0		Ü	+	10	 	├-	Ü	10		1 0	Ü	10	10
MW 42	4-Methyl-2-pentanone	- Jug/L	6.0	Ü	Ü	1.0		Ü	Ü	10		├	Ü	10		╁	"	10	10
	Accione Benzene	ug/L ug/L	0.0	tΰ	ا	1.0		Ü	-	10	 	├-	Ü	10		1 0	Ü	10	10
	Broundichkorouethane	ug/L		T U	├	1.0		Ü	Ü	10	 	┝	U	10		Ü	Ü	10	10
	Bronnelenni	ug/L		l ü	 -	1.0		Ü	Ü	10	 	 	Ü	10		Ü	Ü	10	10
	Branconcibane	ug/L		Ü	_	1.0		Ŭ	ü	10		├~	-	10		Ü	Ü	10	10
	Carbon Disultak	ug/L		Ü	<u></u>	1.0		Ü	3	10		├─	۳	10		Ü	Ü	10	10
MW-42	Carbon Tetrachloride	ug/L		Ü	_	1.0		Ü	Ü	10		├~	Ü	10		ϋ	lΰ	10	10
MW-42	Chlorobenzene	ug/L		Ü	-	1.0	 	Ü	Ü	10		 	Ü	10		Ü	Ü	10	10
MW-42	Chloriethane	ug/L		lΰ	_	1.0		Ü	 	10	 	 	3	10		Ü	۳.	10	10
MW-42	Chlorotom	ug/L		1 0	\vdash	1.0		Ü	Ü	10		 	"	10	 	Ü	Ü	10	. 10
	Chioronethane	ug/L		† <u> </u>	U	1.0	 	Ü	Ü	10	 	 	Ü	10		Ü	Ü	10	10
	cts-1,3-Dichloropropene	uer		U	۳	1.0		υ	Ü	10		-	2	10		Ü	Ü	10	10
	Dibroung bloomerhane	ug/L		Ū	_	1.0		Ŭ	Ü	10	 	-	Ü	10		1	Ü	10	10
	Ethyl Benzene	ug/L		Ŭ	-	1.0		Ü	Ü	10		-	U	10		₩	Ü	10	10
	Methylene Chloride	ug/L		Ü	Η	2.0		Ü	-	10		_	U	10		lΰ	Ü	10	10
	Styrene Chanac	ug/L		Ü	_	1.0		Ť	Ü	10		 	10	10		ان ا	Ü	10	10
MW 42	Tetrachloroethene	ug/L		Ü	Ι	1.0	 	Ü	Ü	10		├~	U	10		H	Ü	10	10
	Tolkene	we/L		Ü	_	1.0	 	Ü	+	10		 	Ü	10		10	10	10	10
	trans-1.3 Dichloropropene	ug/L		Ü	-	1.0		Ü	Ü	10		_	Ü	10		 	Ü	10	10
		ug/l.		Ü		1.0		Ŭ	Ü	10		_	U	10		+	Ü	10	10
	Fuchlorischene Vinyl Chloride	ug/L		Ü	┝─	1.0	 	Ü	Ü	10			٦	10		10	Ü	10	10
	Xylenes (total)	ug/L		U		1.0		Ü	Ü	10		\vdash	٦	10		"	Ü	10	10
	1,1,1-Tochloroethane	ug/L		Ü	_	1.0		υ	Ü	. 10		U	۳	10		10	Ü	10	10
MW-41	1,1.2.2 Tetrachloroethane	ug/L		υ	_	1.0		Ü	Ü	10		ŭ	Ü	10		1	Ü	10	10
	1,1,2- Frichloroethane	uy/L		U	_	1.0	 	Ü	Ü	10		Ü	Ü	10		۳	Ü	10	10
	1.1-Dichloroethane	Ug/L		Ü	J	1.0	 	Ü	Ü	10		10	در	10		╽╫	Ü	10	10
	1.1-Dichloroethene	ug/L		Ū	Ť	1.0		Ŭ	Ü	10		Ü	٦	10		U	Ü	10	10
	1,2-Dichloroethane	ug/L		υ	-	1.0		Ū	Ü	10		Ü	۲	10		۳	Ü	10	10
	1,2-Dichloroethene (total)	ug/l.		Ū	_	1.0		Ü	Ü	10		Ü	Ü	10		۳	Ü	10	10
	1,2-Dichloropropate	ug/L		Ü	_	1.0		Ů	Ü	10		Ü	۳	10		۳	Ü	10	10
	2-Butanone	ug/L		Ü	_	5.0		Ü	Ü	10		ŭ	+	10		₩	Ü	10	10
	2-Hexanone	ug/L		U		5.0	 	Ŭ	Ü	10	 	Ü	U	10		Ü	S S	10	10
MW-43	4-Methyl-2-pentanone	ug/L		Ü		5.0		ϋ	Ü	10	 	Ü	٥	10		Ü	3	10	10
MW 43		ug/L	70	Ť	R	NA NA		Ü	Ü	10		1	Ü	10		÷	ᄬ	10	10
MW-43	Acetone Benzene	ug/L		U	<u> </u>	1.0		Ü	Ü	10	 	1	٦	10		"	8	10	10
MW-41	Broundichloronethane	ug/L		Ü		1.0		Ü	Ü	10	 	10	Ü	10			Ü		10
MW-11		ug/L		Ü	├	1.0		Ü	5	10	-	5	Ü	10		درد	Ü	10	
	Bronsolorn	ug/L		Ü	┝──	1.0		Ü	5	10		1	Ü	10		7		10	10
MW-43	Bromomerhane Carbon Doublide	ug/L		U	 -	1.0		Ü	5	10	\vdash	18	U	10	<u> </u>	0	U	10	10
WW-43	Carton Disultate Carton Tetrachbruke	ug/L		U	 -	1.0	 	l ü	Ü	10		18	Ü	10	-	+	8	10 ,	10
MW-43	Chlorobenzene	ug/L		T U	Ι—	1,0		Ü	ü	10		Ü	ט	10		Ü	Ü	10	10
		ug/L		Ü	├	1.0		Ü	Ü	10	 	0						10	10
MW-43	Chloroethane	ug/L		Ü	 -	1.0	 	۳	-	10	 	Ü	3 >	10		U	- C	10	10
MW-43	Chlorotorm		0.60	1	ΙÜ	NA NA		 	-	10	 	"	_			U	<u> </u>	10	10
MW 43	Chloromethane	ug/L.	1770	l i	- "	1.0		Ü		10	 		ט	10		۳	Ü	10	10
MW-43	cis-1,3 Dichloropropene	ug/L	ļ	U	-	1.0	 	Ü	U			U U	U	10		U	U	10	10
MW-13	Dibromockloromethane	ug/L	<u> </u>	<u> </u>	Ь_	1.0	L			10	L	U	U	10		U	U	10	10

	Y	, -			Event	1			Event	-	, 		Event	1			Event		Highest
Wen	Analyte	Units	Result	1.Q	DO	Detect Limit	Result	I.Q	DQ	Detect Limit	Remelt	TIQ	DO	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
			MESER	U	 '``	1.0	- FASOUR	U	U	10		Ü	Ü	10		U	U	10	10
	Ethyl Benzene	ug/L		_		20	 	1 0	Ü	10		l ü	l u	10		Ü	1 :		10
MW 41	Methylene Chlorule	- Jyu		U	├	1.0		1 0	Ü	10	 	۱ ٽ	Ü	10		Ü	Ü	10	
MW-43	Styrene	ug/L		U				10			 	Ü	l ü	10		_			10
MW-43	fetrachloroethene	ug/L		U	!	1.0	 		Ü	10	 	4	_			U	U	10	10
MW-43	Toluene	ug/L_		U		1.0		U.	2	19		ļ <u>u</u>	U	01		U	U	10	10
MW-41	trans 4,3 Dichloropropene	ug/L		U		1.0		U	>	10		U	U	10		U	Ü	10	10
WM-13	Trichloroethene	ug/L		U	_	1.0		U	υ	10		U	Ų.	10		U	U	01	10
MW-41	Vinyl Chloride	ug/L		U	L	1.0		U	2	10	!	U	U	10	 _	Ü	U	10	10
MW 41	Xylenes (total)	ug/L		U		1.0	ļ <u>.</u>	U	>	10		U	L.	10	ļ	U	U	10	10
MW-44	1,1,1-Trichloroethane	ug/L		U		1.0		<u> </u>	U	10	<u> </u>	U	U	10	L	U	U	10	10
MW-44	1.1.2.2-Tetrachloroethane	ug/L		U		1.0		<u> </u>	5	10		U	ح	10		U	U	10	10
MW-H	1.1.2 Trichkoocthane	ug/L		U		1.0			V	10	<u> </u>	U	U	10	L	Ü	U	10	10
MW-44	1,1-Dichloroethane	υgΛ.		U		1.0			υ	10	l	U	U	10		U	U	10	10
MW-44	1,1-Dichloroethene	nh/r		U		1.0		L	٦	10		U	U	10		Ü	Ü	10	10
MW-44	1,2-Dichloroethane	ug/L		U	U	1.0			د	10	I	U	U	10		U	U	10	10
MW-44	1,2-Dichloroe(hene (total)	ug/l.		U		1.0			U	10		U	ح	10		U	U	10	10
MW-44	1,2-Dichloropropane	ug/L		U		1.0			U	[]		U	U	10		υ	υ	10	01
MW-11	2-Butanone	ug/L		Ū	R	5.0			٥	1		U	U	10	1	U	U	10	10
MW-44	2-Hexanone	ug/L		Ü		5.0			٥	10		U	U	10		Ü	U	10	10
MW-44	4-Methyl-2-pentanone	ug/L		U		5.0			Ü	10	1	U	U	10		U	U	10	10
MW-11	Acetone	uk/L		Ü	R	5.0	8.0	1	-	NA	1	U	U	10		Ü	Ü	10	10
MW-44	Benzene	ug/L		Ü		1.0			U	10		U	Ü	10		Ü	Ū	10	10
MW-44	Bromodichloromethane	nk/r		Ü		1.0			Ü	10	·	Ū	Ū	10		Ü	Ü	10	10
	Bromoform	ug/L		Ü		1.0		_	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW-11	Bronsonethane	ug/L		Ü	\vdash	1.0		 	Ü	10		Ü	Ü	10		Ü	Ü	10	10
				U		1.0			3	10	 	Ü	Ü	10		Ü	Ü	10	10
	Carbon Disultide	ug/l.		Ü	_	1.0		-	Ü	10	 	Ιŭ	Ü	10		Ü	Ü	10	10
	Carbon Tetrachloride	uk/F		٦		1.0		-	-	10		Ü	٠	10		U	U	10	
	Chlorobenzene	ug/L			-				Ü			Ü	5	10			_		10
	Chloroethane	ug/L		U		1.0				10		U				U	U	10	10
	Chlorotoria	ug/L.		U		1.0			U.	10	ļ	_	U	10		U	U	10	10
	Chloromethane	uµ/L		1	٥	1.0		-	Ü	10		U	5	10		Ü	U	10	10
	cis-1,3-Dichloropropene	ug/L		U		1.0		\vdash	U.	10	<u> </u>	U	U	10		U	U	10	10
	Dibromochloromethane	ug/L		U		1.0		-	υ	10		Ľ	U	10		U	U	10	10
	Ethyl Benzene	սբ/Ն		٦		1.0		-	C	10	ļ	U	U	10		U	٧	10	10
	Methylene Chloride	ug/L		Ü		2.0	L	\square	U.	10		U	ح	10		Ü	U	10	10
MW-44		ug/t.		U		1.0		-	U	10		U	υ	10		U	U	10	10
	Tetrachtoroethene	uµ/1.		U		1.0		$ldsymbol{\sqcup}$	U	10		U	υ	10		U	U	10	10
MW-44		ug/L.		υ	U	1.0			U	10		U	U	10		٦	U	10	10
	trans-1,3-Dichloropropene	ug/L		٦		1.0		lacksquare	2	10		٧	٦	10		U	U	10	10
	Trichloroethene	ug/L.		U		1.0			-	10		U	Ü	10		U	U	10	10
	Vinyl Chloride	ug/L		٥		1.0]	U	10		U	U	10		ט	Ü	10	10
WM-41	Xylenes (total)	ug/L		U		1.0			U	10		U	٦	10		U	U	10	10
MW-45	1,1,1-Trichloroethane	ug/L		٦		25			C	80		U	U			U	0	100	80
MW-45	1,1,2,2-Tetrachloroethane	ug/L		U		25			٦	80		U	U	NO.		U	U	Ю	Ю
MW-45	1,1,2-Trichloroethane	ug/L		U		25			٥	80		U	U	***		υ	U	KU	жо
MW-45	1,1-Dichloroethane	ug/L		Ü		25			c	86)		υ	U	80		Ü	Ū	KO (80
	1,1-Dichloroethene	υμ⁄1.		U		25			U	KO		Ū	5	J40		Ü	Ü	80	80
	1,2-Dichloroethane	ug/L		7	U	20		\Box	Ü	RO .		U	Ü	10		U	Ü	80	80
MW-15	1,2-Dichloroethene (total)	ug/L		Ü		25		\vdash	Ü	80		Ü	Ü	80		Ü	Ü	80	80
	1,2-Dichloropropane	ug/L		Ü		25		\vdash	Ü	160		Ü	Ü	¥0		Ü	Ü	100	NO NO
MW-45	2-Buranone	Ug/L		Ü	R	120		Н	Ü	ж)		U	Ü	80		Ü	1 8	X()	120
	2-Hexanone	ug/L		Ü		120		\vdash	Ü	80		Ü	Ü	80		Ü		, KO	120
	4-Methyl-2-pentanone	ug/L		U		120		$\vdash \vdash$	+	80	 	U	U			_			
VIA -41	4-meruli- 5-beliranone	l ngn.		اليا	لـــا	140				- M/	L		<u> </u>	80		U	U	80	120

	,				Event				Event				Event	·			F	4	
Well	Analyte	Units	Remk	110		Detect Limit	Result	1.0	DQ	Detect i Jusis	Result	1.0	DQ	Detect Limit	Result	1.0	Event-	Detect Limit	Highest Detection
MW-45	Acetone	ug/L	170	+-~	R	NA NA			U	80		U	U	16		10	U	NO ON	170
MW-45		Ug/L	530	+	 	. NA	1,45	 	-ٽ-ا	NA NA	940		+-	80	860	٠.	1	*0	1.045
	Benzene		3,90	U	├──	25	77-	├	U	100	- 22' -	U	U	*0	0(11)	U	U	80	1,045
MW-45	Bromodichloromethane	ug/L		Ü	├──	25		-	Ü	100	 	Ü	 "	- KO	 	10	l ü	80	
MW-45	Bronnolorm	ug/L ug/L		10	├──	25	 	├	Ü	1 80	 	u	Ü	80	 	1 5	10	*O	80 80
MW-45	Bromomethane			Ü	├	25		├	Ü	80	 	u	Ü	80	 	1 0	1 5	80	NO NO
MW-45	Carbon Disulfide	ug/L		1 0	 - -	25	 	├	Ü	80		1 0	l u	¥0	 	1 0	Ü	160	NO NO
MW-45	Carbon Tetrachloride	ug/L	16	٦-	├	NA NA	25	 	┝╩	NA NA	42	1	۳-	30	26	1 -	1	80	XO XO
MW-45	Chlorobenzene	Ug/L	H2	+-	 	NA NA	215	├	┝	NA NA	120	 	1	*0	120	 ' -		80	215
MW-45	Chlorochane	ug/L		U	╀┷	25		├	U	80	120	U	Ι÷	80	120	U	U	10	213
MW-45	Chhristerm	ug/L		Ιŭ	├	25	 	 	Ü	10	 	Ü	l ü	10	 	10	Ü	NO NO	H()
MW-45	Chloromethane	Ug/L		l u	├	25		├	7	20	 	10	Ü			_		HO	
MW 45	cis-1,3 Dichlocopropene	ug/L		10		25			10	10		 	1 0			U	<u>!</u>	80	KO.
MW-45	Dibronuchlotomethate	u _W /L	10	+ +	 	NA NA		├	U	100	 	1 0	Ü	80	 -	U	U	*O	- 80
MW-45	Ethyl Benzene	ug/L	10	ι	├ ─	50	 	 	Ü	10	 	Ü	10						- 80
MW-45	Methylene Chlorule	uy/L	<u> </u>	10	├	25	 	 	1	80		U	10	10) 10)		U	Ü	80) 80)	NO_
MW-45	Styrene	ug/L		1 5	├	25	 	 	7	80	 	Ü	Ü	NO NO	 	Ü	1 0	80	80
MW-45	Tetrachhotoethene	ug/L		1 0	├	25	 		"	NO NO	ļ	10	l ü	80		Ü	Ü	XO XO	NO NO
MW-45	Toluene	ug/L		u	-	25		-	Ü	- NO	 	Ü	U	NO NO		1 0	1	KO	
MW-45	trans-1,3-Dichtoropropene	ug/L_		10	├	25	 	 	7	NO	 	Ü	U	MI)	 	Ü	1 0	80	80
MW-45	Trichloroethene	ug/L ug/l.		Ü		25		 	Ü	10	 	Ü	Ü	343	 	10	1 5	80	80
MW-15	Vinyl Chlorole	ug/L	60)		-	NA NA	60	-	۳	NA NA	280	┝╩	 	80	33	 	1	80	280
	Xylenes (total)	ug/L	<u>'''</u>	U	_	1.0		U	Ü	10		U	U	10	,,,,	Ü	Ü	10	10
MW-46	1.1.1 Trichloroethane 1.1.2.2 Tetrachloroethane	ug/L		U		1.0	 	Ü	Ü	10		Ü	Ü	10		10	1 5	10	10
MW-46	1,1,2 Trichloroethane	ug/L		 ŭ -	┝╌	1.0		Ü	Ü	10	 	Ü	Ü	10	 	1 0	1 8	10	10
MW-46	1,1 Dichlorocthane	ug/L		T U	-	1.0	<u> </u>	Ü	U	10		U	U	10	 	10	Ü	10	10
MW-46	I,I Dichloroethene	ug/L		Ü		1.0		Ť	Ü	10		Ü	Ü	10		Ü	l ü	10	10
MW-46	1,2 Dichloroethane	ug/L	0.30	1	U	NA NA		Ť	Ü	10	 	Ü	Ŭ	10	ļ	10	۳	10	10
MW-46		ug/L		ΙÚ	Ť	1.0		Ü	Ü	10		U	Ü	10	 	Ü	۳	10	10
MW-46	1,2 Dichloroethene (total)	ug/L		U		1.0		10	Ü	10	-	Ü	Ü	10	 	l ö	1 0	10	10
MW-46	1.2-Dichlorespropune 2-Butanone	ug/L		U	-	5.0		ΙŬ	Ü	10		10	Ü	10		Ü	1 6	10	10
MW-46		ug/L		U	_	5.0		Ü	"	10		Ü	Ü	10		10	1 5	10	10
	2-Hexanone	Ug/L	3.0	15	—	NA NA		Ü	Ü	10	 	Ü	Ü	10	 	10	Ü	10	10
MW-46	4-Methyl-2-pentanone	ug/L	8.0	 	R	NA NA			Ü	10	 	Ü	U	10				10	
MW-46	Acctone	ug/L	0.80	1	 `	NA NA	1.0	1	۰	10	2.0	1	 -	10	2.0	7	V.	10	10
MW-46	Benzene	ug/L	U.M/	Ú	-	1.0		Ú	U	10	2.0	ΰ	U	10	2.0	ť	1	10	10
MW 46	Bromodichloromethane	ug/L		Ü	_	1.0		Ü	Ü	10		U	Ü	10		Ü		10	10
MW-46	Bronwlotti	ug/L		U		1.0		T U	Ü	10	 	Ü	Ü	10	 	U	V U	10	
MW-46	Bromonic thate Carbon Disultide	ug/L		Ü		1.0		Ü	Ü	10		Ü	Ü	10	 	H	1 0	10	10
	Carbon Tetrachborde	Ug/L		Ü	 	1.0		Ü	Ü	10		Ü	Ü	10	 	U	Ü	10	
		ug/L		Ü	-	1.0		Ü	<u> </u>	10	 	Ü	Ü	10		Ü		10	10
MW-46	Chlorobenzene	ug/L		Ü		1.0		Ü	U	10		Ü	Ü	10		"	Ų.		10
MW-46	Chloroethane			Ü		1.0		Ü	U	10	ļ	7	"				Ų.	10	10
MW-4n	Chkrotorm	ug/L	0.60	1	U	NA NA		Ü	Ü	10		 "	U	10		U	Ų	10	10
MW-46	Chloromethane	ug/L	17.00	Ú	<u> </u>	1.0		Ü	U	10	_	l U		10		U	l u	10	10
MW-46	cis-1,3 Dichloropropene	uy/L		Ü		1.0		Ü	Ü	10			U	10		U	U	10	10
MW-46	Dibrenticuchieremethane	ug/L		Ü		1.0	 	8	-	10		U	U	10		U	Ų.	10 1	10
MW-46	Ethyl Benzene	ug/L		Ü	-	2.0	 	U	Ü	10	 -		_	10		<u> </u>	<u> </u>	10	10
MW-46	Methylene Chloride	ug/L		 U	-	1.0	 		<u>U</u>			<u>"</u>	n ii	10		U	Ų	10	10
MW-46	Stylene	ug/L		_			L	U	į	10	 	U.	U	10		U	U	10	10
MW-46	Tetrachloroethene	ug/L		U	 	1.0		U	U	10		U	U	10		٦	V	10	
MW-4n	Tuluene	ug/1.		U	\vdash	9.1		U	U	10	 	U	U	10		U	U	10	10
MW-46	trans 1.3 Dichloropropene	υχ/1.		U	 	1.0		U	U	10		U	U	10		U	U	10	10
MW-46	Trichloroethene	սբ/Լ.		U		10	L	U	U	10	L	U	U	10	L	υ	U	10	10

36			
Well All As		Appendix C Baseline Groundwater Monitoring American Chemical Services Griden	
Atw 46 Vary Chloraly		Real Concentration C	
A(1) (1.1.1.2 (10.4.4))	linits	Baseline Groundwater Monitoring American Chemical Services Noe Griffith, 5.	
Atti 11.1 > 7 million Marketham		an Chemical S. Monitoring Organics	
	UEA DAINELL	asseline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana	
Association of the second of t	The last the same of the same	The state of the s	
the state of the s	WENT TO THE TOTAL PROPERTY OF THE PARTY OF T	T.V DOC	
Mu. Ducki Change	wer I I I I I I I I I I I I I I I I I I I	U U Detect Limit	
ASW 47 1.2 On thirt sections ASW 47 1.2 On thirt sections ASW 47 1.2 On thirt sections ASW 47 2.2 Business ASW 47 2.2 Business BY 48 48 48 48 48 48 48 48 48 48 48 48 48		U U RESULT TO FORM J	
		U U III III III III III III III III III	
Acres Pontage Specific Specifi			The state of the s
			10/ 80
			The Control Limit High
httw. 17 Decorbotiona uget. httw. 17 Broatbottona uget. httw. 17 Broatbottona uget. httw. 17 Carbon Doc.	1 20 10 1 30		U III Interting
Account Company Company	J UR 30		
MW. Culture Town			
The state of the s			
MW 47 Chammethane ug/L MW 47 Chammethane ug/L MW 47 Dhotomas bloomethane ug/L MW 47 Enby in a bloomethane ug/L			
Approximation of the state of t			
AW 47 Distribute his owner was a series of the series of t			
17 Section Colonial ways			
Associated to the second secon			
Assert Trucks Date Bloggio			$\frac{1}{2}$
MW-47 Fischionsylvanic ug/L MW-47 Vint Chinak MW-47 Vint Chinak MW-47 Vint Chinak MW-47 Vint Chinak MW-48 Vint Chinak MW-48 Vint Chinak MW-48 Vint Chinak			
ASS ASS			
A CONTRACTOR OF THE PARTY OF TH			
Assistant to the state of the s			
Assistant Transfer of the Assistance of the Assi			
MW 48 1.2 Dr. thorne (1.044) UpA			
MW 48 [-Bull-tone Upf. Upf			
MW 48	- I was a second of the second		<u>V</u> 10
ATW AN According Seminaring Up T. ATW AN HEALTH UP T. ATW AN HEALTH UP T.			
MW -48 Beneview Mg/T. U			
AW-48 Strometischare UV V V V V V V V V	2.500		
AWSAPF: UPA			
AllShape uga uga		MR)	1
131252901236	100 -		
Sampling Rphillion			
AMSSAM: JAI282MA238	SID THE STATE OF T	500	<u>V</u> - 500
***			300 300
	10 V 300		2.500
	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 200
			2,5(0)
	t		300 3500
			300 100
			\$10 \$10 \$10 \$50

		,			Event				Event	<u> </u>			Event				F		10.5
	· ·		h	110	PO	Detact Limit	Remit	I.Q	DQ	Detect Limit	Remit	LQ	DO	Detect Limit	Result	1.0	Event 4		Highest
Well	Analyte	Units	Result	I.Q	12	500		U	<u> </u>	500	- MCJER	120	U	500	ALTERNA	I.Q	DQ	Detect Limit 500	Detection
MW-JX	Chlorohenzene	ug/L	1,000	-	├	NA NA	620	۳	۳	500	670	-	15	500	980	۳	1-4-1	500	500 1,000
VIM. 1x	Chloroethane	ug/L.	1,000	l u	-	500	120	U	U	500	870	U	ť	500	980	U	U	500	500
MW-4K	Chkaolam	ug/L		Ü	-	500	├ ──	Ü	Ü	500	 	Ü	Ü	500		l ü	1 0	500	500
MW-IX	Chloromethane	ug/l.		1 0	-	500	 	Ü	Ü	500	 	Ü	Ü	500	 	l ü	1 0	500	500
MW-4H	ets-1,3 Dichloropropene Dibromockloromethane	ug/L		Ü		500	 	Ü	Ü	500	 	l ü	Ü	500		 "	ř	500	500
MW-48		ug/L		Ü	-	500	 	Ü	Ü	500	 -	Ü	Ü	500	 	U	l ö	500	500
71M-18	Ethyl Benzene	up/L	70	15	├	NA NA		Ü	Ü	500		l ü	Ü	500	 	10	1 5	500	500
	Methylene Chloride	ug/l.		Ιΰ		500		Ü	٥	500	 	ان	Ü	500	 	1 🕆	1 6	500	500
VIM 4K	Stytene	ug/L		Ü	_	500		Ü	4	500		Ü	Ü	500	 	l ü	Ü	500	500
FIM: 48 FIM: 48	Tetrachloroethene Toluene			ان	├	500		Ü	-	500	 	Ü	Ü	500		Ü	Ü	5(0)	500
MW-44		ug/L		Ü	_	500		Ü	٦	500	 	Ü	Ü	500		ان ا	1 5	500	500
	trans-1,3-Dichloropropene	ug/L		Ü	-	500		Ü	٦	500	 	۳	Ü	500		۳	Ü	500	500
VIM-18	Trichlosoethene	up/L		Ü		500		Ü	2	500	 	Ü	Ü	500		ᇦ	 	500	500
	Vinyl Chhunk	ug/L		 U	-	500		U	۳	500		u	Ü	500		H	1 5	500	500
VIM-18	Xylenes (total)	up/L		U		500		٦	U	100	 	۴	Ü	325			ü	450	500
MW-49	1.1.1 Trichkwoethane	ug/L		Ü	\vdash	500		U	٥	100	 	├──	Ü	325	├──	 	 	450	500
MW-49	1,1,2,2-Tetrachlunethane	ug/L		Ü	-	500		Ü	Ü	100	├	-	Ü	325		├─	Ü	450	500
MW-49	1.1.2-Trichlorocibane	ug/L		U	-	500		"	+	100	 	_	Ü	325		├	 	450	500
VtM-14	1,1-Dichloroethane	ug/L		U	-	500		Ü	٦	100		-	Ü	325		 	Ü	450	500
MW-44	F.I. Dichloroethene	ug/L		Ü		SOO		۳	۳	100		_	U	325		├ ─		450	500
MW-49	1,2-Dichloroethane	ug/L		Ü	-	500		۳	2	100			Ü	325			U	450	500
MW-49	1,2-Dichloroethene (total)	ug/L		U	_	500		U	C	100		├	U	325		├—	Ü	450	500
MW-49	1,2-1 исиноворноране	ug/L		- U	R	2,500		Ü	Ü	100	 	-	Ü	325				450	
MW-49	2-Butanone	Ug/L	L	Ü	R	2,500		U	حاد	100	 	-	Ü	325			U	450	2,500
MW-49	2-He vanone	ug/t.		-	R	2,500		۳	٦	100		┝	U	325	 		"	450	2,500
MW-49	4-Methyl-2 pentanone	ug/L.		U	R	2,500		Ü	-	100	} -	-	U	325		├	 0	450	2,500
MW 49	Accinic	ug/t.	5,000	<u> </u>	 ^- -	NA NA	1,600	۲	-	100	5,500	-	15	323 NA	6,750	├	 "	130 NA	
MW 19	Benzene	ug/L	7,0887	U		500	1,000	υ	υ	100	3,3(4)		Ü	325	0,730	├—	 -; 	450	6,750
VIM 10	Bromein bloromethane	ug/L		10	-	500		U	۳	100	 	 	Ü	325		├—	Ų.		500
MW-19	Bronsdorm	ug/L		U		500		U	2	100		-	Ü				U	450	500
MW-49	Brononethane	ug/L	<u> </u>	U	_	500		Ü	U.	100			÷	325 325	 		Ų.	450	500
MW-19	Carbon Disultide	ug/L		Ü	-	500	 	Ü	U	100		-			ļ. ——	 	UI	450	500
MW 49	Carbon Terrachbride	up/1.		10		500		Ü	2	100	ļ		U	325			UJ	450	500
MW-49	Chlorobenzene	ug/L.	480	Ť		NA NA	310	۳.	٠-	100	715		U	325 NA		├	U	450 NA	500 715
MW-49	Chloroethane	ug/L	460	υ	-	500	310	υ	v	100	/13		Ιΰ	325	665	┢	 -		
MW-14	Chlorotom	ug∕t.		U		500	 	Ü	Ü	100		<u> </u>	Ü	325			Ų.	450 450	500
MW-49	Chloromethane	ug/L		U		500	 	l ö	H	100	 		U	325		 	U		5(1)
MW-49	cis-1,3 Dichloropropene	ug/l.		Ü	├	500	 	Ü	Ü	100	├ ──	├—	Ü	325		-		450	500
MW-49	Dibronochloromethane	ug/L		10	-	500	 	U	Ü	100			1	325		├	Ü	450	500
MW-49	Ethyl Benzene	ug/l.		15	U	70		Ü	"	100		Ι	حت			⊢		450	500
MW-49	Methylene Chloride	ug/L	 	ť	۳	500	 	U	Ü	100	 	! —	U	325			뱅	450	450
MW-49	Styrene	Ug/L		1 0	├	5(0)	 	U	U	100	 	-		325	 	⊢—	Ų.	450	500
MW-49	Tetrachlorochene	ug/L		1 0	├	500		U	U	100		├—	U	325		⊢—	Ų.	150	500
MW-49	Tokuene	up/L	 	Ü	├	500	 	U	U	100	 	 	Ų.	325	<u> </u>	├—	U	450	500
MW-49	trans-1,3-Dichloropropene	ug/L		Ü	├──	500		Ü	U	100		├—	U	325		├	Ų	450	500
MW-49	Trichloroethene	ug/t.	 	 0	⊢	500		U	υ	100		├	U	325	 		Ų	450 1	500
MW-49	Vinyl Chiank	ug/L	<u> </u>	1 0	├	500	 	U	Ü	100			Ų.	325		├ ─	U	450	500
MW-49	Xylenes (total)	ug/L	 	U	٠		 	۳	·		 	٠	U	325			U	450	500
MW-50	1,1,1-Trichloroethane	ug/L			U	10		-	U	10		U	<u>u</u>	10		U	 	10	10
MW-50	1.1.2.2-Tetrachloroethane	ug/L.		<u></u>	U		 	\vdash		10	 	U	U	10		U	╙	10	10
MW-50	1,1,2-Trichloroethane	ug/L.		U.	U	10			> :	10		U	U	10		U	lacksquare	10	10
MW-50	1.1-Dichlaroethane	ug/l.	<u> </u>	U	U	10	⊢		U	10		U	Ų.	10		U	╙┸	10	10
MW-50	1,1-Dichloroethene	ug/L.	L	U	U	10	L		ט	10	<u> </u>	U	U	10		U		10	10

		7			Event	1			Event:	2			Event	3			Event		Highest
Well	Analyte	Units	Result	1.0	PQ	Detect Limit	Reput	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.Q		Detect Limit	Detection
	1,2-Dichloroethand	ug/L		U	Ü	10			Ū	10		U	Ü	10		U		10	10
MW-50	1,2 Dichloroethene (total)	up/L		Ι ΰ	Ü	10	· · · · · · · · · · · · · · · · · · ·	 	Ü	10		Ū	Ü	10		U	1	10	10
MW-50	1.2 Dichloropropane	ug/L		Ť	١ŏ	10		_	Ū	10		U	U	10		U		10	10
MW 50	2 Butanone	ug/L		ΙŪ	Ū	10			U	10		Ū	U	10		U		10	10
MW 50	2-Hexanone	ug/L		10	Ū	10	<u> </u>		U	10	1	U	U	10		V		10	10
MW-50	4 Methyl 2 pentanone	ug/L		Ü	Ū	10			U	10		U	U	10		U		10	10
MW-50	Accione	ug/L		Ü	U	10			Ü	10		Ü	U	10		5		10	10
_	Benzene	ug/L		U	U	10			υ	10		U	U	10		U		10	10
	Bromshchloromethane	ug/L		U	U	10			U	10		U	Ü	10		٥		10	10
MW-50	Breibeierz	ug/L		U	U	10			υ	10		U	U	10		כ	Ι	10	10
MW-50	Bronomethane	Ug/L		U	U	10			IJ	10		U	U	10		U		10	10
MW-50	Carbon Disultate	ug/L		U	U	to			U	10		ט	υ	10		5		10	10
MW-50	Carbon Tetrachloride	ug/L		U	Ü	10			5	10		U	U	10		د		10	10
MW-50	Chlorobenzene	ug/L		U	U	10			U	10		ט	U	10		5		10	10
MW-50	Chloroethane	ug/L		U	U	10			U	10		5	Ü	10		U		10	10
MW-50	Chlorotoum	ug/L		U	U	10			U	10		U	U	10		ט		10	10
MW-50	Chloromethane	ug/L		LU	U	10			Ü	10		U	U	10		U		10	10
MW-50	cis-1, Chichloropropene	ug/L		U	U	. 10			5	to		>	U	_(0		٦		10	10
MW-50	Dibronic bloromethane	ug/L		U	U	10			U	10		U	U	10		U		10	10
MW-50	Ethyl Benzene	ug/L		U	U	10			C	10		U	Ü	10		دا		10	10
MW-50	Methylene Chloride	ug/L		U	U	10			U	10		U	U	10		٥		10	10
MW-50	Styrene	ug/L		U	U	10			U	10		۵	Ü	10		5		10	10
MW 50	Tetras blorosethene	ug/L		Ü	υ	10			U	10		٦	Ų	10		د		10	10
MW 50	Toloene	ug/L		U	U	10			٥	10		U	U	10		5		10	10
MW 50	trans 1,3 Dichloropropene	ug/L.		U	U	10			U	10		U	U	10		>		10	10
	Trichloroethese	ug/L		U	U	10			U	10		U	U	10		Ü		10	to
	Vinyl Chloride	ug/L		U	U	10			U	10		٥	U	10		U	<u> </u>	10	10
	Xylenes (total)	ug/L		U	U	10	ļ		-	10		U	U	10		۲		10	10
	f, f, f - frichloroethane	ug/L		<u> </u>	U	100		U	U	50		υ	U	10		٦		100	100
	1,1,2.2 Tetrachloroethane	ug/L		↓	υ	100		Ü	U	50		U	U	10		U	U	100	100
	1,1,2-Trichloroethane	ug/L		<u> </u>	U	100		U	Ü	Su		U	U	10		U	U	100	100
	1,1 Dichloroethane	ug/L		_	U	100		U	U.	50		U	U	10		٥	U	100	100
	1.1-Dichloroethene	ug/L			U	100		U	U	50		U	U	10		υ	U	100	100
	1,2-Dichloroethane	ug/L,		├	U	100	 	U	U	50		U	U	10		٦	U	100	100
	1,2-Dichloroethene (total)	uy/L			U	100		U	, C	50		n	U	10		υ	U	100	100
	1.2 Dichloropropane	ug/L		 	U	100		l v	U	50	<u> </u>	Ų	U	10		U	U	100	001
	2-Butanone	ug/L		-	U	100		U	U	50 50		U	U	10		2	U	100	100
	2 Hexanone	ug/L		-	U U	100		U	U	50	40	1 7	<u> </u>			U	U	100	100
	4-Methyl-2-pentanone	ug/L		 	۳	100		U	U	50	4.0	+	U	10		U.	U.	100	100
MW-SI	Acetone Benzene	ug/L		-	U	100		1 0	Ü	50		늉	"	10		U	U	100	100
	Bronodichloromethane	ug/L.		+	Ü	100		Ü	Ü	50		Ü	U	10		7	U	100	100
	Винистепниненая:	ug/L ug/L			Ü	100		Ü	U	50		۳	Ü	10		U	U	100	100
	Bromonethane	ug/L		 	U	100		l ü	5	50		5	"	10		U	- 0	100	100
	Carbon Disultate	UK/L		_	U	100	 	Ü	Ü	50		Ü	Ü	10		"	l ü	100	100
	Carbon Tetrachloride	ug/l.		+-	Ü	100		U	Ü	50		۳	U	10		U	 "	100	100
	Chlorobenzene	ug/L		 	Ü	100	 	Ü	ŭ	50		Ü	Ü	10		Ü	U	100	100
	Chloroethane	ug/L		\vdash	Ü	100		Ü	Ü	50		Ü	ü	10		U	Ü	100	100
	Chlorotopp	ugi		 	Ü	100	<u> </u>	Ü	Ü	50		Ť	Ü	10		U	Ü	100	100
	Chloromethane	ug/L			Ŭ	100		Ü	Ü	50		₩	Ü	10		-	U	100	100
	cts-1,3-Dichloropropene	ug/L		1	Ü	100	 	Ü	Ü	50		۳	Ü	10		U	Ü	100	100
	Dibromochloromethane	Ug/L		t —	Ü	100	<u> </u>	Ū,	Ü	50		늉	Ü	10		Ü	۳	100	100
	Ethyl Benzene	ug/t.		+	Ü	100		Ü	Ü	50		Ü	Ü	10		Ü	Ü	100	100

77.4

400

										i, coccana									
	I .	T			Event	1			Event	2			Event	3			Event	6	Highest
Well	Analyte	Units	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect J.imit	Result	LQ	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
MW-51	Methylene Chloride	ug/L			Ü	100		U	U	50		U	Ü	10	1	U	U	100	100
MW SI		ug/L			V	100		U	U	50		حا	Ūυ	10	·	Ū	U	100	100
MW-51	Tetrachloroethene	Ug/L			Ū	100		U	U	50		U	U	10		U	U	100	100
MW-51	Toluene	ug/L			Ü	100		U	Ū	50		U	U	10		U	U	100	100
MW-51	trans-1,3-Dichloropropene	ug/L			U	100		U	U	50		U	U	10		U	υ	100	100
	Trichloroethene	ug/L			U	100		U	U	50		U	U	10	1	U	U	100	100
MW-SI	Vinyl Chloride	ug/L			٥	100		U	U	50		U	U	10		U	U	100	100
MW-51	Xylenes (total)	ug/L			>	100		U	U	50		U	U	10		U	U	100	100
MW-52	1,1,1-Trichloroethane	ug/L		U	Ü	10		U	υ	50		U	U	10		U	U	100	100
MW-52	1,1,2,2 Tetrachloroethane	ug/L		U	Ü	10		U	U	50		U	U	10		υ	U	100	100
MW-52	1,1,2-Trichloroethane	ug/L		U	٦	10		U	Ü	50		٥	U	10	l	U	-	100	100
MW-52	1,1 Dichloroethane	ug/L		U	V	10		U	U	50		٦	U	10	Ĭ	U	υ	100	100
MW-52	1,1-Dichloroethene	սք/Լ		U	U	10		U	U	50		U	U	10		U	C	100	100
MW-52	1,2-Dichloroethane	ug/L		U	υ	10		U	U	50		5	IJ	10		U	U	100	100
MW-52	1,2-Dichlorocthene (total)	ug/L		U	2	10		υ	U	50		2	U	10		U	Ü	100	100
MW-52	1,2-Dichloropropane	ug/L		U	ح	10	L	U	U	50		U	U	10		U	U	100	100
MW-52	2-Butanone	ug/L		U	ح	10		U	U	50		٥	U	10		U	U	100	100
MW 52	2-Hexamone	ug/l.	L	U	>	10	<u> </u>	U	U	50		5	U	10		U	υ	100	100
MW-52	4-Methyl-2-pentanone	ug/L		U	υ	10	<u> </u>	U	U	50		U	U	10		U	U	100	100
MW-52	Acetone	ug/L	22	L.,		NA NA		U	U	50		U	Ü	10		U	U	100	001
MW-52	Benzene	ug/L		U	5	10 -		U	U	50		=	U	10		U	U	100	100
MW 52	Bromodichloromethane	ug/L		U	٦	10		U	U	50	L	U	U	10		U	U	180	100
MW-52	Bleathologin	ug/L	1	U	ح	10		U	U	50		U	U	10		U	U	100	100
MW-52	Bromonethane	ug/L		U	٥	10		U	2	50		U	U	10		U	U	100	100
MW-52	Carbon Disulfide	ug/L		U	U	10	ļ <u> </u>	U	5	50		U	<u>u</u>	10		U	U	100	100
MW-52	Carbon Tetrachloride	ugs/L		U	٧	10		U	2	50		U	U	30	i	Ü	υ	100	100
MW-52	Chlorobenzene	ug/L.		U	U	10		U	٦	50	 	U	U	10	ļ	U	U	100	100
	Chlorocthane	ug/L	<u> </u>	U	U	10	<u> </u>	U	U	50		บ	UJ	10		Lu	שו	100	100
	Chlorotorm	ug/l.	ļ	U	U	10		U	٦	50		U	U	10		l u	U	100	100
	Chloromethane	ug/L		U	U	10		U	U	50		U	U	10	 	<u> </u>	U	100	100
	cis-1,3 Dichloropropene	ug/l.		U	Į)	10	<u> </u>	U	U	50	 	U	U	10		U	U	100	100
	Dibromochloromethane	ug/L.		U	٧	10	 -	U	٠,	50		U	U	10		U	U	100	100
	Ethyl Benzene	Ug/L		U.	U	10	 -	U	Ų.	50		U	U	10		U	U	100	100
MW-52	Methylene Chloride	ug/L		U	Ų	10		U	2	50	├ ──	U	U	10	<u></u>	U	U	100	100
	Styrenc	ug/L		Ų.	U	10		U	<u> </u>	50	 	U	U	. 10		U	U	100	100
	Tetrachloroethene	ug/L		U	U	10		U	<u>ت</u>	50	 	U	U	10		U	U.	100	100
	Toluene	ug/L	3.0	1		NA		U	U	50		U	υ	10	<u> </u>	U	U	100	100
	trans-1.3 Dichloropropene	ug/L		U	U	10		U	2	56)	├ ──	U	U	10	ļ	U	U	100	100
	Trichloroethene	ug/L	<u> </u>	Ü	Ų.	10		U	-	5)	 	U	Ų	10		U	U	100	100
	Vinyl Chlorode	ug/L	<u> </u>	U	υ	10		U	U	50	 	U	U.	10		U	U	100	100
	Xylenes (total)	ug/L	<u> </u>	U	U	10		C	2	50	├─ ──	U	U	10		U	U	100	(00
	1,1,1-Trichkoroefhane	ug/L		U	υ	10		\vdash	U	10	 	U	U	10	<u> </u>	U	U	10	10
	1,1,2,2-Tetrachloroethane	ug/L		U.	U	10		\vdash	<u> </u>	10	 	U	U	10		Ų.	U	10	10
		ug/L		U	יט	10		\vdash	2	10	├	U	U	10		U	U	10	10
	1,1-Dichloroethane	ug/L		U	U	10			U	10	 	Ü	U	10		Ų	U	10	10
	1.1-Dichloroethene	ug/L		U	Ų.	10		-	٦	10	 	U	Ų.	10		l !	U	10 ,	10
	1,2-Dichleres thanc	lyu.		U	U	10			Ü	10		<u>u</u>	U	10		U	U.	10	10
	1.2-Dichloroethene (total)	Up/L		U	U	10		\vdash	2	10	├──	<u>u</u>	Ų	10		ļ <u>Ų</u>	<u></u>	10	10
	1,2-Dichloropropane	ug/L		_	U.	10				10	 	Ų.	U	10		U.	U	10	10
	2-Butatione	ug/L		U	U	10		\vdash	ט	10	 	U	U	10	ļ	U.	UJ I	10	10
AFW 51	2-Hexanone	ug/L		U	U	10	<u> </u>		U		 	<u>v</u> _	U	10		U	U	10	10
MW-51	4-Methyl-2-pentanone	ug/L	 -	۳-					-	10	 , 	U	U	10	5.0	1	1 1	10	10
MW 53	Acetone	ug/L	11	Щ_	لــــا	NA.	9.5	L	Ц	NA NA	16		<u> </u>	10	L	Щ.	U	12	16

					Event	,			Event	,	1		Event	1			Event 4	<u> </u>	Highest
Well	Anulyte	Units	Result	1.0	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	I.Q		Detect Limit	Detection
			MESHA	U	٥	10	Present	 ````	Ü	10	1.0	117	<u> </u>	10	2.0	1		10	10
	Benzene	un/L		U	U	10	 	 	Ü	10	 	i	Ū	10		Ú	U	10	10
MW 53	Bromodichloromethanc	ug/L		U	U	10		 	ŭ	10		U	Ü	10		Ü	Ü	10	10
	Bromotorm	ug/l.		U	U	10		-	Ü	10		Ü	Ü	10	 	Ü	Ü	10	10
MW 53	Bromonethane	ug/L			U		 -	 	U	10		U	Ü	10		Ü		10	10
	Carbon Disultide	ugΛ.		U	U	10	<u> </u>	╁	 	10	 	Ü	Ü	10		Ü	l ü	10	10
MW-53	Carbon Tetrachloride	ug/L					 -	 	Ü	10		Ü	U	10		Ü	_	10	10
MW-53	Chlorobenzene	ug/L	 	υ	U	10	 		Ü			U	Ü				U	10	10
MW-S3	Chloroethane	ug/L		L.	<u></u>	10		┼	 	10		Ü	Ü	10		U	Ų.	10	
MW-51	Chlorotorin	ug/L		U	U	10			Ü	10		Ü	Ü	10		Ų.	U	10	10
MW-53	Chloromethane	ug/l.		U	U.	10		┿~	Ü	10		Ü	-	10		U	_	10	10
MW-51	cis-1,3 Dichtoropropene	up/L	·	٠	U	10		+	-	10		Ü	U	10		U	U	10	10
	Dibromochloromethane	ug/L		Ų	U	10		┼	Ü	10	 	l U	U	10	 	Ü	Ü	10	10
MW-53	Ethyl Benzene	ug/l.	 	U	U	10		├	1 5	10	 	U	U	10		7	Ü	10	10
	Methylene Chloride	ug/t.		<u> </u>	U			 	Ü	10	 	U	Ü	10					10
MW-51	Stytene	ug∕l.		U	U	10	 	┼	U	10	 	U	Ü	10		U	U	10	
MW-11	Tetrachloroethene	ug/l.		-	1	IO NA	 	₩	U	10		U	U	10	1.0	U	۲-	10	10
MW-53	Foluene	ug/L	1.0	1	Ú	10	 	+	U	10	 -	1 0	U	10	1.0	1	U	10	10
	trans-1,3-Dichloropropene	ug/L	<u> </u>	U	Ü	10		} -	Ü	10		5	 0	10	ļ	U		10	
MW-53	Trichloroethene	ug/l.		1 0	U	10	 	+-	U	10	 	U	Ü	10	 	10	U	10	10
	Vinyl Chloride	ug/L		10	U	10	 -	 	Ü	10	 	Ü	Ü	10		Ü		10	10
MW-53	Xylenes (total)	ug/L			U			U	U	10		Ü	U		 -	_	U	10	
MW 14	1,1,1 Trichloroethane	ug/L.	}	U	U	10		U	"	10	 	Ü	Ü	10	 	U	U	10	10
MW 54	1,1,2,2 Tetrachloroethane	ug/L		10	U	10		U	Ü	10		Ü	Ü	10		Ü	_	10	10
MW 14	1,1,2 Trichloroethane	ug/l.	ļ	10	U	10		10	"	10	 	Ü	Ü	10		Ü	U	10	10
MW-54	1,1 Dichloroethane	ug/L.		10	Ü	10	 -	1 0	U	10	 -	Ü	Ü	10		U	1	10	10
MW 54	1.1 Dictionocthene	ug/I.		U				U	l ü		ļ		UI				$\overline{}$		
	1,2-Dichloroethane	ug/l.		 	U	10		1 0	U	10		U	"	10		U	U	10	10
	1,2 Dichloroethene (total)	ug/L.			_			1 0	Ü	10			ü			_			10
MW 54	1,2-Dichloropropane	ug/1.		U	U	10	├	U	Ü		}	U	U	10	}	U	Ų.	10	10
	2-Butanone	<u>uy/1.</u>	ļ	U	U	10	ļ <u> </u>		1 5	10		U	U	10	<u> </u>	U	Ü	10	10
MW 54	2 Hexanone	ug/l,		10	Ü	10	 -	U	" .	10		U	U	10		U	U	10	10
MW-54	4-Methyl-2-pentanone	ug/L						1 0	U.			┞-╚-							10
NW-14	Acetone	ug/L.		U	U	10	 -	1 0	-	10	<u> </u>	U	U	10		U	U	10	10
	Benzene	ug/L		10	U			l ü	U		{		Ü					10	10
MW 54	Bromodic Moromethane	uk/l.		U	U	10		1 0	10	10		U	+	10		U	Ų	10	10
	Bronoforns Bronomethane	ug/l.		Ü	Ü	10		10	U	10	 	 	Ü	10		U	U	10	10
	Carbon Disultide			Ü	Ü	10		1 0	Ü	10		Ü	Ü	10		 U	ü	10	
MW 11	Carbon Tetrachlorde	ug/L		 	Ü	10		l v	Ü	10		"	U						10
	Chlorobenzene	ug/1.		 	U	10	 	l ü	Ü	10	 	l ü	Ü	10		U	U	10	10
MW-14	Chloroethane			0	U	10		U	Ü	10		Ü	"	10		- 0	_		
MW 11	Chloroform	ug/L		U	U	10	 -	T U	Ü	10		U					U	10	10
MW 54		ug/l.		10	U		 -	10					U	10		U	U	10	
MW-54	Chloromethane	ug/L	L			10			U.	10		U.	Ų.	10		ļ <u>u</u>	U	10	10
	cis 1,3 Dichloropropene	uy/L		Li.	U	10		U	U	10	 	U	υ	10		U	U	10	10
	Dibromochloromethate	ug/L.		U	U			l ü	U	10	 	Ų.	<u> </u>	10		U	U	10	10
MW-54	Ethyl Benzene	Up/L		10	U	10		U	U	10	 	U	U	10		Ų.	U	10 1	10
MW-54	Methylene Chloride	υ <u>μ/1.</u>		1 0	U			U	U	10		Ų.	Ų.	10		<u> </u>	U)	10	10
MW-54	Styrene Tetrachloroethene	ug/L		U	U	10	 -	10	Ü	10		<u>''</u>	Ų.	10		U	Ų.	10	10
MW-54	Toluene	ug/L		U U	U	10		- U	Ü	10		U	Ų.	10		U	Ÿ	10	10
MW-54	trans-1,3-Dichloropropene	ug/l.		U	U	10		U	U	10		Ų.	U	10		Ü	L.Y.	10	10
MW-54	Trichloroethene	ug/L		 0	٦	10		U	Ü	10		<u> </u>	U.	10		Ü	Ų	10	10
	Vmyl Chloride			U	U	10		U	U	10	 	Ų.	U	10		U	U	10	10
(11 W - 14	vinyi v annide	ug/t.	L	L.,				L V		10	نـــــــــــــــــــــــــــــــــــــ	U	U	10		U	U	10	10

					Event				Event	2	I		Event.	3			Event	4	ilighest
Well	Analyte	Units	Result	1.Q	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	IQ	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
MW-51	Nylenes (total)	ug/L		U	U	10		U	٥	10		U	U	10		U	U	10	10
MW-55	1,1,1 Erichloroethane	ug/L			U	10		Ü	٦	10		U	U	10		U	V	10	10
MW-55	1,1.2.2 Tetrachloroethane	υμ/\.			U	10		Ū	υ	10		U	υ	10		U	υ	10	10
MW-55	1,1.2 Urchloroethane	ug/L			۳	10		U	٥	10		υ	U	10		U	υ	10	10
MW-55	1,1 Dichloroethane	ug/L			U	10		U	υ	10		U	U	10		U	U	10	10
MW-55	L.U. Dichloroethene	ug/L			5	10		C	٦	10		U	U	10		U	V	10	10
MW-55	1,2-Dichloroethane	ug/L			ט	10		U	2	10		U	ູພ	10		U	υ	10	10
MW-55	1,2 Dichloroethene (total)	υg/L			U	10		U	υ	10		U	Ü	10		U	υ	10	10
MW-55	1,2-Dichloropropane	ug/L			υ	10		Ū	U	10		U	U	10		U	٥	10	10
MW-55	2 Butanone	ug/L			Ų	10		U	U	Ю.		U	U	10		U	U	10	10
MW-55	2 He vanone	ug/L			٥	10		U	U	10		U	U	340		U	υ	10	10
MW-55	4 Methyl 2 pentanone	ug/L			U	10		Ū	>	10		U	U	10		U	υ	10	10
MW-55	Acctone	ug/L			U	10		U	U	10		U	U	10		U	U	10	10
MW-55	Benzeue	ug/L			٥	10		U	υ	10		Ü	U	10		U	υ	10	10 💉
MW-55	Brometichloromethane	ug/L			٦	10		U	ט	10		U	U	10		U	٦	10	10 🎉
MW-55	Bronolom	ug/l.			U	10		U	υ	10		U	U	10		บ	Ų	10	10 35
MW-55	Gromomethase	ug/t.			U	10		U	U	10		U	U	10		υ	IJ	10	10
MW-55	Carbon Disultide	ug/l.		L	υ	10		U	υ	10		U	U	10		U	U	10	to
	Carbon Tetrachloride	ug/L			U	10		U	U	10	-	l u	U	10		U	U	10	10
	Chlorobenzene	ug/L			U	10		U	υ	10		U	U	10	<u> </u>	U	U	10	10
MW-55	Chloroethane	ug/L			U	10		U	Ü	10	.	U	U	10		U	W	10	10
MW-55	Chlorotom	ug/L			٧	10	1.0	<u>, , , , , , , , , , , , , , , , , , , </u>		10		U	U	10		U	U	10	10
MW-55	Chloromethane	ug/L			U	10		U	υ	10	1	U	U	10		U	U	10	10
MW-55	cis 1,3 Dichloropropene	ug/L		\Box	٦	10		U	U	10	<u></u>	U	U	10		U	U	10	10
MW-55	Dibronochloronethane	ng/L			U	10		U	U	10	l	υ	U	10		U	U	10	10
MW-55	Ethyl Benzene	ug/L			U	10		U	U	10	L	U	U	10		U	٦	10	10
MW-55	Methylene Chloride	ug/L			U	10		U	U	10		U	U	10		U	כ	10	10
MW-55	Styrene	ug/l.			U	to		U	U	10		U	U	10		U	U	10	10
MW-55	Fetrachloroethene	ug/L			U	10		U	U	10		Ü	U	10		U	ح	10	10
MW-55	Loluene	ug/L			U	10		U	U	10		U	U	10	1.0	7		. 10	10
MW-55	trans-1,3-Dichloropropene	ug/L			U	10		ีย	U	10		U	U	(O		U	U	10	10
MW-55	Enchloroethene	ug/L			U	10		U	G	10		U	U	10		U	υ	10	10
MW 55	Vinyl Chloride	ug/L			U	10		U	U	10		Ü	υ	10		U	5	10	10
MW-55	Aylenes (total)	ug/L			U	10		U	U	10		U	U	10		U	حا	10	10 📆

															,				
Wall	í	Units	Henet	1.0	Event	Detect Limbs	Rout	1.0	Even		Harek	LQ	Event		Manufi	110	Kreat	Detect Limit	Highest Detection
MIS	Analyte 1,2,4-Tricklomberzene		NA.	+-~	12	Total Committee		10		10		10		10		10		10	LPERSCRIPTION .
M-15	1,2-Dichimilanian	w/L	NA NA	┼─	┼──			Ü		10		1 0		10	 	₩.	Ü	10	10
M-1S M-1S	1,3-Du likerakenyene	ug/L	NA NA	 -	 			Ü		10	 	1 5		10	 	Ü	Ü	10	10
M-15	1,4 Du likenitenzene	- Jul	NA.	 	 	·		Ü		100		l ü	Ť	10	 	Ιŭ	l ŏ -	10	10
M-1S	2.2'-oxybis(1-Chior-propage)	w/L	. NA	 				Ü		10		T Ü		10	 	Ü	Ť	10	10
M-15	2,4,5-Ten filosopha mol	ug/L	NA.	1-				Ū	Ť	35		Ü		25	<u> </u>	ΤŤ	Ť	25	25
M-15	2,4,6-Trichhorophemil	ug/L	NA	1	—			U	Ü	10	 	Ū	ΤŪ	10		Ť	Ū	10	10
M-15	2,4-Dichlorophenol	wert.	NA.	1				Ū	Ť	10		Ť		10		Ü	Ť	10	10
M-IS	2,4-Directhylphenol	ug/L	NA	1				U	U	10		Ü	U	10		Ū	Ū	10	10
M-15	2,4-Diastrophetical	wg/L	NA		1			U	w	25		U	U	25		Ū	U	25	25
M-15	2,4-Diminotolucia;	w/L	NA					U	U	10		Ü	U	10	f	U	Ū	10	10
M-15	2,6-Danis statucae	wa/L	NA					U	U	10		Ü	V	10		U	V	- 10	10
M-IS	2-Chivemaphthalene	upl	NA					U	U	10		Ų	U	10		U	U	10	10
M-15	2-Chlerophraul	up/L	NA	\Box				U	Ü	10		Ü	U	10		U	U	10	10
M-15	2-Methy Inaphthalone	mg/L	NA					ט	حا	10		U	U.	140		U	U	10	10
M-1S	2- Methy iphenul	. New	NA					Ü	0	HO		Ü		10		Ü	ט	10	10
M-15	2-Nstrumiting	wg/L	NA					c)	25		Ų		25		Ū	UJ	25	25
M-15	2- Natrophotol	ma/L	NA					<u>_</u>	5	10		Ü	٦	10		U	Ų	10	10
M-15	3, V-Dichlopolicuzidnic	wgA.	NA	\bot				c		10		E	٦	10		U	U	10	10
MIS	3-Marcanoline	1/40	NA					U	2	25		5	3	25		U	U	25	25
M 15	4,6- Dimus> 2-megley lphantel	uge/L	NA NA	_				U	=	25		C.	=	25	ļ <u>.</u>	Ü	۳	25	25
AI-15	Bronsephenyl-phenyletter	we/L	NA NA	!	 			Ų	2	10		U	-	10		Ľ	.U	10	10
	4 Clahura 3-methylphesid	my/L	NA .	├—	Ι—І			U	נ	10		5	٦)0		U	U	10	10
M-15	4-Chinesumiline	up/L	NA .	┢──	-			U	2	10		-	U.	10		L <u>u</u>	U	(0	10
At 15	4-Chlorophenyl-phenyl other	- New /	NA NA	├					:(د	10	 -	۲	; 	10		U	U	10	10
M-IS	4- Methylphenni	ug/L	NA NA	├				U	- C	10			: =	10		Ų	2	25	10
M-15	4 Natrumilius	wel.	NA .	├				Ü	1	25		c c	5	25		Ų.	25	25	25 25
M 1S M 1S	4-Natophenol Accusplations	ug/L ug/L	NA ·	├	-			Ü	+	10	 	Ü	5	10		U	5	10	10
MIS	Accomplishly lene	up/L	NA NA		-			Ü	7	100	 	5	٥	10	 	Ü	ü	10	30
M IS	Authorite	w/L	NA NA	┢─	-			Ŭ	۳	10		Ü	+	10		Ü	Ü	10	10
M-18	Benzinatanthracene	ug/L	NA'	_	Н			Ü	Ť	10		Ü	Ü	10		Ü	Ü	10	10
M-IN	Benzitapytok	ugl.	NA					Ü	Č	10		Ü	۳	10	 	Ü	Ü	10	10
M-IS	Benzigh) Nutranthene	ug/L	NA	_				Ū	U	10		Ü	Ü	10		Ü	Ü	10	10
M 15	Henzoty.h.spotylene	w/L	NA					U	צ	10		U U	-	10		Ü	7	10	10
M-15	Henrick Maunitaliane	ug/L	NA					U	5	10		Ü	-	10		Ū	Ü	10	10
	had 2-Claimenthus y methatic	Jage L	NA			•		U	7	10		Ü	5	10		U	U	10	10
M-15	hesi 2-C'hilotenthy Li ether	w/L	NA					U	U	10		6	=	10	60			10	60
M-15	hts(2-EthyMexyt)phthalate	mg/L	NA					C	5	10			-	10		78	دا	10	10
M-15	Hatylhenrylphthalate	ω/L	MA					U	5	10		U	5	lo lo		U	٥	10	10
M-15	Carbarok	ug/L.	NA					U	5	10		U	U	10		U	V	10	10
M-IS	Chrysette	ug/L	NA					U	ادا	l#		U	υ	10		Ü	٦	10	10
	Dem-haty initialists	ug/L.	NA.		$oldsymbol{\sqcup}$			C	5	HQ.		U	٦	10		ับ	٦	10	10
M-15	Demons philippe	Jul.	NA	┡	$\vdash \vdash$			C	5	10		C	3	10		U	2	10	10
M-1S	1 Johnness automotivaceus	- well	NA .	-	\vdash			U	=	10		C.	2	10		U	>	10	10
M-1S	(Johnnoviera)	ug/L	NA.	├-	\vdash			C		10		6	2	IG		C	3	10	10
M-15	l Josephy Systethadistic	mp/L	NA NA	├	\vdash			יי	: جا	10		2		10		ט	٦	10	10
M-1S	Describy inhabator	ugit	NA NA	├	\vdash			=	9	10		٦	U	LO LO		2	=	10	10
M-15	l-tunitunthene	ug/L	NA NA	├	┝┷┥			-	U	10	}	-	٦	10		2	2	10	10
M-15	Planten	w/L	NA NA	 	 -			۳	7	10	 	: [2	10		=	> :	10	10
M-15	Herachiorobeneuse Herachiorobeneuse	up/L up/L	NA NA	┢				۳	0	10	 	2	٦:	10		<u>v</u>	3	10	10
M-15		ug/L	NA NA	├—				۳	"	10		c c	= =	10		C C	c S	10	10
M-15	Hexachhorseychopentadiene Hexachhorsethine	ug/L	NA NA	 	-			Ü	- U	10		1	5	10		-	Ü	10	10
M-15	Indust 1.2.3-offgyrene	upl.	NA NA	_				바	Ü	1 10		+	<u>U</u>	10		۳	٥	10	10
M-15	Інфанска 1,2,5-сициунска Інфанска	well	NA NA	 				H	Ü	10		7	"	16		۳	<u></u>	10	10
M-18	N-Netron-di-n-propylamen:	w/L	NA NA	-	\vdash			Ü	Ü	10	 -	۳	Ü	10		٥	5	10	10
MIS	N-Num-adiptenytame	ugit	NA NA	†	$\vdash \vdash$			Ü	U	10		Ü	Ü	10		"	Ü	10	10
AL IS	Naphthalene	ug/L	NA	Ι	\vdash			Ü	Ü	10			Ü	10		Ü	Ü	10	10
MIS	Navohenzene	ug/L	NA					Ü	Ü	10		Ü	Ť	10		Ü	3	10	10
	V							ين					<u> </u>			لت		."	117

	,																		
		l		T 144	Event	Detect Limit	Result	1.0	Kreet :	Detect Limit	Result	10	Event	Detect Limit	Result	1.0	Event	Detect Limit	Highest Detection
Well	Analyte	Units	Result	1.0	βŲ	Detect 1 men		17	12	25	Neser -	1 2	17	25	N.COOR	Ü	U	25	25
MIS	Pentachiorophenut	ug/L ug/L	NA NA	┿				Ü	l ü	10		1 0	10	10		10	U	10	10
M-US	Phenantirene	ug/L	NA NA		-			Ü	ان	10	 -	 	Ü	16	ч	╁┷		10	
M-15	Pland	ug/L	NA NA	┼	-			Ü	Ü	10		U	t ŭ	10		10	U	10	10
NI 15	Pyretic 1,2,4-Trichlorobeirene	ug/L	NA NA	├─					Ü	10		Ü	۱ ΰ	10	 	 ~	Ü	10	10
81-15	1,2-Dichlorohenzene	ug/L	NA NA		 			├─	Ü	10		Ü	Ü	10	 	 	Ü	10	10
M-15	1,3-Dichlorohenzene	ug/L	NA.	├─	-			\vdash	Ü	10		Ü	Ü	10		1	l ů	16	10
M-15	1,4-Dichiorohenzene	ug/L	NA NA	1	1			_	Ü	10		Ü	Ū	10	 		Ť	10	10
M-15	2,2'-oxybest1-Chloropropusc)	w/L	NA		1			U	-)0	3.0	1	1	10	8.5			NA	30
N 15	2,4,5-Teschlopophetical	w/L	NA	_				_	10	25		Ü	U	.25	1	<u> </u>	v	25	25
N 15	2,4,6-Ten blarophymi	ug/L	NA	 			·	_	U	10		Ü	Ü	10	1		U	10	10
M-15	2,4-Dichlorophenol	mg/L	NA	 			<u> </u>		U	10		Ū	U	10		1	U	10	10
M-15	2,4-DirectlyIphenol	W/L	NA						U	10		Ū	U	16			U	10	10
M-15	2,4-Destrophend	Hg/L	NA					T	UJ	25		Ū	U	25			U	25	25
M-15	2,4-Diminishpene	ug/L	NA						U	10		U	U	ta		1	U	10	10
M-15	2,6-Dissiriningene	wg/L	NA						U	10		U	U	10			U	10	10
M-15	2-Chloronaphohalene	ug/L	NA	\Box					U	10		U	U	10			Ü	10	10
81.18	2-Chlorophenol	ug/L	NA	\Box					U	10		U	U	10			U	10	10
81-18	2- Methy inaphthalene	up/L	NA						C	10		U	U	10			U	10	10
M-38	2- Methy lphemsl	ug/L	NA						=	10		U	U	10			U	10	10
NI 38	2-Narcanitae	ug/L	NA					L	=	25		U	Ü	25			U	25	25
M 35	2-Narophenol	ug/L	NA NA					L	2	10		U	U	10		1	U	. 10	10
M 35	3,3"-Dichlorohenzidine	ug/L	NA	-	_		<u> </u>	! -	-	14)	<u> </u>	U	U	10		 	U	10	10
M-35	3-Magazarine	ug/L	NA	-			<u> </u>		U	25		U	U	25		<u> </u>	U	25	25
M-48	4.6-Dimura-2-methylphenal	wg/L	NA NA	-	-			_	c	25	<u> </u>	U	U	25		-	U	25	25
M-18	4-Brossephenyl-phenyletter	up/L	NA.	├ ─┤	\vdash		ļ	-	U	10	 -	U	U	10		 	U	10	10
M-35	4-Chloro-1-methylphenol	ug/L	NA .	-	}		ļ		8	10		Ü	U	10		├ ─	U	to	10
M 15	4 Chloroanilmo	ug/L	NA .	Ͱ	\vdash			-	U	10		U	U	10			U	10	10
M 35	4-Chlorophenyl-placnyl other	up/L	NA NA	-	┝┈┤				Ü	10		l ü	Ü	10			V	10	10
M 15	4- Methy Iphemol 4- Maroundine	ug/L	NA NA	-	-				Ü	25		Ü	Ü	25	 	├	10	25	25
M-1S	4-Natiophenol	ug/L	NA NA	1	-	L		 	Ü	25		1 0	 	25	 	 	Ü,	25	25
M-18	Accemplehene	ug/L	NA NA	-				-	Ü	10	· · · · · · · · · · · · · · · · · · ·	Ü	1 5	10	 	-	Ü	10	10
M-15	Accusplatiylene	ug/L	NA.	-				-	Ü	10		Ü	Ť	10		 	Ť	10	10
M-18	Anthracene	ug/L	NA					-	Ū	10		U	Ü	10	· · · · ·	_	Ü	10	10
M 15	Benzetatanthracene	ug/L	NA						U	10		U	Ü	10		_	Ü	10	10
	Benze(alpyrene	up/L	NA						U	10		Ü	Ü	10			Ü	10	10
M 38	Benzo(b)(horranthene	ug/L	NA	\vdash					Ü	10		Ü	U	10	·	1	Ü	10	10
M-35	Benzu(g,h,i)perylene	ug/L.	NA						U	10		U	Ü	10		1	Ü	10	10
M 35	Benzink)Huszandiene	ugo/L.	NA_						Ü)0		Ü	U	10			Ü	10	10
M-35	his(2-Chlorogilinay)methate	ug/L	NA _						υ	10		U	U	10			U	10	10
M 15	his(2-Chlomethyl) other	up/L	NA				10	-		10		υ	U	10	20	L^{-}		NA	10
M 35	hese2-Ethythenytipistisalate	ug/L	NA					٥		10		υ	U	10		\Box	٦	10	10
M 35	Butythenzylphakalate	up/L	NA						5	(0		υ	C	10			U	10	10
M-18	Carbarole	M/L	NA						=	10		U	5	14)			Ü	10	10
M-35	Chrynene	ug/L	NA						3	10		U	C .	10			5	10	10
M-38	Dr-n-hutylphthalasc	ug/L	NA.					أسلا	2	10		U	C	10			>	10	10
M-35	Ds-to-recty/phobalate	uy/L	NA	\vdash				 	=	10		U	U	10	<u> </u>	lacksquare	٦	to	10
M 38	Dibenzo(a,h)anthracene	ug/L	NA					ابـــــا	יי	10		<u> </u>	U	10		┡	2	10	10
M-15	Dehonzoleran	up/L	NA.	\vdash				┝╌┦	9	10		U	C .	10		-	7	10	10
M-15	Durthy lphthalate	up/L	NA MA	$\vdash \vdash$	\vdash			\vdash	7	10		Ų.	Ü	10	<u> </u>	\vdash	>	10	10
M-35	Donarthy Iphilialate	up/L	NA NA	┝╌┤	\vdash			┝╼┥	-	10		U	Ü	30		$\vdash \vdash$	2	10	10
M-15	Fluoranthene Fluorene	wy/L wy/L	NA NA	├				$\vdash \neg \vdash$	+	10		U	U	10		-	> :	10	10
M 38	Hean blomberene	ug/L	NA NA	┝╌┤				$\vdash \dashv$	+	01		Ü	١٠	10		\vdash	٦:	10	10
M 15	Hexachlorobycadiene	ug/L	NA NA	 	\vdash			╌┥	ᄬ	10		Ü	Ü	10		┝─┤	נט	10	10
M-35	He sachlorocyclopentadione	ug/L	NA.	\vdash	-			\vdash	H	10		Ü	1	10			U	10	10
M-15	Head thorouthane	ug/l.	NA NA		\vdash			\vdash	H	10		l ö	- iii	10			-	10	10
NI 35	Indenot1,2,3-edipyrene	ug/L	NA	 	\vdash				١٠	10		Ü	5	10		\vdash	Ü	10	10
M 18	Isophnone	up/L	NA.	\vdash	$\vdash \vdash$		5.1	\vdash	┝┷┤	NA NA		Ü	U	10		$\vdash \vdash$	U	10	10
										'''			لينسه	<u> </u>				<u> "" </u>	10

	, —. ————												A				m .		
		l	- Name	1.6	Event I	15 4 - 41 4 - 11	Resert		Event		B 1		Event :			110	Event :		Highest
Well	Analyte	Units	Romak	1.0	1X)	Dytect 1.hmlt	R. Control	IQ		Detect Limit	Reset	LQ		Detect 1.lank	Rout	IQ	3	Detect Limit	Delection
M-15	N National distributions	w/L	NA NA	╄	-				<u> </u>	10	I — — — I	: 5	 	10		├	3	10	10
M-15	N-Namundaphenylamone	<u> </u>	NA NA					├ ──	=	10	├ ──┼	C	=	10	 		2	10	10
M 35	Naphhalenc	199/1	NA NA		-		 	-	U	10		U	U	10		├ ─	٧	10	10
M-35	Narohenzene	up/L	NA					├	U	10	 	U	5	10	!	-	5	10	10
M 48	Pentachlurophenol	ug/L	NA	┡	-		ļ		U	25		U	ט	25	L	<u> </u>	٦	25	25
M-35	Phenantisent	we/L	NA	₩-	-				U	10		U	٧	10		!	5	In	10
M 38	Phoni		NA	-			2.0		1	10		U	٦	10	16			NA NA	41
M 38	Pyrene	W/L	NA NA	 			<u></u>	!	<u> </u>	10		C	5	10	L	ـــــ	5	10	ю
M 4D	1,2,4-Trichlorchenzene	ug/L	NA	 			<u> </u>	U	U	10		U	٦	10	<u> </u>	U	5	<u>ta</u>	10
M 40	1,2-Dichlorohenzene	ug/L	NA	——	\vdash			U	Ü	10	LL	U	>	10		U	5	10	10
M 4D	1.3-Dichlorohenzene	1 44/4	NA.	<u> </u>				U	U	10		U	2	10	L	U	5	10)0
M-4D	1.4-Dichlorobenzene	ug/L.	NA	<u> </u>				Ü	U	10		U	5	10		U	2	10	10
M-ID	2,2"-naybest1-Chloropropuse)	ug/L	NA				L	٦	Ü	10		U	ט	10	L	U	5	10	10
M-4D	2.4.5-Tris biotrophenol	ug/L	NA		$ldsymbol{f L}$			U	U	25		U	U	25		U	5	25	25
W 4D	2.4,6-Ten blowophemst	ug/L	NA	1				U	U	10		U	υ	10		υ	5	10	10
M 40	2.4-Dichterophemil	up/L	NA	\Box				U	U	10		U	U	10		υ	C	10	10
M-4D	2.4-Dissertiylphensi	up/L	NA					U	ע	10		U	5	Ю		U	5	to	10
M 4D	2.4-Dimerophenol	up/L	NA					U	UJ	25		U	٥	23		U	5	25	25
M 4D	2.4-Dimensional desire	up/L	NA		\Box .		L	U	U	10		υ	U	10		Ü	U	10	10
M 4D	2.6-Dimeteriolitem	ug/L	NA.					U	Ü	10		U	U	10		Ū	Ü	10	10
M-4D	? Chlaronaphthalene	ug/L	NA	1				U	U	10	1	U	Ü	10		Ü	Ü	10	10
M-4D	2 Chlorophenol	wg/L	NA		\Box		,	Ü	U	10		U	U	10		Ŭ	Ü	10	10
M-4D	2 Methylmaphthalene	ug/L	NA		\Box		ĭ	U	υ	10		Ü	U	10		Ü	-	10	10
M 40	2 Methylphenul	ug/L	NA	 	-			Ū	Ū	10		Ū	Ü	10	 	١ ٠	Ü	30	10
M-40	2 Notementure	ug/L	NA.	 	-			Ü	Ū	25		Ü	Ü	25		Ü	Ü	25	25
M 4D	2 Natuphonal	ug/L	NA NA	1				Ü	Ü	10		Ü	Ü	10		۱ ű	5	10	10
M-4D	1.V-Du hlorobe nzidne	ug/L	NA.	1	-		 	Ū	Ü	10		Ü	Ü	10		1 0	Ü	10	10
		ug/L	NA NA	 	 			T U	Ü	25		Ü	۳	25		1 0		25	25
M 4D	1 Nationalists		NA NA	╆~~			 	ان ا	Ü	25		Ü	۳	25		1 0	2		25
M 40	4.6-Danter 2-methylphenol	ug/L	NA NA	╂──	-		 	Ü	Ü	10	 	Ü	Ü	10		_		25	
M-4D	4. Bremmphenyl-phonylether	ug/L.	_	├─				l ö	Ü			_	_		 -	U	حا	je je	10
M 4D	4 Chluro-3-methylphenol	ug/L	NA.	╂				"	Ü	10		U	U	10		U	3	lo lo	10
M-40	4 Chlorosandone	ug/L	NA NA		-				_	10		U	c	10	ļ <u>.</u>	U	U	10	30
M 4D	4 Chlorophenyl-phenyl ether	wg/L	NA .	╄				U	ע	10	——	U	U	10		U	2	10	(6
M-4D	4- Methy inherial	wg/L	NA	 				Ų	U	Ю	├ ──	U	ט	to	<u> </u>	U	2	10	10
M-4D	4 Netramature	wg/L_	NA .	_			 _	U	U	25		U	2	25		U	L U	25	25
M-4D	4 National	ug/L	NA.					U	U	25		U	٦	25		U	3	25	25
M-4D	Acceleptatione	ug/L	NA NA	Ļ.,				U	٦	10		U	٥	10		U	5	10	10
M 4D	Aceniphthylette	· we/L	NA	L				ש	U	10		Ü	5	N		U	د	10	10
M 4D	Anthracene	well.	NA	<u> </u>			L	U	U	10		U	ح	10		U	5	10	10
M-40	No novi (a) anthrasens	upl	NA					U	U	. 10		٦	٦	2		U	دا	10	10
M 4D	Henry(alpyrent	ug/L	NA.						U	10		2	٦	10		U	5	10	10
M 4D	HenzughHumanthene	ug/L	NA					U	U	10		U	5	10		U	5	10	30
M-ID	Henrig J. Operylene	w/L	NA					U	c	<u> </u>		U	3	10		U	٥	10	10
M 4D	He neugh Hilmstandhene	ug/L	NA					<u> </u>	C			U	ح	10		U	5	10	10
M-40	In 42-Chienenthurry (methods	ug/L	NA					U	U	ld		U.	٥	10		U	٦	10	10
M-ID	host2-Chlorocthyl) other	wg/L	NA					U	U	10		U	٥	10		U	Ü	10	10
M-ID	hest 2 - Early the mylaphthalate	up/L	NA					U		10		U	=	10		18	5	10	10
M-4D	Butylbenzylphthulate	ug/L	NA	_				U	U	10		Ü	Ü	10		ū	Ů	10	19
M-4D	Cartagetic	ug/L_	NA		\Box			Ū	Ū	10		Ü	٠	10		Ü	Ü	10	10
M-40	(Turyacta:	ug/L.	NA	_	\vdash			Ü	Ü	10		Ü	5	10		Ü	Ü	10	10
M-4D	De-m-hasty lphshulate	ug/L.	NA	1				Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
M-40	Dr. nu.cty lphthalate	ugA.	NA NA	 	 			Ü	Ü	10		Ü	픙	10		l ü	-	10	10
M-4D	I hitemand a hisandracene	wet	NA NA	 	_			ü	Ü	10		-	5	10		+ +	-	10	10
M-4D	[McRatera	w/L	NA.	 	—			Ü	Ü	10	├──┼	Ü	Ü	10		Ü	+	10	10
	Destryphilate	ug/L	NA NA	 				Ü	H٣	10		╗	Ü	10		Ü	÷	10	10
M-4D M-4D	i Imaginy ipinihalaic	up/L	NA.	 	\vdash		<u> </u>	Ü	٦	10		"	-	10		-	÷	10	10
			NA NA	┢	├─┤			Ü	Ü	10	 	Ü	-	10		_	_		
M-4D	f-lunfamilicus	up/L	NA NA	 	 			U	۳	10				10		Ų.	U	10	10
At-411	1 tursene	uje/L		-	 			Ü	_			U	υ			U		10	to
M-4D	Hexachlorobetrene	up/L	NA NA		├ ─┤		 -		Ų.	10		U	U	10		U	U	10	10
M 4D	He tachkirohitadiene	ug/L_	NA	┸——	لبيبا		L	Ü	U	10		U	U	10		ប	נט	10	10

1]			Event	1	<u> </u>		Event :		 		Event		<u> </u>		Event -		Highest
Well	Annlyte	Units	Kesuli	I.Q	DQ	Detect Limit	Hesult	2	8	Hetert Limit	Result	14		Detect Imale	Kesult	14	Þζ	Detect 1.lmit	Detection
M 4D	Hexachlorocyclopentadiene	eg/L	NA					=	2	10		U	U	10		U	C	10	10
M 4D	He was bloosethane	N#/L	NA.					כ	٥	10		U	U	10		U	C	10	10
W 4D	Indenot1/2,3-edipyrene	eg/L	NA					U	U	10		U	U	10		U	U	10	10
M 4D	1-suphritons:	up/L	NA					ט	5	10	L	U	U	10		U	٦	10	10
M 4D	N-Natroso do a propylamane	ug/L	NA					U	ט	10		U	٥	to to		υ	נט	10	10
M 4D	N Neucondiplicity familie	ug/L.	NA .					5	5	10		Ü	Ü	10		U	ט	10	10
M 4D	Naphthalene	#g/L	NA					U	ט	10		C	U	10		υ	U	10	10
W 40	Numberrene	ug/L	NA .					٥	5	10		U	U	10		U	5	10	10
M 41)	Pentachlorophenol	up/L	NA					U	5	25	T	U	U	25		U	Ų	25	25
M-41)	Phenanticae	wp/L	NA.	_				U	U	10		U	Ų	10		U	U	10	10
M 4D	Phonol	ug/L	NA	$\overline{}$			16			10	8.0)		10	14			10	16
M 417	Pyrene	sug/L	NA.					U	U	10		U	U	10		U	U	10	10
M 45	1,2,4-Trichlorohenzene	ug/L	NA					U	U	10	1	U	Ū	10		U	U	10	10
M-45	1.2-Dichlorobenzene	ug/L	NA.					Ü	U	10		U	Ü	10		Ū	U	10	10
M 45	1.3-Dichlorobenzene	ug/L	NA					U	כ	10		Ū	U	10		U	U	10	10
M-48	1.4-Dichlorohenzene	ug/L	NA		Η.			U	U	10		U	Ü	10		U	U	10	10
M 45	2.2's(xybs(f-Chloropropanc)	sg/L	NA.					Ü	2	10		Ū	Ū	10		Ü	Ü	10	10
M 45	2.4.5-Trachloruphenot	up/L	NA		1			Ü	Ü	25		Ü	Ü	25		Ü	Ü	25	25
MAS	2.4,6-Tricislomopticmol	øy/L	NA NA	-				Ü	Ü	10		Ü	Ŭ	10		Ü	Ü	10	10
M 45	2.4-Dichlorophenol	wg/L	NA NA	 				Ü	Ü	10	 	Ü	Ü	10		Ū	ŭ	10	10
M 45	2.4-Dimethylphenol	ug/L	NA NA	t	t			Ü	Ü	10		Ü	Ü	10	 	Ť	Ü	10	10
M 45	2.4-Danarophenol	ug/L	NA NA	 	_			Ü	Ü	25		Ü	Ť	25		tü	Ü	25	25
M 45	2.4-Dimitropoliscine	we/L.	NA NA					Ü	Ü	10		Ü	Ü	10	 	Ü	Ť	10	10
N 45	2.6-Dumronolucue	ug/L	NA NA		 -			ů	Ü	10	 	Ü	Ť	10		Ū	Ü	10	10
		wert.	NA NA	├-	-			Ü	Ü	10		Ü	Ü	10	 	 "	Ŭ	10	10
Mas	2 Chlorosaphthalete	ug/L	NA NA	├				Ü	۳	10		ا ت	Ιΰ	10		U	Ü	10	10
	2 Chloropticnol		NA NA	├	├			Ü	Ü	10	 	Ü	l ö	 		Ü	Ü	10	10
MAN	2 Methylmaphthalene	nk/r	NA NA		├─-	ļ		l ü	"	10		Ü	U	10		Ü	Ü	10	10
M 45	2 Methylphenol	uje/L		├					7	25		Ü	l ü	25		Ü			
MH	2 Nitroamine	ug/L	NA NA	├	├			Ü							 		101	25	25
N 15	2 Natrophenol	up/L	NA .	├	├			U	2	10	}	U	U	10		U	U	10	10
M-45	3.3'-Dichlorobenzidine	ug/L.	NA	-	├ ──			2	Ü	10	 	Ü	Ų	10		U	U	10	¥0
M 45	1 Nureambic	wg/L	NA		├ ─			U	U	25	 	U	<u>u</u>	25		Ų.	U	25	25
M 45	4.6-Dimitro-2-methylphenol	sp/L	NA .		├		 -	-	2	25	 	Ü	Ü	25		U	U	25	25
M 48	4 Bronuphenyl-phenyletter	uy/L	NA	<u> </u>		<u> </u>		2	٦	10	ļ	U	U	LO .	 	U	Ü	10	to
M 45	4 Chloro-1-methylphenol	ug/L	NA.	<u> </u>	<u> </u>			U	υ	10		U	U	10	}	L.	U	10	10
M 45	4 Chlorouning	ug/L	NA					_	2	to	L	U	U	to		U	U	10	10
M-45	4-Chlorophenyl-phenyl ether	ug/L	NA	-	<u> </u>			U	2	10	<u> </u>	U	U	10		U	U	10	10
M 45	4 Methylphenol	wyrL	NA NA		L	<u> </u>	<u> </u>	U	5	10	Ļ	U	U	10	ļ <u>.</u>	U	U	10	10
M-45	4 Nanamine	up/L	NA .	<u> </u>	L		L	U	>	25	<u> </u>	U	U	25		U	U	25	25
M 48	4 Natophend	ug/L	NA	!				U	5	25		<u>v</u>	U	25		L.	U	25	25
M 45	Acetaplatiene	up/L	NA	ļ	<u></u>		ļ	<u> </u>	>	10		U	U	to to		U	U	10	10
M 45	Accomplete	ug/L	NA	<u> </u>			 	U	2	10		U	U	50		U	U	10	10
M 45	Amhracene	eg/L.	NA					=	٥	10		U	U	10		υ	υ	10	10
M-4S	Henri Catanthencenc	wp/L.	NA					U	٥	\$0		U	U	10		U	U	10	10
M-4S	Henzii(a)pytene	sth/r	NA						٥	10		U	U	10		U	U	10	10
M 48	Heneu(h)(humanthene	up/L	NA			l		U	5	10		Ü	U	10		Ü	U	10	10
AI-48	Heneutg.h.iperylene	ug/L	NA					U	5	10		U	υ	10		U	U	10	10
M 45	Benziel Humandiene	ng/L	NA		Γ_{-}			Ü	د	10		U	U	10		U	U	10	to
N1 45	hist2 Chloroethoxylmethane	ug/L.	NA		\sqcap			U	2	10	1	V		10		Ü	U	10	10
M 45	his(2-Chloroethyl) other	uµ/L.	NA				45			10	71			10		Ū	U	la la	71
M 45	his(2 Ethylhexyl)phthalate	uµ/L	NA	Γ		[U		10		7	U	10		JB	Ŭ	10	10
M 45	Butylhenzylphthalate	ug/L	NA	1	\vdash			U	v	10		Ü	Ū	10	 	Ü	Ü	10	10
M 48	Carturole	wp/L	NA					υ	υ	10		Ü	Ť	10	<u> </u>	Ū	Ŭ	10	10
M 45	Chrysche	wg/L.	NA.					Ü	Ü	10		Ŭ	Ť	10		Ü	Ü	10	10
M 45	Dr.m.husytpitthalasc	ug/L	NA.		\vdash			Ü	Ü	10		Ü	Ι ΰ	10	 	Ü	Ü	10	10
M 45	On managiphological	ug/1.	NA NA	t	t			Ü	Ü	10		T U	lü	10		Ü	5	10	10
M-15	Dibenzo(a,h)anthracenc	up/L	NA NA	 	 -	 		Ü	۳	10		Ü	1 0	10	 	Ü	Ü	10	10
M 48	Diferentia	ug/l.	NA NA	 	 		 	Ü	٦	10		Ü	Ü	10		Ü	Ü	10	10
M 48	Dectty/platialate	upit.	NA NA	 	 			Ü	ٿ	10	 	Ü	 "	10	 	10	Ü		10
M 45	Panethy folithalac	uk/l.	NA NA	 	\vdash		 	Ü	"	10	 	t ü	 "	10 10		U	5	10	10
	1	, og/1.		ч		<u> </u>	<u> </u>	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>				<u> </u>			1(1)	1

Appendix C

					Erest				Event				Event.		L		livent		Highest
Well	Abulyte	Units	Rontalt	LQ	DQ	Dutect 1.imit	Reset	W		Detect Limit	Result	14	pq	Detect f.imit	Konk	Щ	PQ	Detect 1.imit	Detection
M 45	f-luntantica:	wp/L	NA					Ų	U	10		U	U	10		U	U	10	10
M 45	f-function	Jupe/L	NA					2	Ū	10		U	U	10		U	U	10	10
M 45	He sas Morobenzene	/L	NA					Ü	U	10		▔	U	10		U	U	10	10
M 45	He un blotobutations	up/L.	NA	, 				Ü	Ū	10		U	Ū	10		U	UI	10	10
M-45	He sachiorocyclopentadiene	w	NA		 			Ü	Ū	10		Ū	Ü	10		U	1 11	10	10
M-45	He tachless eithans	الهد	NA	-	 			v	Ū	10	 	Ü	Ť	10		Ū	Ť	10	10
M-48	Indent 1.2.1-cdipyrone	ug/L	NA.	-	 			Ü	l ü	10	 ~ - 	Ü	Ü	10		Ü	Ü	10	10
M 45		up/L	NA NA	├─	├─-	 		1	Ι ΰ	10		Ť	Ü	10		Ŭ	Ü	10	10
	Inaphanone		NA NA	├	├─			Ü	Ü			Ü		10		ᇦ			
M-45	N-Nations de a-parquy hammer	ye/L		├	}—			_		10			U			_	U	(6	10
M-48	N National applicacy Lamber	ug/L	NA	├	 			=	U	10	└	U	<u></u>	2		U	٦	10	10
M-45	Naphthalene	- Japa	. NA	├	<u> </u>			2	U	10	└─ ─	U	Ü	10		ש	U	10	10
M-45	Napohenzene	upl	NA	<u> </u>	<u> </u>			٦	U	10		c	U	10		U	IJ	10	10
M-45	Pentachlerophenol	ug/L	NA	<u> </u>				5	U	25		U	U	25		U	U	25	25
M-45	Phonantiscee	ug/L	NA					2	Ü	10		U	U	10		U	C		10
M-45	Physid	ug/L	NA				18			10		Ü	U	10	25			10	25
M-45	Pyrene	we/L	NA					5	Ü	10		Ü	U	10		U	U	10	10
MW-06	1,2,4-Tricklombenzone	ug/L		U_	U	10		د	Ü	10		U	U	20		U	U	10	20
MW-m	1,2-Dichhaubenzene	ug/L.	Γ	U	U	10		5	Ü	10		Ü	Ū	20		T	Ü	10	20
MW-th	1.3-Dichlorobenzene	w/L		U	Ū	10		5	Ū	10		Ü	Ü	20		ΙŪ	Ü	10	20
MW-III	1.4-Dackbardeneene	ug/L.		Ū	Ū	10		C	Ü	10	· · · · · ·	Ü	Ü	20		۱ŭ	l ö	10	20
NW-III	2.2'-unyhis(1-Chinnepupane)	ug/L		lΰ	Ü	10		Ü	Ť	10		Ü	Ü	20		T	Ü	10	20
MW-06	2.4.5-Tru blamphend	141	 	Ü	Ü	23		Ü	Ť	25	 	Ü	Ü	50		ΙÜ	l v	25	50
MW-185	2.4.6-Tru blomphend	-		ΙŬ	Ü	10		7	Ť	10		Ü	"	20		Ü	-	10 1	20
				Ü	Ü	10		6	Ü	10		Ü	٥	20		۳	10	10	
MW th	2.4 Dichkamphonal	up/L	f	Ü	Ü	10		6	╁	10		Ü		20	3.0	_			20
MW-III	2.4-Done-thylphemil	ug/L		Ü	Ü			ü	_				, C		3.0	1		10	20
MW-06	2.4-Dimit-ophenol	ug/L	 	_		25			V	25		C	-	90		٧	U	25	50
MW46	2.4-Dimeronducue	ug/L		U	U	10		2	υ	10		U	>	20		U	E	10	20
MW-III	2 6-Dentrutularus	ug/L		U	U	10		=	2	10		U	3	20		U	U	10	20
MW (III)	2 Chloronaphthalene	ug/L	<u> </u>	U	U	10		2	U	10		U	5	20		٦	U	10	20
AtW-tth	2 Children branch	ug/L,	L	5	5	10		5	٥	10		U	دا	20		U	U	10	20
MW-III	2 Methylmaphthalene	Juge L		ט	U	10		5	Ü	10		C	5	20		U	U	10	20
MW 06	2-Methylphenid	ug/L		U	U	10		c	Ü	10		c	U	20		U	U	10	20
MW-100	2-Nitroantine	ug/L		U	U	25		2	U	25		U	U	50		U	U	25	50
MW-lb	2. Naprophysist	ug/L.		U	Ū	10		5	Ü	10		Ū	Ü	20		Ū	Ü	10	20
MW 40	3, V-Dachkardenzidine	up/L		U	Ü	10		6	Ū	10		Ū	Ü	20		Ü	Ü	10	20
MW-0b	1- Magnessian India:	up/L		Ū	Ü	25		, c	Ť	25		Ü	ن ا	50		Ü	Ü	25	50
MW 48b		ug/L		Ü	Ü	25		Ü	Ť	25		Ü	Ü	36		Ŭ	1 0	25	30
	4.6-Dantes-2-methylphenol			۱ ٽ	Ü	10		7	ΙÜ	10		-	۳			_			
MW-4h	4 Hromophonyl-phonyletter	ug/L												20		Ų.	U	10	. 20
MW (th	4 Chlore-1-methylphenal	- Juga		U	U	10		5	U	10		c	=	20		٧	3	ia	20
MW-106	4-Chlorounitte	- 1904	 	U	Ü	10		=	Ų	10		U	2	20)		2	U	10	20
MW-IM	4-Chlumphenyl-phenyl ether	ug/L		U	U	10		3	U	10		c	3	20		ב	U	10	20
MW (Ib	4- Methylphenal	mp/L		U	U	10)		2	υ	10		0	>	20		٦	U	10	20
MW-Im	4 Nigroundant	we/L		U	ָ <u>บ</u>	25		5	U	25		U	>	3 0		٦	ט	25	Sn
MW-Im	4 National and	we/L	L	U	U	10		2	U	25		U	3	50		>	UJ	25	50_
MW-m	Acenaghthead	ug/L		U	U	10		3	U	10		Ü	>	20		U	U	10	20
MW-III	Accomplishy lette	ug/L.	L	U	U	10		5	Ü			U	>	20		٥	C	10	20
MW-III	Ambracec	ug/L		U	U	10		>	U	IG.		U	5	20		5	U	10	20
MW-lin	Benzulalandement	- Jupil		U	v	10		2	U	10	1	U	-	20		5	Ü	10	20
MW-III	ficantalpyrent	ugs.	T	U	Ū	10	~~	5	Ù	10		Ü	<u>.</u>	20		Ü	Ū	10	20
MW 466	Beandy Horsenberr	upl.	T	Ū	Ü	10		Ü	Ť	100		Ü	Ü	29		1	Ü	10	20
MW-06	Reweits is appropriate	1994	 	Ü	Ü	10		7	Ü	10		Ü	Ü	30		۳	1-5-1	10	20
		ug/L	 	1-5	Ü	10		7	Ü	10		Ü	U	26		7	 U		
MW-th	Beneath Historians		 	Ü	Ü	10		2		10								10	20
MW-000	hest2-Clab muchbany htteshane		 		- "				U.		┝╼╌┸	c	7	20		2	ט	10	20
MW-In	No.(2-Chlorocthyl) other	- WL	56	 		NA	7.0	-		10	30			20	31	_		10	54
MW-III	hest 2-Ethytherayl iphthalate	ug/l.		U	U	10		2	V	10	16			20		爆	Ü	10	20
MW-III	Husythen/ylphthulate	_ ug/L	 _	U	U	10		٦	U	10		-	٦	20		٦	U	10	20
MW-IN	Cathoroly	w/L	L	U	U	10		3	Ü	10		Ü	5	2h		5	ט	10	2n
MW III	Chrysene	w/L		U	U	10		>	٦	10		c	٦	20		C	U	10	20
MW-10	Den-butylphihalate	wg/L		U	Ų	10		5	U	10		U	٥	20		ט	U U	10	20
	De nouve (pinhalate	- Ug/L		U	U	10		2	Ü	10		C	5	20		Ü	Ü	10	20
																ب	لمنتما	747	217

					Event I				Event.				Lveni			,	Event		Highest
Well	Analyte	Units	Result	1.0	DQ	Detect 1.1mis	Result	1.0		Detect Limit	Horuk	14		(Detect 1.jonit	Result	IQ	DQ.	Detect Limit	Detection
	Dihenzora,h)anthracene	ug/L		U	=	10		U	U	10		U	U	20		U	U	10	20
MW-40	Othenzisturan	ug/L		U	U	10	L	U	U	10		U	Ü	20		U	U	10	20
MW-III)	Diethylphitalaic	ug/L	20	1	<u> </u>	NA		U	U	10		l u	U	20		Ų.	U	10	20
MW IM	Dimentylphthalac	ug/L	<u> </u>	U	U	10		U	U	10	 	U	U	20		U	Ü	10	20
	Pluspathene	ug/L		U	Ü	10	 	Ų	U	10		U	U	20	 	Ų.	Ų.	10	20
	1-harrenc	ug/L		Ų.	Ų.	10		U	U		 -	유	Ü	20		U.	U	10	20
	He zachkombenzene	ug/L		Ų.	c c	10	 	U	U	10		1 0	5	20		U	"	10	20 20
	Figure More metadaces	ug/L		U		10		1 8	1 5	10		1 5	US	20		ΗŬ	0	10	20
	Herachhoracyclopentadiene	- Mar		U	U	10	 	Ü	1 0	10	 	1 5	U	26		Ü	Ü	10	20
MW-06	Hexa Monethane	ugh		l ü	Ü	10	 	Ü	lΰ	10		1 0	Ü	20		l ü	Ü	10	20
	Indens(1,2,3-cd)pyrene	ug/L	15	 ~		NA NA	2.0	15	l- Ŭ	10		۱ ۰	Ü	20	2.0	1	- Ŭ	10	20
	N-National-de-n-peopylamine	ug/L	 ''	10	v	10		ΙÚ	U	10		۱ ٽ	Ü	20		Ü	U	10	20
	N-Nitrovadaphenylamene	w/L		l ŭ	Ü	10		Ü	Ι ΰ	10		۱ŭ	Ü	20		Ť	Ť	10	20
	Naphthaking	ug/L		Ü	Ü	10	 	Ŭ	Ü	10		ΙŪ	Ť	20		Ü	Ū	10	20
MW-(III)	National	ug/L		Ü	Ü	10		t ö	Ť	10		tō	Ü	20		Ť	Ū	10	20
	Pentachkoophend	wg/L		Ü	Ü	25	 	Ť	Ü	25		10	Ü			Ŭ	Ü	25	50
	Phenastheene	ug/L		Ü	Ü	10		Ü	Ū	10		T U	Ū	20		Ü	Ū	10	20
MW-0h	Phonel	ug/L		U	Ü	10			Ü	74	17	17		20	60	<u> </u>		10	60
	Рутеве	wg/L		U	Ü	10		U	U			U	U	20		υ	U	10	20
	1,2,4-Trichlombenzene	ug/L.	NA					Ū	V	10		U	U	10		U	U	10	10
MW-(17	1,2-Dichlorolenzene	ug/L	NA					U	U	10		U	U	10		U	U	10	10
MW-07	1.3-Dichlorobenzene	ug/L	NA				I	U	U	10		U	U	10		U	U	10	10
MW-07	1,4-Dichlorobenzene	ug/L	NA					Ü	U			U	U	10		U	U	10	10
MW-07	2,2'-soxybis(1-Chloropropunc)	ug/L	NA _					U	U	10		U	U	10		U	U	10	10
MW-07	2,4,5-Teachicocophenol	up/L	NA_	1—	┡		<u> </u>	U	U	25		U	U	25	L	<u> </u>	U	25	25
MW-07	2,4,6-Teschkerophenol	uy/L	NA NA	-	L.;			U	U	10	<u> </u>	LU	U	10		Ú	U	10	10
MW 07	2.4-Dichlorophenol	ug/L	NA	-	-		<u> </u>	U	Ų.	10		L.U.	Ų.	10		U	U	10	10
MW-07	2.4- Dana diyiphenol	up/L	NA	-	-			U	U	10		U	U	10		U	U	10	10
MW 07	2.4-Dimirophenol	ug/L	NA .	-				U	Ų	25	 	l v	Ų.	25		U	U	25	25
MW-07	2.4 Dustroichiene	ug/L	NA .	1	-		ļ	U	U	10		U	U	10	}	U	U	10	10
MW 07	2.6-Dinetrotolucae	ug/L	NA NA	1	\vdash			U	Ü	10	 	1 0	10	10		U	U	10	10
MW-07	2-Chluronaphthaletic	wy/L	NA NA	-	H			Ü	Ü	10		1 0	Ü	10		U	ü	10	10
MW 417	2 Chlorophenol	wg/L	NA NA	-	\vdash			U	Ü	10		1 0	Ü	10	 	1 5	Ü	10	10
MW-07	2-Methy Inaphthalene 2-Methy Iphenol	⊌g/L ⊌g/L	NA NA	-			 	Ü	Ü	10		۱ ٽ	Ü	10		l ö	l ö	10	10
MW-07	2 Nitramiliae	WAT.	NA NA	 - 				Ü	Ü	25		l ü	1 5	25		Ü	Ü	25	25
MW (17	2-Numphond	ug/L.	NA NA	1-	\vdash			Ιΰ	Ü	10	 	ΙŬ	Ü	10		l ü	Ü	10	10
MW-07	1.3'-Dichlorabenzaline	mp/L	NA NA		Н		}	Ü	Ü	10		ΙŬ	Ü	10		T U	Ü	10	10
MW-07	1. National line	ug/L	NA NA	1	\vdash			Ü	Ü	25		ΙÜ	Ü	25		Ü	Ü	25	25
	4.6- Deserte-2-methylphenel	ug/L	NA.		$\overline{}$			Ü	Ü	25		υ	Ü	25		l ö	ΙŬ	25	25
	4 British phonyl-phonylether	wa/L	NA					Ū	Ū	10		Ü	Ü	10		Ū.	Ü	10	10
	4 Chloro 3 methylphesol	u _{pl} /L	NA					Ü	U	10		Ü	U	10		v	Ü	10	10
	4 Chlorosoilme	ug/L	NA					U	U	10		U	U	10		U	Ü	10	10
	4-Chlorophenyl-phenyl other	wg/L.	NA					2	U	10		U	U	10		U	U	to	10
MW 07	4 Methy inhemal	->44	NA					2	U	10		U	U	10		U	U	10	10
MW-07	4-Numanime	ug/L	NA					Ü	U	25		U	-	25		U	U	25	25
	4-Nitrophenol	ug/L	NA	-	\vdash			U	U	25		U	U	25		C	3	25	25
MW-07	Accomplishenc	ug/L	NA					Ų.	U	10	ļ	U	U	ta		V	٥	10	10
	Accomplishylete	ug/L	NA NA		\vdash			Ų.	U	10		U	U	10		U	U	IO.	10
	Ambracene	ug/L	NA .		\vdash			U	U	10		U	U	10		U	3	10	10
	Retain(alanthracese	up/L	NA NA		-4			ų.	<u></u>	10		Ų.	U	10		U	٦	10	10
	Benzistalpyrene	up/L	NA.	\vdash				U	Ü	10		Ų.	U	10	<u> </u>	U	U	10	10
	Betweenthinganthene	ug/L	NA.	╌┤	\vdash			"	U	10		Ų	U	10		Ų	U	10	10
-	Henzotg hatperylene Henzoth Olionanthene	ug/L ug/L	NA NA	┝─┤	-			 "	U	10		U	U	10		Ü	٧	10	10
	hest2-Chierecthesy junctions	up/L	NA.	-				۳.	Ü	10		Ü	 "	10		Ų,	5	10	10
	hts(2-Chloroethyl) ether	ug/L ug/L	NA NA	┝─┤				+	"	10	 -	+ +	0			U	٦:	10	10
	hist2-Ethyllicky liphthalaic	up/L	NA NA	╌┤				Ü	ü	10	2.0	1 -	۳	10		C C	٦:	10	10
	Hutythen ylphthalate	up/L	NA NA	├─┤			 	Ü	Ü	10		Ú	U	10		8	2	10	10
لتتت	······································	- 44.F					لــــــا	<u> </u>	ـــــــــــــــــــــــــــــــــــــــ		L		لتا	<u> </u>		اب		10	10

Marco					_	Event				Kyest	1			Livers		,		Event	1	Highest
SWAPPING Company SWAPPING SWAPPING Company SWAPPING Compan	W.H	Anuluta	Shakes .	Name to	1 14			Barrels	110			Band				· Cample	Tio			Detection
March Marc					+	+											_	<u> </u>		10
MAY OF Processing Services MAY OF Processing Services MAY OF Processing Services MAY OF Processing Services MAY OF Processing Services MAY OF					┯	╂							-			 				10
March Marc						├ ──												_		
Section Sect					├															10
West Marchard West					├	-		 				ļ	_				_			10
May 10 May M					↓	╄						ļ								10
Second Column Second Colum					↓	↓_						 								10
Secondaries					L	-		<u> </u>				<u> </u>								10
New Color Description De	MW-07	Deneshylphthulate	ug/L	NA	<u> </u>	1		<u> </u>		_	10	1	U	U	10		Lυ	U	10	10
U. V. U. D. San March Records March 1975 March Control March 1975 March 19	MW-07	f-handatelectic	mg/L	NA						U	10		U	U	10		U	U	10	10
New Or N	MW 07	I-bustette	well.	NA	Γ				U	U	16		U	Ü	10		V	U	80	10
Marker Color Learn Service Learn Servi	MW 07	He nachkorobenzene	Mg/L	NA	Γ				U	U	10		U	U	10		U	U	LO .	10
May 17 New Anterwise			w/L	NA	1				U	Ū	10		U	U	10	1	U	Ü	10	10
Second Content				NA	1	1			U	Ū	10		TU	Ü	16		u	U	10	10
Marker C. S. Agleysine					1	1-			U			 					_			10
Section Sect					 	_		 				 					_			10
No. No. No. No. No. No. N. N					 -	1-		 				 								10
Seminocologonic bases Semi						-														
Section Sect					┼~	+		 								 		_		10
						-		 								 				10
No. 10 N						 		 _				<u> </u>	_							10
President					₩-	-		 _				I								10
President		Pontachkersphonol				_										L		_		25
Prof. Prof	MW 07	Prenambiene	ug/L	NA.		<u> </u>			U	U			U	U	10		U	u	10	10
NW 10 1.24 Transhombromer sign.	MW 117	Photoil	wy/L	NA				70			10	31			10	48	L		10	70
All Fire Market	MW:07	Pyrene	NAT .	NA	Γ				٦	Ū	10		U	U	10		U	U	10	10
1 No. No. 10 1 No. No. 10 1 No. No. 10 1 No. 10 1 No. 10 1 No. 10 N			we/L		Ū	U	10		U	U	10		U	U	10		U	U	20	20
1 May 12 1 Deskin-sheerings mg/L					U	U	lo		U	Ū	1/0		U	Ü	10		Ū	U	20	20
14 Design Interest 15 Design 15 Desi					U	U	10		U	Ü	10		Ü	Ü	10		Ü	Ū	20	20
NW 08 2.5 - 0.5 peec 4.7 the representation 0.9 L U U 16 U U 16 U U 25 U U U 16 U U U 16 U U U 25 U U 25 U U							10		Ü							 	_			20
Section Sect									_	_		 		_						20
NW 07 2.4 h Th thought and ug/L U U 10 U U 10 U U 10 U U 20																 				30
MW 101 2.4 Deptherspherical mg/L U U U 10 U U 1									_	_		 								
MW 10 2-6 Design by Sphitched Gg/L U U 10 U U 10 U U 10 U U 25 U U 26 U U 27 U U U U U U U U U									_							 				20
MY 18 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1																<u> </u>				20
NW 18 2.4 Dates of observed Sept. U U 10 U U 18 U U 18 U U 28 NW 18 2.5 Dates of observed sept. U U 10 U U U U U U U U U					_	_		 _										_		20
New 15 See Design of degree Mg/L U U 10 U U 10 U U 10 U U 10 U U 20	MW-III	2.4-Dinos ephenol		 _																30
Shift 1 2 Shift 2	MW-08	2.4 Datase solucino		 _				<u> </u>				L				<u> </u>				R
New Color New	MW-III	2 6- Deniarricipane	up/L				10		_		10		U	U	10		U	U	20	20
MW IN Characteristic Mg/L U U 10 U U 10 U U 10 U U 10 U U 20 MW Characteristic Mg/L U U U U U U U U U	MW-100	2.4 Inhuranaphthalene	ma/L		U	C	10		U	U	10		U	U	10		U	U	20	20
MW-18 2-Mcdbyfraghthackers	MW-118	2-Chlorophonol	wg/L		U	C	10		U	5	10	T	U	Ü	10		U	U	20	20
MW-18 2 Notabylphenial mg/L	MW.III		we/L		U	U	10		U	U	10		Īυ	Ū	10		Ü	U	20	20
MW-IR 1-Numeration					ű	Ü	10		U	Ü	10							_		20
MW-III 2 Noneyeland ag/L					ü	1	21		10	Ti-		i								50
MW-18 1.1 Declaration mg/L								 	_							 				20
MW-18 Notes author MW-1						_		 				 						_		
MW-08 de-Dimeter 2-methylphened ug/L U U 25									_											20
MW-08 A Chilery-Lenselly placered ug/L U U U 10 U U 10 U U 10 U U												 -				<u> </u>				50
MW-08 4 Chairs-surphyspherical sight U U 10 U U 10 U U 10 U U 20				 				 								ļ				50
MW-18 4 Chlareschiller																				20
MW-18 4 Chlorophenyl-phenyl cibet ug/L U U 10 U 10 U U 10 U U 10 U U 20 MW-18 4 Medby lefected ug/L U U U 25 U U U 25 U U U 25 U U U 25 U U U 25 U U U 25 U U U 30 MW-18 4 Notequirine ug/L U U U 25 U U U 25 U U U 25 U U U 25 U U U 25 U U U 30 MW-18 4 Notequirine ug/L U U U 10 U 10 U U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U U 10 U U 10 U U U U	MW-08	4 Chines Conthylphenol						<u> </u>				L	_							20
MW-48 Methylpfermid eg/L U U U 10 U U 10 U U 150 U U U 20			. up∧.					L									U	U	20	39
MW-48 4-Medby placed eg/L U U U 25 U U 25	MW-III	4 Chiamphenyl-planyl ether	we/L		_						10		U	U	10		U	U	20	20
MW-/8 4-Nationalisting eg/L U U 25 U U 25 U U 25 U U 50			upl		U			L	U	U	10	l	U	Ü	10		V	U	20	20
MW-48 4-Nonephared			wg/L		U	บ	25	l	U	Ü	23		U	Ų	25	F	U	U	50	30
MW-48 Accompletione up/L U U 10 U 10 U U 10 U U 20 MW-48 Accompletion lens up/L U U 10 U 10 U U 10 U U 10 U U 20 MW-48 Accompletion lens up/L U U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 20 MW-48 Anthroxone up/L U U 10 U 10 U U 10 U U 10 U U 10 U U 10 U U 20 MW-48 Henrical anthroxone up/L U U 10 U U 10 U U 10 U U 10 U U 20 MW-48 Henrical application up/L U U 10 U U 10 U U 10 U U 20 MW-48 Henrical application up/L U U U 10 U U 10 U U 10 U U 10 U U 20 MW-48 Henrical application up/L U U U 10 U U 10 U U U 10 U U 10 U U 20 MW-48 Henrical application up/L U U U 10 U U U U U U U U U U U U U U U			W/L		U	U	25		U	Ü	25		U	Ü	25	 	U	Uì		30
MW-/8 Accomplisher-lene mg/L				T	U	U	10		U											20
MW-48 Authitacin: ug/L U U 10 U 10 U U 10 U U 10 U U 10 U U 20 MW-48 Https://doi.org/10.10.10.10.10.10.10.10.10.10.10.10.10.1																				20
MW-08 Remodelated Circ. MW-08 Remodelated Cir										_						 				20
MW-HH Hemminappines ug/L U U 10 U U 10 U U 10 U U 10 U U 20 MW-HH Hemminappines ug/L U U 10 U U 10 U U 10 U U 10 U U 10 U U 20				-				 								 -		_		
MW-UN Uservold to U U U U U U U U U U U U U U U U U U									_			 					_			20
									_	_			_							20
						_		L	_	_		<u> </u>				L				20
	NO:WM	Henzotg Ir Operylene	ug/l.		U	U	10	<u> </u>	U	Ü	10		U	U	10	L	حا	5	20	20
ATW (0)	MIN IN	Henzigk Bluoganthene	wg/L.		U	U	10	L	ט	U	10		U	U	16		U	U	20	20

1		l !			Ewat				Event 2	Detect Limit	Roult		Event.	Detect Limit	Result		Event		ilighesi
11.11	Analyte	Unito	Result	10	IX	Detect f.limit	Result	1.0	DQ	10	Rende	12		10	Result	I.Q	DQ	Detect Fimit	Detection
	tox(2-Chloroethroxytmethane	ug/L		U	Ų.	10 to	ļ	c c	c c	10		7	ᇦ	10	40	1 5	Ú	20	20
MW III	his(2-Chloricthyl) ether	ww/L	 	U	U	10		0	- :-	10		Ü	"	10	- 1" -	1 6	10	20	20
MW III	hist2-Ethylhexyl)phthalaic	uy/L		U	Ü	10		0	2	10	ļ	1 5	1 0	10	}	Ü	1 5	20	20
MW (B	tiosylhen/ylphthalate	wg/L.	 	Ü	5	10		- 0	5	10		10	+	10		Ü	1 5	20 20	20
MW IN	Carbazok	up/L.		5	Ü	10		U	10	10		Ü	U	10		Ü	Ü	20	20
MI WIA	Chrysene	ug/l.		l Ü	Ü	10	<u> </u>	Ü	Ü	10		Ü	"	10		ن ا	Ü	20	20
MW (R	Den butylphthalate	ug/L		Ü	ŭ	10		Ü	Ü			Ü	ᇦ	10		l ü	Ü	20	20
AIW IN	Dispussion a historia acres	up/L up/L		١÷	Ü	10		-	Ü	10		l ö	₩-	10	 	۳	 	20	20
VIM, 194	Thhen/olusan	up/L		Ü	Ü	10		Ü	U	10		Ü	+	10		Ŭ	Ιŏ	20	20
MW US	I heshylphihalate	ug/L		Ü	Ü	10		Ü	Ü	10		Ť	Ü	10		Ŭ	Ü	20	201
MW 08	Drongthy lplubalate	up/L		Ū	Ü	10		Ü	Ü	10		Ü	2	30		Ü	Ü	20	20
MW III	F-luminal lune	ug/L		Ū	Ü	IG		Ü	5	10		U	U	10		Ü	Ü	20	20
MW 08	Huntene	ug/L		Ü	-	to		Ü	Ü	- 10		Ü	Ü	JO		U	Ū	20	20
MW-IM	Hesachknohenzene	w/L		U	U	10		U	ט	10		U	د	10		υ	υ	20	20
MI WIN	He sachilen cinutadiene	ug/L		U	U	_10		U	٧	la la		U	>	10		U	Ü	20	20
MW III	He am falorency dispersionlesses	up/L.		U	U	10		υ	c	10		V	5	10		Ü	U	20	20
MW 08	Heagaldoroethane	ug/L		U	U	10		U	5	10		U	5	(0		U	Ü	20	20
MW opt	Indexet 1.2.3-edipyrene	Ug/L.		U	_	10		-	-	to to		c	>	10		U	U	20	20
MW ON	Esciplications	we/L		U	U	to		~	٤	30		<u> </u>	5	10		U	U	20	20
MW OR	N-Nistron di-ti-propylation:	ug/L		U	Ü	10		2	=	10		2	٥	10		U	U	20	20
MW (W	N-Nitronsiphenylanum	ug/L		U	U	10		U	5	10		C	2	10		U	U	20	20
MW ON	Naphthalene	wy/L		Ü	C	10		U	Ü	10		Ü	5	10	!	U	U	20	20
MW 08	Nitrobenzene	wg/L		U	U	10		υ	٦	10	L	<u> </u>	2	10	<u> </u>	U	UJ	20	20
	Pentachlorophenol	wg/L		U	U	25		υ	ט	25		U	٦	25		U	U	50	50
MW-IIK	Phenanthrene	ug/L	<u> </u>	U	U	10		5	=	10		<u></u>	2	10		U	Ü	20	20
MW 08	Phrind	ug/L	 _	υ	U	10	34	_	_	10		U	U	10	140	 	├	20	140
MW (18	Pyrene	ug/L		U	U	10	 	U	<u> </u>	10		Ü	U	10	}	U.	L.	20	20
MW 09	1.2.4-Trichlomhenzene	ug/L		U	U	10		U	Ü	50			U	10		U	U	10	50
NIW 09	1.2-Dichlorobenzene	wp/L		U	U	10		U	25	30			U	10 10	 _	U	U	to	50
MW IN	1.3 Dichlorobenzene	ug/L		10	Ü	10		U	-	50		ļ	10	10		"	U	10	50
MW (IV	1.4-Dichlorobenzene 2.2'-araybis(1-Chloroptopane)	ugit		10	Ü	10		Ü	"	50	 	 	Ü	10		Ü	+ +	10	50
MW (P)	2.4.5-Trachlorophemi	up/L		۲÷	l ü	25		1 5	Ü	125			Ť	25		Ü	۱ 📅	25	125
MW (N	2.4.6-Trachlorophenoi	ug/L		Ť	Ü	10	 	Ü	2	50		 	Ü	10		Ü	٥	10	30
NIW IN	2.4 Dichlorophenol	up/L		Ť	Ü	10	 	Ü	Ü	50		_	Ü	10		Ü	Ť	10	50
MW OV	2.4 Dissective/placement	ug/L		Ū	Ü	10	<u> </u>	Ü	4	50	·		Ü	10		U	Ü	10	50
MW-(P)	2.4 Disstrophenol	up/t.		١Ŭ	Ü	25	 	Ü	٠	125	 	-	Ü	25		Ü	Ü	25	125
MW-IW	2.4 Dississional	up/L_		Ū	Ü	10		Ü	Ü	50	 	·	Ü	10		Ü	Ü	10	50
MW-IN	2.0- Denouveledurance	up/L	 	Ū	Ū	10		Ü	Ü	50			Ü	10		Ü	Ü	10	50
MW-IN	2 Chlorosophthaloso	ug/L		Ü	U	10		ΙŪ	2	30			U	10		Ū	Ü	io	50
MW-09	2 Chlorophenol	wg/L_	1	Ū	Ū	10		Ü	U	50		1	Ü	10	T	Ü	Ü	10	50
MW-IN	2-Methylmaphthalene	ug/L_		U	U	10		U	5	50			U	10		U	U	10	50
MW-IN	2 Methylphenal	ug/L_		U	U	10		U	5	50			U	10		U	U	10	50
MW-IN	2 Narisantine	ug/L_		U	Ü	25		υ	5	125		L	٦	25		U	U	25	125
MW-IN	2-Natrophenol	ug/L		U	U	to to		U	د	50			υ	80		U	U	to to	50
MW-IN	V.VDichlorobenzidine	wg/L		U	U	10		U	ح	50			٥	10		U	U	10	50
MW-W	1- Numanitus	ug/L		υ	U	25		U	U	125			U	25		U	U	25	125
MW-IN	4.6- Dimitro-2-mickly lphanel	wg/L		U	U	25		U	حا	125			U	25		U	U	25	125
MW-09	4- Bronnightenyl-phenylether	wg/L		U	U	10		U U	5	50			Ü	10		U	บ	10	50
MW (N	4 Chlore 1 methylphenol	ug/L		υ	U	10		U	2	50			٦	10		U	U	10	50
MW (N	4 Chlorounding	Up/L		U	U	10	L	U	2	50			U	10		U	U	10	50
MW-IN	4 Chlorophenyl-phenyl ether	ug/L		U	U	10	<u> </u>	U	U	50		<u></u>	υ	10		U	U	10	50
MW-IN	4- Methylphenol	ug/L		υ	υ	10		U	Ľ	50	<u> </u>	ļ	Ū.	10	<u></u>	U	U	10	50
MWIN	4 Narountine	ug/L		U	L.	25		U	<u> </u>	125		↓	U	25		U	U	25	125
MW IN	3 Netrophytes	ug/L	<u> </u>	U	U	25		U	2:	125		├	U	25		U	U	25	125
MW-199	Accuaphilicisc	ug/L	 	Ü	Ü	10		Ų.	= =	50		├	U	10		U	U	10	50)
MW (9)	Acenaphiliylette	oy/L		U	U	10	 	U	+	50			U	10	ļ	U	U	10	50
MW (P)	Anthraceic	ur/L		10	U	10	 	Ü	ن	30			Ų.	10	ļ	Ų	U	10	.50)
NIW IFF	Benzota)anthracese	ug/L	<u> </u>	<u> </u>	<u> </u>	<u></u>							U	10	L	U	U	10	50

		,														_			
1			<u>}</u>		Event				Event				Event.				Event-		llighed
Well	Amaly te	Units	Result		8	Dutnet 1.hmis	Head	LQ		Dotact Limit	Rosell	LQ	ΒŞ	Detect Junit	Rossit	3	bQ	Detect [.josk	Detection
MW (P)	Benzulalpytene	ug/L	l	U		10		Ü		30			U	19		ح	U	10	50
MW-ffv	Henry(hydromanthene	sp/L		υ	U	10		ح	5	30			U	10		5	C	10	50
MW IN	Benzoty.hatperylene	ug/L		υ	2	14)		U	w	30		7	U	10		Ū	U	10	50
MW IIV	Beneath Himmanthene	upl.	1	U	U	10		U	ΰ	50			U	10		U	Ü	(0)	50
MW-IIV	herd 2-C'hdennershein y jour thanc	Jupil		U	U	10		v	Ü	50			Ü	10	·	Ü	Ü	10	50
MW-IIV	hes(2-f Interestry)) other	ug/L	44			NA	lu l	\neg		56	41			NA	35		1	16	50
MW-m	heat2-Esbytheray Indishalate	ugA.		U	U	10		U	Ü	50		1	Ü	10		۲	U	10	50
MW-(P)	Hetythenzylphthalate	14/L		Ū		10		Ū	Ü	30		1	· Ū	10	 	Ü	Ť	Įū.	50
MW-ON	('arthuresh:	w/L		Ü	Ü	10		Ü	Ť	36			Ü	10		Ü	Ü	10	30
MW-IN	(Turysene	WAY.		Ü	Ü	10		Ü	Ü	39		-	Ti-	10		۳	Ť	10	50
MW-(N		upl.		Ü	Ü	10		Ü	ŭ	30		-	۳	10		V	Ü	10	50
	Dr. m. bruty lphilisakus			Ü	Ü	10		1 5	Ü	30	 -	_	l ö	10	 	Ü	l ü	10	50
VIM-04	Lit-m-co.tylphthalanc	upt.		Ü	1 17	16		+	Ü	30			Ü				_		
MW-4H	Different afrigation acette	ug/L.			-:-									.0		V	U	10	50
MW-IN	1 hhonosturan	wp/L		U	⊢ 4	10		Ų	Ü	50	<u> </u>	-	U	10	ļ	υ	U	10	50
MW-IW	Decity/plated-ac	w/L		u	L ∢	10		U	2	50		ļ	C	10		5	E	16	50
MW-IW	(Innestry lphaladate		<u> </u>	_	_	10		U	5	*			5	10		υ	U	10	50
MW-09	I-barranthene		L	<u> </u>	E	10		U	5				5	50		2	0	10	50
MW IP	Physical	yyp∕L.		U	۳	10		ע	V	50			U	10		ح	U	10	50
MW-IN	Herachionihenzene			U	U	10		U	2	50			U	10		حا	U	- (6	507
MW-139	Heapthiceshmakem:	ug/L		Ü	U	10		U	5	50			U	10		دا	U	10	50
MW-09	Hesachhoucyclopentadiene	- 14g/L		U	Ü	10		د	5	30			U	10		U	U	10	50
MW (P)	He saybhorethane			U.	ַט	10		Ü	v	30			U	10		U	T T	10	50
MW-IW	feedement 1, 2, 3-s, alterpresse	-1		U	Ū	10		U	5	50			U	10		Ü	U	10	50
MW-0N	water		(0,86)	7		NA		Ü	5	50	0.95	-		NA	0,70	Ť	1	10	50
	N-National-de-te-propylations	ug/L		Ü	U	10		Ü	3	56		t-	U	10		٠	ti	10	30
MW4M	N-Negani-diplicity/anime	ugh.		Ü	Ü	10		Ü	Ü	30		_	Ü	10		Ü	Ü	10	50
MW-DY		up/L		Ü	Ü	10		Ü	7	36		-	Ü	10		١ ٽ	10	10	50
	Maphibalcisc			₩	Ü	10		٥	+	30		-	Ü	10		۳	Ü		
PIM IIN	Name	ug/L	 	0	Ü	25		Ü	7	125		-						10	50
MW-09	Pentachkemphend	- wet										<u> </u>	U	25	ļ	Ü	U	25	125
MW-G9	Photasthrone	ug/L	 	Ü	U	10		=	2	50			<u>_</u>	10		=	U	- 10	50
MW-04	Planteri	ug/L.	ļ	2	U	10	- 16	-		50	25			NA NA	<u> </u>	-	U	10	50
MW-09	Pyticale	- myA.		5	Ü	10		٦	U			<u> </u>	U	10		5	U	10	50
MM-III.	1,2,4-Tru blombenzenc	up/L		ט	Ü	10		٥	٥	10			U	10		>	U	10	10
MW-IK.	1,2-Dichkeenhenzene	ug/L		U	U	10		9	-	10			ט	ŧa		٥	Ü	10	10
MW-IIK	1.3-Dichlandicazone	up/L		υ	2	10		U	5	la la			2	10		5	C	10	10
MW-HK	1,4-Dichlophenzene	ug/L		2	U	10		כ	5	10			U	10		Ü	U	10	in .
MW-ICK.	2,2'-unyloud 2-Chicappenanc)	uge/L.		U	Ü	10		U	U	10			U	19		Ü	U	10	10
	2,4,5-Ten, laboraphicasel	wel.		U	Ü	25		U	5	25			U	25		2	U	25	25
	2.4.6-Ten blotsplaced	Juga L		5	Ü	10		2	5	10			7	10		₩	Ť	10	10
	2.4-Da.Managhemel	······································		Ü	Ü	10		Ü	-	10			Ü	10		Ť	Ü	10	10
	2.4-Dimeskylphenol	ug/L		Ü	Ť	10		Ü	-	16		1	Ü	10		۳	Ü	10	10
	2.4-Dientrophynol	w/L		Ü	Ü	25		Ü	3	25			Ü	25		Ť	Ü	25	25
	2.4-Diantenducus	ug/L		1	Ť	10		۳	-	10		_	Ŭ	10	 -	Ü	Ü	10	10
		upl.		Ü	Ť	10		+	۳	10		-	٣	10	 	"	1 0	10	
	2.n-Daniciolague			+	٣	10		-	7	10	 		-	10	 	7	1 0		10
MM-IIK.		wel.		2	1								_				_	10	10
MM-lor.	2-Chlorophenol	<u>w/L</u>	 			10	 -	2	9	10		 	U	10		2	Ų.	IQ	10
MW-10C	2-Methy fragilatione	ug/L		ς.	-	10		>	=	10		-	C	10	L	5	U	10	10
MM-IIK,	2-Methylphotol	ug/L		>	U	30		٧	=	9		lacksquare	E	10		2	E	10	10
MW-HIC	2-Missousselane	199 /L	 _	5	2	25		V	>	25			U	25		>	נט	25	25
MM-HK,	2-Missophenut	ug/L		9	5	10		٦	٥	10			U	10		5	V	10	10
MW-HIC	1,1'-Dichlembenridine	Jaget		U	٥	10		5	9	10			U	10		5	U	10	10
MW-HK	3-Magazanalana	w/L		U	U	25	-	U	5	25			٥	23		٦	U	25	23
	4,6-Dantes-2-methylphensi	ug/L		٥	2	25		حا	5	25			5	25		5	Ü	25	23
	4-Messas principal-phonylettast	upl		c	U	10		2	C	10			U	10		2	Ū	10	10
	4-Chiary 1-methylphenol	uj/L		5	Ü	10		5	Ü	10			٣	10		Ü	- iii	. 10	10
	4 Chloromine	ug/L.		Ü	Ü	16		5	Ü	10			-	10		Ü	1	10	10
MM-ICK	4-Chlorophenyl-phenyl ether	ug/L		Ü	Ü	10		۳	Ü	10		1	Ü	10		Ü	ان	10	
MW-INC	4- Methylphenyl-phenyl-ener	ug/L		Ü	Ť	10		"	+	10		 	7	10		Ü	١٠	10	10
		ug/L		5	Ü	25		۳	5	25		-	"	25 .	 	Ü	Ü		JI)
MW-HK	4- Nutrosandino			<u> </u>	Ü	25		۳	Ü									25	25
MM RK	4-Negrophenol	ug/L	لـــــا	لـــــــا				بي		25			٦	25		U	U	25	25

							,		51 -4				No.				No.		
			Heavit	1.0	Event	Detect Limit	Kenuli	10	Event	Detect Limit	Kessalt	10	Eveni :	Dotect Limit	House	1.0	Event		Highest Detection
Well	Anuly te	Limits	- Freshill	1.0	 '?'	10	PARTIE	12	17	10	President .	-~	- 	10	Nonen	10	7	10	161
	Accomplishence	ug/L	 	Ü	U	01		lΰ	10	10	 		- "	10		l ü	Ü	10	10
	Accomplishylene	ug/L		U	Ü	10		1 0	tΰ	10	 	 	ΗÜ	10		Ü	Ť	10	
	Audinacie	up/L		l ü	Ü	10) ŭ	10	10		_	ΙŬ	10		U	Ü	10	10
	Benzolarandiracene	ug/L		U	Ü	10		۱ŭ	۱ř	10		 	Ü	10	 	Ü	ŭ	10	10
	Henzitalpytene	ug/L		Ü	1 0	10		Ü	۱ů	10	 	 	Ü	10 .	 	Ιŭ	ι	10	10
	Henzo(h)Humanthene		 	Ť	Ü	10		l ö	1 0	10	 	+	Ü	10	 	Ť	Ŭ	10	10
	Benzo(g.h.tiperylene	ug/L		Ü	Ü	10	}	Ť	Ιŭ	10			Ü	10		Ü	Ü	10	10
	Benzyk) Humanihene bog 2-Chlomething methane	ep/L	 	Ü	Ü	10		Ť	Ü	10	 	 	Ü	10	 	Ü	Ü	10	10
	hos(2-Chlorocthy)) other	ug/L	 	Ü	ان	10		ان	1 0	10		 	Ü	10	 	Ü	Ü	10	10
	hes(2-Ethylhexyl)phthalate	ug/L	 	Ü	١	ta		ŧΰ	ΙÜ	10	<u> </u>	 	Ü	10	8.0	17	<u> </u>	10	10
	Butylbenrylphthalate	we/L		Ť	Ü	10		Ť	ΙŪ	10	 	 	Ü	10		l u	U	10	10
	Carbarole Carbarole	*#/L		Ü	Ü	10		Ü	Ιř	10	 	_	Ť	10	 	1 -	Ü	10	10
	('hrysen:	eg/L		Ü	Ť	.10		Ť	T T	10	 	_	Ü			1	Ü	10	10
	[h-m-butylphilhalak:	ug/L		Ü		10		Ü	Ū	10	 		Ü	10	 	Ť	Ü	10	10
	Dr. m. on, ty lebalistic	ep/L		Ü	 	10	 	Ü	Ü	10		1	Ü	10		۱ ũ	Ü	10	10
MW IIK	Dihenzota hiandiracene	ug/L		Ü	- ,	10		Ü	Ü	10		1	Ü	10		Ü	Ü	10	16
	Debenzututun	W/L		Ü	l ü	10		Ü	ΙŬ	10			บ	10		1 5	Ü	10	10
	Decity liphthalate	og/L		Ü	Ü	10		Ιŭ	ΙŬ	10		1	Ü	10		15	Ü	10	10
MW-10K	Dreichylphilalate	ag/L		Ü	ان	10	 	Ü	۱ů	10		 	Ü	10		l ü	Ü	10	10
	Fluoranthene	m/L	 	Ü	Ü	10		Ü	Ü	10			Ü	10	 	۱ů	Ü	10	10
	Plantine	ug/L		ت ا	ř	10	 	të	tΰ	10		1	Ü	10	 	l ü	Ü	10	10
MW-HK.	tleas blowbencere	eg/L		Ü	Ū	10		Ü	U	10		1	U	10		10	Ü	10	10
MW-IIK'	Henschlorchutatione	WELL		v	Ü	10		Ū	Ü	10			Ū	10		10	Ü	10	10
MW IIC	Headthstreyclopentaliene	WEL		U	۳	10		Ū	U	10			Ü	10		lü	Ü	10	10
	Hexachloroethane	ug/L		Ū	Ü	10		Ū	U	10	1	1	Ü	10		1 0	Ü	10	10
MW INC	Indens(1,2,3-edipyrene	up/L		Ü	Ū	10		Ū	U	10			Ü	10		Ū	Ü	10	to
MW IOC	Everifications:	Ug/L		Ū	Ü	10	0.90		1	10			Ü	10	10	15	_	10	10
	N-Naroso di a-propylamine	ug/L.		Ü	Ü	10		Ü	U	10	<u> </u>		Ü	10		U	v	10	10
	N-Nationaliphonylamino	ug/L		U	U	10		U	U	10			Ü	10		Ū	Ü	10	10
	Naphthalene	Up/L		Ü	U	10		Ü	U	10			U	10		Ū	Ü	10	10
	Nitrobetrene	υκ/L		Ū	U	10		U	U	10			U	90	·	U	U	10	10
	Pentachlorophenol	ug/L		U	U	25		U	U	25			U	25	1	U	Ū	25	25
	Phenanthrene	up/L		U	U	10		U	U	10		1	U	to		U	υ	10	10
	Phone	up/L		U	Ü	10	15			10			U	15	20	1		160	20
MW KK	Pyrene	ug/L		U	Ü	10		Ü	u	16			U	10	1	Ū	U	(0	10
MW II	1,2,4 Tracislandscarence	up/L		Ū	Ü	10		U	Ü	10		Ü	U	10		10	U	10	10
MW-II	1.2-Dichlorohenzetic	up/L		U	U	10		Ū	U)	10		Ū	U	10		1 0	U	10	10
MW-II	1.3-Dichlorohenzene	Ug/L		Ü	U	10		U	U	10		Ú	U	10		Ü	U	10	10
MW-II	1.4-Dichlorobenzene	wg/L.		Ū	Ü	10		Ü	U	10		Ū	U	10		Ū	Ū,	10	10
MW-II	2.2'-oxylos(1-Chloropropanc)	ug/L_		Ū	U	10		Ü	W	10		U	U	10		Ü	U	10	10
MW-11	2.4,5-Trichhapaphenol	wg/L		υ	נט	25		Ü	U	25		U	υ	25		Ù	Ü	25	25
MW-11	2,4,6-Teschkomphenol	wit		U	ບ	10		Ų	UJ	10		U	٧	10		Ų	Ü	10	10
MW-H	2.4-Dichlorophenol	wg/L		U	5	10		Ų	W	10		U	U	10		Ū	U	10	10
MW-11	2.4-Dimethylphonol	ug/L.		Ü	IJ	10		U	Us	10		U	>	10		U	5	10	10
MW-II	2.4-Duntrophenol	up/L		U	3	25		U	Ü	25		U	5	25		U	٥	25	25
MW-II	2.4-Dimeredelucae	ug/L		υ	U	10		U	UJ	10		U	ט	10		Ü	٦	10	10
MW-11	2.6-Datest stolacing	wg/L		U	U	10		U	UJ	ţO		Ü	٥	10		Ü	٥	10	10
MW-II	2-Chloronaphthalene	ug/L		U	U	(0		υ	Ü	10		U	U	10		U	ح	10	10
MW-11	2-Chlorophenol	ug/L.		U	UJ	ļO		V	Ü	10		U	5	10		U	5	10	10
MW-11	2 Methylmaphthalene	ug/L		U	U	10		Ü	UI	10		U	5	10		٧	5	10	10
MW II	2-Methylphenol	wp/L		٦	ĹŪ	10		Ü	3	10		U	U	10		v	5	10	10
MW-11	2-Nationaling	uų/L		c	6	25		U	S S	25		Ü	υ	25		U	ט	25	23
MW-II	2- Nascophenia	ug/L		Ü	33	(0		٦	נט	to.		U	5	10		U	5	la .	10_
MW-11	3,V-Dichlerobenzidine	uje/L		U	5	10		Ü	Li	10		Ü	٥	10		U	5	10	10
	3 Nunsantine	we/L.		U	5	25		υ	UJ.	25		Ü	υ	25		U	2	25	25
	4,6- Dantro-2-methylphenol	wp/L		5	c	25		٦	<u>E</u>	25		U	5	25		U	٦	25	25
	4 Beamquienyl-phosylother	ug/L.		U		10		٧	2	10		U	U	10		U	٥	10	10
	4 Chloro-1 methylphenol	ug/L		5	5	10		U	3	10		U	U	Įd .		U	٦	10	10
1 1414 11	4-Chleroanthuc	ug/L		Ü		10		Ū	S	10		U	υ	10	ı — — —	U	Ü	10	10

7. 4

.

			···		A								84						
	A - 18-11	Units	Kenafi	LQ	DQ	Detect Limit	Result	110	Event	Detect Limit	N-mil	IW	Event.	Detect I Junit	Musuk	11.0	Event		Highest
Well	Assilyte				17					140				10		IN			Detection
	4 Chlorophenyl-phenyl other	wg/L_		U	1 6	10		U	U)	10		2	2	10		Ü	Ų	10	10
	4 - Monthly liphocasid	ug/L										_			 _	U	V	10	10
MW-II	4 Numanime	ug/L.	 -	U	U	25		U	W	25	ļ	<u></u>	U	25		U	U	25	25
	4 Nazophonol	ug/L		U	IJ	25 10		U	<u>U</u>	25		U	U	25		U	Ų	25	25
MW-11	Accuaphilicue	ug/L		10	10			۲.	1 55	10		U	> :	10		U	V	10	10
MW-11	Accuaphthylene	age/L			_	10	├──					U	U	10	}	U	U	10	10
MW-11	Anthracenc			U	U	10		U	<u>w</u>	10	<u> </u>	U	U	10		۳	U	10	(0
MW-II	Benedalanibra.enc	ug/L	<u> </u>	Ü	U	10	ļ	U	UJ	10		U	V	10	Ļ	U	U	10	to
MW-11	Henzulalpytone	- Jug/L	<u> </u>	Ų	U	10		U	U	10	<u> </u>	U	U	10	ļ	U	U	10	10
	Benzigh) the ganthene	w/L		U	U	10		U	IJ	10	ļ	U	U	10	L	U	U	10	10
MW-II	Henzelg.httperylene	ug/L		U	U	10	<u> </u>	U	IJ	10	<u> </u>	U	U	10	!	U	U	10	10
MW-II	Henrick Winitable No	ug/L	 	U	U	10	ļ	U	UI	IO.	ļ	U	U	10	<u> </u>	U	U	IO_	10
MW-II	hist2-Chlorochusy inechanc	ug/L.		2	U	10	<u> </u>	U	W	10		U	U	10		U	U	10	10
MW-11	host2-Chlorocthy1) other	ug/L.	L	۳	U	10	L	U	Ų,	IO IO		U	U	10		U	U	10	10
MW-II	hest2-Ethythexyliphululate	ug/L	<u> </u>	U	U	10		U	נט	10	7.0	1	L	10	<u></u>	U	Ū	10	10
MW-11	ButyBenzylphthulate	ug/L		U	U	10		U	W	10		٧	U	10		U	U	10	10
MW-II	Cathazole	ug/L		U	U	10		U	נט	10		U	U	10		U	U	10	10
MW-11	Chrysette	wy/L		U	U	10		υ	U	10		U	U	10		U	υ	10	10
MW-II	Di-m-hatylphthalate	ugh		U	U	10		U	UJ	30	L	U	U	30		U	U	10	10
MW-II	Di-manity (philipplate	wy/L		U	Ü	10		U	UJ	10		U	U	10		U	U	10	- 10
	Elebonasida, listanghrasione	we/L		U	U	10		U	Ų	10		U	٦	10		U	U	10	18
MW-II	Diferential	ug/L		U	U	10		U	Ų	10		U	٦	16		U	u	10	10
MW-11	Dicthy Iphiladata	ug/L		U	V	10		U	(U	10		U	U	10		U	U	10	10
	Denvihylphthalate	ωμ/L.		U	U	to to		U	Ŵ	10		U	U	10		U	U	10	10
	Fluoranthene	ug/L		U	U	10		U	Ü	10		U	U	10		U	U	10	30
	Huntelic	up/L		U	U	10		U	W	10		U	U	10		U	Ü	10	10
	Hexa bhorbenzene	₩/L		U	U	10		U	W	10		U	U	10		fΰ	U	10	10
	Hexa Morehutadiene	w/L		υ	U	10		U	U	10		Ü	Ū	10		Ū	Ū	10	10
MW-11	Hexa, bhousy, hipentadiene	W/L		U	U	10		U	Ü	10		U	U	10		Ü	Ū	10	10
	He was below with mine	ug/L		U	U	10		U	Ü	10		Ū	Ü	10	 	Ū	Ū	10	10
	Indent 1.2.3-od)pyrene	ug/L		Ü	U	10		U	W	10		Ū	Ti-	10	 	Ť	Ť	10	10
	Isophirone	w/L	 	U	U	10		U	Ū	10	· ·	Ū	Ū	10		Ť	Ť	10	10
	N-Nitrose de n-propylamine	W/L		Ū	Ū	30		Ū	Ü	10		Ŭ	Ť	10	 	Ü	Ü	10	10
	N. Natrosculiphonylamino	ug/L		U	U	10		Ū	W	IO	 	Ŭ	Ü	10	·	Ť	Ü	10	10
	Naphdalene	W/L		Ü	Ū	10		Ť	UJ	10		Ü	Ü	10		1-0	ΙŬ	10	10
	Najohenzene	wg/L	· · · · · · ·	Ü	Ū	10		Ť	Ü	10		١ ٠	Ü	10		ΙŬ	Ü	10	10
	Protectionophenical	w/L		Ü	Ü	25		Ū	Ü	25		Ü	Ü	25		l ü	1 0	25	25
	Placautheric	ug/L		Ŭ	Ü	in in		Ü	Ü	10	— —	۱Ť	Ü	10		۳	l ö	10	10
			 	Ü	-	10	7.0	1	1	10	5.0	1 7	<u> </u>	10		- ا			
	Plemi	ug/L	 	١÷	Ü	10		Ιΰ	ii	10	3.0	+	-U	10		10	U	23	23
	Pytote			۳-	10	20	 	1 0		20	 	10	 "	20	 	10	1 0	20	10
	1.2.4 Trichhouthenzene	- Juget	 	-	 	20		10		20 20		+	ᇦ	20	 	ᡰ᠊╬	1 0		20
	1,2-Dichlosoftenance	ug/L ug/L	 	├~	Ü	20	 	۳		7,		1 0	Ü	20)		븏	ᇦ	20	20
	1 3 Dichlorohenzene			-	Ü	20	<u> </u>	۳	U	 		₩	ᇦ	20		1 "	1 5	20	20
MW-12	1.4 Dichlorohouseurc	ug/L	120	├─	15	NA NA	140	┷	1 7	2	76	┷	┝╩┈	20	87	├ ╩		20	20
MW-12	2.2 maybes(1-Chhimiptopunc)	- up/L	120	├	ť	30		╁╼		50	~-	U	U		*/-	 	 	20	140
MW-12	2.4.5-Truckloughend	ug/L	 		۳	20		₩	ui	20	 	1 "		99	 	Ų.	Ÿ.	50	50
MW-12	2.4.6-Tricklamphonal	w/L	 		10	20		1 0					U	20	}	U	U	20	36
MW-12	2.4-Dichlorophenol	- wy/L		├─	l ü	20	 	H	<u> </u>	20		Ų.	U	20		<u> </u>	U.	20	20
MW-12	2.4-Dunctoylphemd	ug/L		₩	1 0							Ų	U	20		U	Ü	20	20
MW-12	2,4-Dunitrophenol	- up/L		 		50	 	U	UJ	50	ļ	Ü	U	50	├ ──	۳	Ų.	50	50
MW-12	2.4-Danter-Hologone	- wg/L	 	₩	U	26		U	וט	20		U	U	20	ļ	U	U	20	20
MW-12	2,6-Desterositector	w/L			U	20		U	UI	20		U	U	30		U	U	20	20
MW-12	2-Chlorosephalulene	W/L		 	U	20		U	W	20		U	U	20	 	U	Ų	20	20'
MW-12	2-Chlosophenol	we/L	 	! —	U	245		U	וט	20		U	U	20		U	U	20	20
MW-12	2-Meshylmaphshalene	up/L		 	U	20		U	UJ	20		۳	U	20		٧	U	20	20
MW-12	2-Methylphenol	ug/L		₩	U	20		U	U	20	<u> </u>	U	٦	20		U	U	20	20
MW-12	2-Nitressorting	ug/L		ـــــ	U	50		U	UJ	50		U	U	50		U	U	50	50
MW-12	2-Nanophemid	ug/L			U	20		U	UJ	20		Ü	U	20		U	U	20	20
MW-12	3.33-Dichlorobenzidine	ug/L	L		Ü	20		U	נט	20		U	U	20		U	U	20	201
MW-12	3-Narcambae	ug/L			U	50	L	U	UJ	50		U	U	50		υ	U	50	50
																	_		

		l I			Event				Event				Event		11	T	Event		Highest
Well	Analyte	Units	Kenuk	I.Q	DQ	Delect Limit	Hamilt	_	DQ	Detect Limit	Hesek	17	DQ	Detect Limit	Kesuk	10	υQ	Detect Limit 50	lielection
	4 6- Dimiro 2 methylphenol	eg/L		-	U	50		Ü	5	50		Ü	- 0	50		Ü	Ÿ		50
	4- Stromophenyl-phenylether	wg/L		-	U	26)		U.	UI	20	<u> </u>	U	Ü	20	}	U.	U	20	20
	4 Chloro-3 methylphenol	uye/L_			υ	20		Ü	U1	20		U	U	20		Ų.	_	20	20
MW 12	4 Chloroanthuc	ug/L			U	20		Ų.	" -	20	 	Ü	l ü	20		U	U	20	20
MW 12	3 Chlorophenyl phenyl other	ug/L	ļ <u> </u>	├	U			U.	UI	20		U	1 5	20		U	U	20	
MW 12	4- Mcthy iphemsi	ug/L		├	U	20 50		U	103	30		Ü	l U	50		 	U	30	20 50
MW 12	4 Narramine	WE/L		-	U	30	<u> </u>	╁╬	"	50		Ü	ŭ	50		10		50	50
	4 Natrophysical	ug/L.			U	20)		Ü	8	20		Ü	Ü	20		10	CC	20	20
MW-12	Accusplations	up/L		├	i i	20		1 5	"	20		"	Ü	20		1 0	Ü	20	20
MW 12	Acenaphilistene	we/L		-	Ü	20		 	"	20	ļ	Ü	Ü	20		Ü	_	20	20
MW-12	Authoricae	up/L			_	20		Ü	"	20		Ü	Ü	20		Ü	U	20	
$\overline{}$	Henzista ianthracene	ug/L.			U.		 _		_	20		Ü	Ü						20
	Henzotalpytene	up/L			U	20		Ü	UI		 			20		U	U	20	20
	Benzithillustauhene	ul/L			U	20		U	133	20	 	Ų.	U	20		Ü	C .	20	26)
	Henzelphalperylene	ug/L.		-	U	20		U	5	20		U	Ü	20		U	U	20	20
	He north Himmandhone	wg/L.		-	U	20		٦	101	20		U	Ų	20		υ	U	30	20
	hist2-Chloroethisky mediane	ug/L.		├	U	20		U	UJ	20		Ų	U	20	<u> </u>	U	5	20	20
	his(2-Chloroethyl) ether	uje/L		Ļ	U	20		Ų.	5	20		U	U	26)	 	U	U	20	20
	hist 2-Ethythexyliphibalate	uge/t.	<u> </u>	<u> </u>	U	20		U	5	20		U	U	20	Ļ	U	U	20	26
	Butylbenzylphthalate	ug/L		 -	U	20		U	UI	20		U	U	20		U	Ü	20	20
MW 12	Carharole	ug/L			U	20		U	5	20		U	υ	20		U	<	20	20
MW-12	Chrysene	ug/L.	<u></u>		U	20		C	ອ	20		U	U	20		U	٦	20	20
MW-12	De a-buty iphthalate	up/L	L		U	20		U	5	20		U	U	20		υ	٦	20	20
MW-12	Lite 11-cecty lphthalate	ug/t.			U	20	L	U	נט	20		U	U	20	L	U	U	20	20
MW 12	Orbegonia, blanthracene	up/L			U	20		U	UI	20	<u> </u>	U	U	30		U	U	20	20
MW 12	Universitation	ug/t.			U	20		U	5	20		υ	U	20	L	U	U	20	20
MW 12	Orchylphthalate	ug/L			U	20		U	U	20		U	υ	20		U	Ü	20	20
MW 12	Directhylphihalate	ug/L			U	20		C	5	20		U	U	20	3,0		1	26)	20
MW 12	Huoranthene	wg/t.			U	20		υ	U	20	L	Ü	U	20	L	Ü	U	20	20
MW 12	I lustrate	ug/L			Ų	20)		U	UJ	20		U	U	20		U	υ	20)	20_
MW 12	Hexachtorobenzene	ug/L.			U	20		U	5	20		U	U	20		U	U	20	20
MW 12	Hexachlorobutatione	wg/L			U	20		U	5	20		U	U	20		U	υ	20	20
MW 12	Hexachhoricyclopentadiene	ug/l.			V	20		U	5	20		U	٦	20		U	U	20	20
MW 12	Hexachloroethane	wg/L			V	20		Ü	5	20		U	Ü	20		U	Ü	20	20
MW 12	Indenit1,2,3-edipyrene	ug/L			U	20		C	Ū	20		Ü	U	20		U	U	20)	20
MW 12	Isophytone	uµ/L			U	20		U	5	20		U	Ü	20		U	Ü	20	20
MW-12	N. Nigriso-di-n-propylatione	ug/L		1	U	20		U	tU	20		U	U	20		U	บ	20	20
	N National phony langue	ug/L			U	20		U	Ü	20		U	U	20		U	Ü	20	20
MW-12	Naphihalene	ug/L			U	20		U	UI	20		U	U	20	1	U	U	20	20
MW-12	Natobenzene	ug/L			U	20		U	UJ	20		U	U	20		U	U	20	20
	Pentarbiocophenol	ug/L			U	50		U	UJ	50		U	U	50		U	U	50	50
MW-12	Phonanthrone	ug/L			Ü	20	I	U	UJ	20		U	U	20		U	U	20	20
	37th, said	wg/L	C		v	203	25		7	20	7.0	1		20	24	I		20	25
MW-12		ug/L_		1.	U	20		U	W	20		Ü	U	20	1	υ	Ü	20	20
MW-13	1,2,4-Truchlorubenzene	ug/L		U	Ü	10		U	Ü	10		U	Ū	10		Ü	Ü	10	10
MW-13	1.2 Dichlorobenzene	wg/L	· · · ·	U	Ū	10		Ü	Ü	IQ.	1	U	U	10		U	U	10	10
	1.3 Dichlorobenzene	ug/L		U	Ü	30		Ü	U	10		Ū	Ü	10		Ü	Ü	10	10
MW-11	1,4 Dichlorohenzene	ug/L		U	U	10		U	v	10		U	U	10		U	Ü	10	10
MW-13	2.2'-anylis(1-Chloropropaic)	ug/L		Ü	Ū	10		Ū	Ü	10		Ü	Ü	10	1	Ū	Ü	10	10
MW-13		ug/L		Ū	Ŭ	25		Ü	Ū	25		Ū	Ŭ	25		Ü	Ü	25	25
MW-13	2,4,6-Teschiorophonol	upl		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW-11	2.4-Dichlorophenol	ug/l.	T	Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW II	2.4-Dimethylphenol	ug/L		Ť	Ü	10		Ü	Ť	10		Ü	ϋ	10	 	Ü	Ü	10	10'
MW-II	2.4 Dinitrophenol	ug/L		ŧΰ	Ť	25		U	Ü	25	 	Ü	Ŭ	25		l ü	l ü	25	25
MW-13	2 4 Dississanducine	ug/L		Ü	Ŭ	10		Ü	Ü	10		Ü	Ü	10		l ü	Ü	10	10
MW 11	? to Daniteneducae	ug/L		Ū	Ü	10	ì — — —	Ŭ	Ü	10		Ü	Ť	10		Ü	ŭ	10	10
MW 13	2 Chloronaphthalene	ug/L		lΰ	tΰ	10		Ü	Ü	10	 	Ü	Ü	10	 	1 5	1 5	10	10
MW 13	2 Chlorophenol	up/L		ΙŬ	ΙŬ	10		Ü	Ü	10		Ü	Ü	10	 	1 0	Ü	10	10
MW 11	2-Methylnaphthalene	up/L		Ť	Ŭ	10		Ü	Ü	10	 	Ü	Ü	10		10	Ü	10	10
MW II		ug/L		Ť	Ü	10	}	Ü	Ü	(0	 	Ü	ΙŬ	10	 	T U	Ü	10	10
	1			<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>			L 197

Appendix C

NW-13 2-Nate-quickent ug/L U U 25 U U	
New 1 2 New 1 2 New 1 2 New 1 2 2 2 2 2 2 2 2 2	25 U U U 25 U U 25 25 25 10 U U 25 25 25 10 U U U 16 10 10 10 10 10 10 10 10 10 10 10 10 10
MW-11 Nativalend Suff. U U U 10 U U MW-11 MW-11 MW-12 MW-12 MW-13 MW-14	10
MW-13 1.3°-10s to be a construction wg/L U U 10 U U	10
MW 1 1-Notes continue	25 U U U 25 U U 25 25 25 25 25 25 U U U U
MW-13 4.0-Dantar-2-saceby/spheroid ug/L	25 U U 25 U U 25 25 25 10 U U 25 25 25 10 U U U 16 U U U 16 10 10 10 10 10 10 10 10 10 10 10 10 10
MW-13 4-Decomplicity phonylether	10
NW-13 4 Chines 3-methylphenid upfl.	10
A(W-17 3 Chinesantine ug/L U U 10 U U	10 U U 10 U U 10 10 10 10 10 10 10 10 10 10 10 10 10
A (Taba replacely) - placely) - chart up/L U U 16 U U	10 U U 10 IO IO
MW-11 4-Machinghightonial Mp/L U U 10 U U MW-11 4-Materianshine: Mp/L U U 25 U U U MW-11 MW-	
MW-17 4-Natroanshine ug/L U U 25 U U	10 1 ' U U 10 U U 16 1 6 16 16 16 16 16 1
	25 U U U 25 U U U 25 25
MW-17 4-Materphaned upt. U U 25 U U	25 U U 25 U U 25 25
MW-13 Accesspondages upl. U U 10 U U	10 U U 10 10 10
NIW-11 Accompletoylence mg/L U U 10 U U	10 U U 10 10 10
NIW-13 Ambranche ug/L U U 10 U U	10 U U 10 10 10
A(W-1) Renovious hardeness well U U 10 U U	10 U U 10 U IO IO
A1W-13 Heurisalpyseum mall U U HI U U	10 U U 10 U U 10 10
NTW-13 Research International Control of the Contro	10 U U 10 10 10
ATW-11 Betweet philipsesylvine upt U U 10 U U	10 U U 10 10 10 10
NIW-11 Network Mississandure up/L U U 10 U U	10 U U 10 U U 10
N.W1.1 Pers (2-4" Internationary Interdume: up/L U U M0 U U	10 U U 19 U U 10 10
h1W-11 leg/2-Chinecethy1) other upfL U U 10 U	10 2.0) IO U U 10 IO
A(W 1) Proj2-Eisbythexystephishesiste ug/L U U 10 U U	10 U 17 20 5 5 10 17
A.f.W.: El Houty Mr. may depth Mandate: mg/L U U 10	in U U ia U U ta la
A3W-31 Carbarole ug/L U U 10 U U	10 U U 10 U U 10 10
A(W-1) Chaywen: up/L U U 10 U U	10 0 0 10 10
A(W-1) Dr. n-hery spinishalanc up/L U U 10 U U	10 U U 10 U 10 10
AstW-11 Dr-m-naty photostate up/L U U 10 U U	10 U U IO 10 10
ATW-13 [Inherenta/hassificative: ug/L U U 10 U U	10 U U 10 U 10 10
MW-11 Descriving up/L U U 10 U U	10 0 0 10 10
NIW-IX I Inculsy in the facilities angel. U U 10 U	10 U U 10 U U 10 In
NAW-17 Drings they be detailed by the second seco	10 0 0 10 10
NEW 13 1-bases problems: appl. U U 16 U U	10 U U 10 10 10
NIW 13 Phinanciae ug/L U U 16 U U	10 0 0 10 0 10
MW-13 Distantism themesons upft U U 16 U U	10 U U 10 U 10 10
N.W. 1.1 He can blen chestaphene up/L U U 10 U U	10 0 10 10 10 10
MW-13 Distactions schiperotablene upft U U 160 U U	10 0 10 10 10 10
MW-13 Tile says his rose distance: up/L U U 16 U U	10 0 10 10 10
MW-13 Indicast 1.2.3-colopyene upf. U U 10 U U	10 0 0 10 10 10
A(W-1) Traphone upt U U 10	10 10 10 10 10
MW-13 N-Nagaran-de-ga-ga/phanan: ug/L. U U 10	10 U U 10 U U 14 10
M1W-17 N-Neuronalgebeny latered up/L. U U 10 U U	10 0 0 10 10 10
MW-17 Naphthakne ug/L U U 10 U U	10 U U 10 U 10 10 10
MW-17 Nigothenorme wall. U U 10 U U	10 1 1 1 10 10 10 10 10 10 10 10 10 10 1
MW-11 Properties	79 U U 25 25 25
MW-11 Principalitations up/L U U 10 U U	10 0 10 10 10 10
MW-11 Proceed up/1. U U 10 8.0 J J	16 23 10 7.0 J J 10 23
Will the transfer and t	
	10 U U 10 U 10 10
	10 U U 10 10 10 10
	10 U U 14 U U 10 10
	25 U U U 25 U U 25 25
MW-14 2.4,6-Trichlorophical ug/L · U U IO U U	16 U U 16 U U 16 10
MW-14 2-4-Da, blue unbrightened up/L U U 16 U U MW-14 2-4-Dans the designment up/L U U U 10 U U	90 U U IO U III III
	10 U U 10 U U 10 In
	25 U U 25 U U 25 25
	10 U U 10 U U 10 to
MW-14 2 6-Diminstratement ug/L U U 10 U	10 U U IO IO IO

		Ţ			Event				Event				Kvent				Event		Highest
Well	Analyte	Units	Kenuk	1.0		Detect Limit	Kesuli	IQ		[Pelect Limit	Kennik	10		Detect Limit	Kessalt	1.0	DQ	Detect Limit	Detection
MW-14	2 Chlorosaphthalene	uje/l.		U	U	10		Į ų	U	10		U	U	10		U	U	10	10
MW-14	2-Chlorophenol	Hg/L		U	U	10		U	U		<u> </u>		U	10		1 0	_	10	10
MW-14	2 Methylnaphthalene	ug/L	├ ──	Ų.	Ų.	10	<u> </u>	<u></u>	U	10		Ü	U	10		l ü	U	10	10
MW-14	2 Methylphenol	up/L		U	U	25		U	Ü	25		1 5	l ü	25		₩.	Ü	25	25
MW-14	2-Narounline	up/t.		U	1 5	10		1 0	Ü		 	10	Ü	10		1 0	Ü	10	10
MW-14	2-Narrophenol	wµ/L		+ +	1 8	10		U	0	10		1 0	ŏ	10	 	1 0	10	10	10
MW 14	3.3"-Dichlorohenzidine	ug/L		۳	1 ö	25		1 0	Ü	25	 	╁╫	Ť	25	 	۳	1 5	25	25
MW-14	3- Name and the 4.6-Dinter - 2-mothylphenol	<u> </u>		Ü	1 5	25	 	۲ů	t ö	25	 	15	Ü	25		1 5	Ü	25	25
MW-14		ug/L		Ü	۱ŏ	10	 	ΙÜ	Ü	10	 	† ŏ	Ü	10		۱ů	Ü	10	10
MW-14	4 Branisphenyl-phenylether 4-Chloro-3-methylphenol	ug/L ug/L		Ü	Ιŭ	10		Ü	Ü	10		۱ü	Ŭ	10		١ŭ	ان ا	16	10
MW-14	4-Chiarcantine	wg/L	·	Ü	Ü	10		ΙŤ	Ü	10		ti	Ü	10		Ť	Ü	10	10
MW-14	4-Chlorophenyl-phenyl other	ug/L		Ü	Ü	10		Ť	Ü	10		١Ť	Ü	10		١Ť	Ü	10	10
MW-14	4- Methy iphenol	ug/L	 	Ū	Ü	10		Ť	Ü	10		Ť	Ü	10		Ū	Ū	10	10
	4 Nationalistic	wy/L		Ū	Ü	25		Ü	Ü	25		U	U	25		U	Ü	25	25
MW-14	4-Nagoph:and	ug/L	1	υ	U	25		U	U	25		U	U	25		U	V	25	25
MW-11	Accuaphthene	wy/L		U	Ü	10		U	U	10		U	Ü	10_		U	U	10	10
MW-14	Acenaphthylene	w/L		υ	U	10		U	v	10		U	U	10		U	Ü	10	10
MW-14	Anthewenc	ug/L		U	Ü	10		U	U			U	Ü	10		U	U	10	10
	Benzei(a)anthracene	ug/L		υ	U	ļū		U	U	Ìu		U	Ü	10		U	U	10	10
MW-14	Henridalpytene	ug/L		Ü	U	10		U	U	10		U	U	10		U	U	10	10
MW-14	the most his light and hence	up/t.		U	U	10		U	U	10		U	U	10		U	u	10	10
MW-14	Bearing halperylene	ug/L		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-14	Benzeik Hlustanthene	wg/L		U	U	10		U	C	10		<u>u</u>	U	10		U	U	10	10
MW-H	hes(2-Chilementhisky insufficient	Ng/L.		υ	υ	10		U	U	10		U	U	10		U	U	10	10
MW-14	tos(2-Chloroethyl) ether	wg/L	12			NA NA		U	Ü	10	<u> </u>	Ιυ	U	10		U	Ü	10	12
	bis(2-Ethythexyl)phthalate	ug/L		1	U	10		U	v	10	<u> </u>	↓	Ü	11	3.0	11		10	11
MW-14	Hurytheurylphilalau	ug/L	.	U	U	10		U	U	10	ļ	U	U	10		U	U	10	10
MW 14	Carbazole	upt		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-14	Chrysene	Ug/L		U	U	10	ļ	U	U	10		U	U	10	 	U	Ü	10	10
MW-14	(2) n-butylphthalate	up/L	}	U	U	10		Ü	U	10	<u> </u>	T U	U	10	 -	L.	Ų	10	10
	Disease ty ljelekalate	ug/L	<u> </u>	Ų	Ü	10		Ų	U	10		<u> </u>	U	10		U	Ü	10	to
MW-14	Different a intenderacene	1	 	U	Ü			Ü	Ü	10	}	יי		10		Ü	Ų	10	10
MW-14	(Mexacel usus	w/L		U	U	10		1 🖑	U	10		- 8	Ü	10		+ +	U	10	10
MW-14	E No. stoy important and a second a second and a second a	ug/L	 	Ü	10	10		Ü	Ü	10	 	10	Ü	10		10	10	10	10
	Dimenty liphthalate Fluoranthene	ug/L	 	Ü	1 5	10 10		١ŭ	Ü	10		l ü	l ü	100	 	۱ü	Ü	10	10
MW-14		We/L		Ü	Ü	10		Ü	Ü	10		+ +	Ü	10		۱ ٽ	Ü	10	10
	Headhlorenene	Ug/L		Ü	Ť	10		Ü	Ü	10		۱ů	Ü	10		Ü	Ü	10	10
	He nachhardatadette	ug/L		Ü	Ť	10		۱ů	Ü	10		١ŭ	Ü	ie ie		۱ŏ	Ü	10	10
	Hexachborocyclopentadiene	ug/l.	 	Ü	Ü	10		Ü	Ü	10		Ť	Ü	10		Ť	Ü	10	10
	He and Inhard thanks	ug/L		Ū	Ü	10		Ū	Ü	10		Ü	Ü	10		Ū	Ü	10	10
	Intenst 1.2.3-edipyrene	up/L		υ	Ü	10		Ü	Ü	10		U	U	10		U	Ü	10	10
	Isophisonic	up/L	0 90	7		NA_		U	Ü	10		U	Ü	10 .		U	Ü	10	10
	N-Nauron di-a-propylamas	ug/L		U	U	10		U	U	10		U	Ü	10		υ	Ü	10	10
MW-14	N-Nurroudiphenylamine	wg/L		٦	U	10		U	U	10		U	U	10		U	٦	36	10
	Naphshalene	ug/L		U	U	10		U	U	10		U	U	10		U	٦	10	10_
MW-14	Numberzene	ug/L		٦	U	10		U	U	10		U	U	10		U	5	10	10
MW-14	Pentachlorophenol	ug/L		ט	υ	25		U	U	25		U	U	25		U	ح	25	25
	Phonasthrone	up/L		U	11	10		υ	U	10		U	U	.)		U	٥	10	10
MW-14		ug/L		>	L.,	10		U	5	10		U	ย	10	18			10	18
	Ругове	Vg/L.		٥	L _	10		U	U	10		U	٦	10		U	5	10	10
	1,2.4-Trichlombenzene	Ug/L		۶	L _	10		2	เบ	10		U	υ	10		Ü	บ	10	to to
	1,2-Dichlenshenzene	up/L		حا	U	10		U	5	ta		U	υ	10		U	Ü	10	10
	1,3-Dichlorobenzene	ug/L		υ	U	10		U	3	10		5	ح	10		U	5	10	10
	1,4-Dichlorobenzene	up/L		2	 	ĮQ		U	3	10		U	٥	10		U	5	10	10
MW-15	2,2'-maybis(1-Chloropropane)	up/L		U	U	10		U	5	10		C	7	10		U	٥	10	10
	2.4.5-Tenchiotophenist	ug/l.		U	U	25		יי	Ü	25	ļ	U	2	25	<u> </u>	U	د	25	25
MW-15	2,4.6-Trichlorophenol	ug/L.	 	٥	U	10		U	3	10		Ü	כו	10		U	U	10	10
MW-15	2,4-Dichlorophenol	uge/L		U	U	10	L	U	U	10		U	U	10	<u> </u>	U	U	10	10

Mary 1 1 1 1 1 1 1 1 1					_	A2 4.4				N				**						
1 1 1 1 1 1 1 1 1 1	Well	Analyte	Units	Hamb 1		Rvent (Detect Limit	Bands	1.0	Kreat :		Harris .	Lio			Manufe	10	Event -		Highest Detection
Windows Wind				 																10
18 1 1 1 1 1 1 1 1 1				1			25				25									25
1907-13 1 1 2 2 2 3 3 3 3 3 3 3					2	U	10		U	Ü	14		U	Ü			Ü			10
1. 1. 1. 1. 1. 1. 1. 1.	MW-14	2.0- Dentermolinani	wp/L		U	U	10		U	Ü	10		U	U	10		U	U	10	10
1879 15 Meley September 1871	MW-11	2 Chlorosuphthalens	wg/L.		U		10		U	U	10		U	U	10		U	U	10	19
Wilson W	MW-I1	2-Chlorophenul	wy/L)0		U	3	10		U	U	10		U	Ü	10	10
1987-15 1980-calline	MW-11	2 Methyhuphthalete															2	U	10	10
1987-15 1989-16 1987-17 1989		2 Methylphend																		to
1879-11 1879		2 Nursantine		LI	_			<u> </u>				L								25
New York American September Septem																				10
1897 13 1988 19								ļ				<u> </u>								10
1966 1974				 	_							<u> </u>								25
1807-15 Chapter insubjected 1807-15 18				 	_								_	_						25
1 1 1 1 1 1 1 1 1 1																				10
1987 1 Chargestharpfetholy 1987 19				 									_							10
Second Design Continue				 	_				_			 								10
1.				 													_			10
1				 																25
Second Second																				25
No. No.																	_			10
WW 15 Anderserie							10													10
AWA 15 A					5	U	10		U	Ü	10		U	Ü	100		U			10
Second Design and Process Second Design and Process					ح	U	10		U	UJ	10		U	v	10		Ü	U	10	10
Mary 11 Reconstriblementation Sept. U U 1 10	MW-15	Benzelalpyrene	wp/L		U	ע	10		Ų	UJ	10		U	U	10		U	U	10	10
May 1 Control Representation May 1 Control Representation	MW-15		⊌p∕t.		حا	U					19		U	U	10		Ü	U	10	10
MW-11 Sec_2C-Timereshory prochame	MW-15	Bennigh ipriylent	uyp∕L.								10		U	U	10		U	U	ļa	10
MW-15 Nex2-CERN purey plankshade	MW-15_	the nough Higgstandinate	ug/L		_										10		Ü	ט	10	10
MW 15 Next Edit Next Next Edit Edit Edit Next Edit MW-15	hes(2-Chlorocthus y marthum:											_						10	10	
Style Styl				L	_															10
Configuration Configuratio	MW-15	hes(2-Ethythenyt)phthalate		L									_	_					27	n
New 1				 					_					_						10
New New					_			 _												10
NW-15 University plublished Sg/L								ļ				<u> </u>					_			10
MW-15 University a plane MW-15 University and a ppt.				 																10
MW-15 Delegation and Mg/L U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10				 													_			10
MW-15 Description Descri				 				ļ	_			 		_				_		to
NW-15 Principle plantalistic				 									_	_			_			10
MW-15 Floregathere wg/L U U 10 U U U U U U U U U				 												<u> </u>		_		10
MW-15 Fluoretic mg/L				 																10
MW-15 Remarks of the personal land of the perso				 																10
MW-15 Remarkhet details record mg/L				1																J0
MW-15 Re-mail-bit recyclogical Machine mg/L U U 10 U U 16 U U U U 16 U U U U U U U U U				1					_			 								10
MW-15 Ischmidt 1.5.1-chipyrone upf. U U In U U 10								[10
MW-15 Inchmist 2.3-calpyrense					U	U	IO		U		10							_		10
MW-15 N-Polaranic Mp/L U U 10 U U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U 10 U U U U 10 U U U U U U U U U U U U U U U U U U					υ	U	10		U	UJ	10		U							10
MW-15 N-National-design physicians ug/L U U IA U U IA IA U U IA IA			ug/L.		U					ÜJ	10		U	U						10
MW-15 N Nitrogradightary former ug/L U U 10 U U 10 U U U 10 U U U 10 U U U 10 U U U 10 U U U 10 U U U U U U U U U									_				U	U	10		Ü			10
MW-15 National MW-15 Proceedings MW-15 Proceding MW-			wg/L										U	U	10		U	U		10
MW-15 Price MW-15 Pric	MW-15	Naphibakac											U				U	U	10	10
MW-15 Pickganthicine mg/L U U 160 U U 16																	U	UJ	10	50
MW-15 Priceal mg/L U U N0 J UJ N0 U 11 26 10 10 MW-15 Priceal mg/L U U N0 N0	MW-15	Penadhrophend				_													25	25
MW-15 Pyres: Mg/L U U 16 U U 17 18 U U U 18 U U U 18 U U U U 18 U U U U U U U U U		Phonanthonic								_			U				U	U	10	10
MW-IN 1.2.4-Tis, blanch curver: Ug/L U U IO U U U U IO U U U U IO U U U U U U U U U	MW-15	Phonel		LI												26			ln .	26
MW-18 1.2 Dacidousherses ug/L U U 10 U 10 U U 10 U U 10 U U 10 U U 10 MW-18 (C U) a photostructure ug/L U U U 10 U U 10 U U 10 U U 10										_			_	_						10
MW-18 [1-12m Inherithmental up/L U U 10 U U 10 U U 10 U U 10 U U 10				J																10
				ļ	_							<u> </u>								10
MW-1x 14 Dachk-solvence wg/L U U 10 U U 10 U U 10 U 11 11				 									_							10
	MW-IX	1.4-Dichkarohenzene	ug/L_		U	LU.	10	L	لب	Ų	10	L	10	υ	10		U	U	10	10

													N				No.		Illehest
					Event	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kennit	_	Event	Detect Limit	Hand	TQ	Event	Detect Limit	Result	1.0	Event	Detect f.imit	Detection
Well	Analyte	Units	Kesuk	1.0	DQ	Detect Limit	Kenne	1.0	DQ			U	_		WASHIE	_			10
Al WIA	2.2'-cixybis(4-Chloropropane)	ug/L		U	Ų	10		2	U	25		Ü	U	25		"	U	25	25
MI WIM	2,4,5-Trichlorophemid	ug/L		U	U	25			U	10		Ü		10		_	3	10	10
NIW 18	2.4,6-Trichlorophenol	up/L		U	U	10		2:	Ų.				U	165		۳	U		10
MW IK	2.4-Dichlorophenol	UW/L		U	<u>u</u>	10		U	U	10		U	U	10		U	Ü	10	10
MW IX	2.4- Dimethylphenol	Ug/L		U	U	10		ᇦ	"	25		1 5	l ü	25		۳	1 0	25	25
MW IX	2.4-Dissirophenol	ug/L		U	Ü	25		 "	U	10		"	Ü	10		۳	Ü	10	10
MW IX	2.4-Dimirotolucite	ug/L	<u> </u>	U	Ü	10		₩.	Ü	 	 	Ü	Ü	10		5	Ü	10	10
MW-18	2.n-Dumprotolucite	ug/L		Ü	Ü	10		Ü	Ü	10	 	Ü	ü	10		Ü	Ü	10	10
MW IX	2 Chloromaphthalene	up/L		Ü	Ü	10		Ü	Ü	10	 	Ü	Ü	10		+	l ö	10	10
MW IX	2 Chlorophenol	uk/L_		Ü	Ü	10		Ü	Ü	10		Ü	"	10		۳	Ü	10	10
MW-IX	2 Methylmaphthalene	ug/L		Ü	Ü	10		Ü	Ü	10	 	10	Ü	10		ᇦ	Ü	16	10
MW IX	2- Methy iphenol 2- Nationaline	ug/L ug/L		Ü	Ü	25		Ü	Ü	25	 	Ιŭ	Ü	25		Ü	Ü	25	25
MW-IN				"	Ü	10		l i	Ü	10	 	Ü	l ii	10		Ü	Ŭ	10	10
MW IS	2 Numphand 1,31-Dealemban/else	ug/L.		Ü	Ü	10		Ť	Ü	10	 	l ü	10	10		Ü	Ü	10	10
MW-18		wg/L		"	-	25		Ü	Ť	25		Ü	Ŭ	25		Ü	Ü	25	25
MW-IX	1-Natroaniline 4-6-Dimus-2-methylphemil	ug/L.		1	Ü	25		Ü	Ü	25	 	Ü	Ü	25		+ +	Ü	25	25
AtW IN	4 Brounghouy! phenyledier	ug/L	<u> </u>	"	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	1	10	10
MW-IR	4 Chloro-3-methylphenol	ug/L	 -	۳	Ü	10		Ü	Ü	10	 	l ü	Ü	10		۳	5	10	10
	4-Calcachange	uje/L		l ü	Ü	10		Ü	Ü	10		1 0	Ü	10	 -	Ιΰ	10	10	10
NIW IX	4-Chlorophenyl-phenyl ether	uy/L		Ü	Ü	10		Ü	Ü	:9		Ü	Ü	10		Ü	Ü	10	10
MW-IX	4 Methylphenol	ug/L		ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	ŭ,	10	10
MW IN	4- Nationalistine	ug/L		Ü	Ü	25		Ü	Ü	25		Ü	Ü	25		Ü	Ū	25	25
N1 W 18	4 - National and	up/L		Ü	Ü	25		Ü	Ü	25	 	Ü	Ü	25		Ü	Ü	25	25
MW-IX	Accauphdiene	ug/L		Ü	Ü	10		Ü	ن ا	10		l Ü	Ü	10		ਚ	Ü	10	10
MW-18	Accuaphthylene	wg/L		ů	Ū	10		5	Ü	10	 	Ü	۱ů	10		Ü	٦	to	10
MW IX	Anthracene	up/L		Ü	Ü	10		Ü	Ū	10	 	Ü	Ü	10		Ü	Ü	10	10
MW-IX	Henzotasanthracene	ug/L		Ü	Ü	10		-	ŭ	10	 	υ	Ŭ	10		Ü	Ü	10	10
MW-IR	Benzotapyrene	ug/L		Ü	Ü	10		5	Ü	10	 	l ü	ŭ	10		Ü	Ü	10	10
MW-IX	Henzieth (fluoranthene	Ug/L		Ü	Ü	10		3	Ü	10		Ū	Ü	10		Ü	l ü	10	10
MW-18	Henzinty, h. Operylene	uje/L		Ü	Ü	10		-	Ü	10	1	U	Ü	10		Ü	Ü	10	10
MW IX	Henziek illustanthese	ug/L.		Ü	Ü	10		2	U	10	1	U	Ť	10		Ū	Ü	16	10
MW-IX	bis(2-Chloroethray)methane	up/L		Ü	Ū	10		U	Ū	10		ΤŪ	Ť	10		Ü	Ü	10	10
MW 18	hes 2-Chiornethyl) other	ug/L		Ü	Ū	10		U	Ū	10		1 0	Ü	10		Ü	Ü	10	10
	best 2-Ethylhexyl iphthalate	ug/L		1	Ü	10		U	Ū	10		 	Ū	15		Ù	Ü	10	15
MW IK	Butythen/ylphthalate	ug/L		Ü	Ū	10		Ü	Ü	10		lυ	Ü	10		Ü	Ü	10	10
MW IX	Carbarnia	we/L		U	Ü	10		c	U	10		Ü	Ü	10		Ü	Ü	10	10
MW-IR	Chrynene	ug/L		Ü	Ū	10		Ü	Ū	10		Τů	Ü	10		Ü	Ü	10	10
MW-18	Dr.m-huy lphthalaic	ug/L		Ü	Ū	10		Ü	Ť	10		Ü	Ü	10		Ü	Ü	10	10
	District y iphtholate	ug/L.		Ü	Ü	10		U	Ū	10	1	Ť	Ū	10		Ü	Ü	10	10
MW-IX	Dihenzigalikanthracene	ug/L		Ŭ	Ü	10		Ü	Ū	10		1 U	Ü	10		Ü	Ü	10	10
MW-IX	1 hitemanian	ug/L		Ü	Ũ	10		Ü	Ü	10		l ŭ	Ť	10		Ü	Ü	10	10
MW-IX	l hethylphthalate	ug/L	 	tΰ	ű	10		ŭ	Ť	10		Ť	Ť	10		Ü	Ü	10	10
MW-18	Dimethylphihalate	Ug/L	 	Ť	Ü	10		Ü	Ü	10		ŧΰ	Ü	10		Ü	Ü	10	10
MW-18	f-bantandara:	ug/L		Ū,	Ü	10		Ü	Ū	10		ΤŪ	Ŭ	10		Ü	Ť	10	10
MW IX	Distriction	up/L		Ū.	Ŭ	10		Ü	Ü	10	1	Ť	Ü	10		Ü	Ιř	10	10
MW-18	Herachlorshenzene	up/L		Ū	Ū	10		Ü	Ü	10		Ü	Ū	10		Ü	Ť	10	10
MW-IR	He was historobutadisense	ug/L		Ü	U	_ to		Ü	U	10		Ū	UI	10		Ü	Ü	to to	10
_MW-IX	Hexachhoreychipentatione	ug/L		U	Ü	10	<u> </u>	Ū	U	10	1	Ü	U	10		Ü	Ū	10	10
MW-IX	He was bloomethane	ug/L		U	U	10		U	U	10		U	v	10		Ü	Ü	10	10
MW-IN	Indenot 1,2,3-cd)pyrene	Vg/L		U	U	10		Ü	U	10	1	Ū	Ü	10		Ü	Ü	10	10
MW-1X	Escaphina case:	ug/L.	<u> </u>	U	U	10		Ų	U	10		U	U	to		Ü	Ū	10	10
MW-IX	N-Nitroscodi-n-propylanuic	ug/L		Ū	U	10		U	U	10	I	U	Ū	10		Ü	Ü	10	th
MW-IX	N-Nurosaliphenylanune	ug/L		Ū	U	10		U	U	10		U	Ü	10		Ü	Ū	10	10
MW-IK	Naphthalone	up/L		Ū	U	10		U	U	10		Ū	Ū	10		T	Ü	10	10
MW-IX	Numberzene	ug/L		υ	U	10		Ü	υ	10	1	U	Ü	10		Ü	Ü	10	10
MW-18	Pentachtrophenol	up/L		U	U	_ 25		Ū.	U	25		U	U	25		Ü	Ü	25	25
MW IN	Phenanthrene	ug/L		Ü	U	10		U	U	10		Ü	Ü	10		Ū	Ü	10	10
MW 18	Phenol	4p/L		U.	U	10	8.0		1	10		U	U	10	21		1	10	21
MW IK	Pytene	ug/L		U	U	10		U	Ü	10		Ū	Ū	to		v	υ	10	to
								<u> </u>				<u> </u>				···	<u> </u>		

											,		*						
***	4	Units	Reside	1 470	Event	Dutect Limit	Name of the last	LQ	None DQ	Detect i Junit	-		Errent		W	- 10	Event		Highest
Well	Analyte		N.C.	10	C &	30		17	7	10	Result	100		Defect Limit	Hennit	3		Detect Limit	Detection
	1.2.4-Trichlandenrene	well.		 "	ᇦ	10	 	1 0	Ü	10	 	Ü	10	10		۳		30	10
	1,2-De bloodenzene 1,3-De bloodenzene	w/L		l ü	l ü	30		 	Ť	10	 -	Ü	Ü	10		₩	l ö	10	10
	1,4 De himmonome	Jup.		۱ ٽ	Ü	10		۱ŭ	١ ٠	10	 	ŭ	١ů	10		₩		10	10
	2,2'-usybid (-Chloropropusc)	- WA		+ +	Ť	10	 	l ü	Ü	10		Ü	۱Ť	10		۳	t ü	10	10
	2,4.5-Tricbhoophend	- L	 	۳.	Ü	25		lΰ	Ü	25	f	Ü	Ü	25		10	1 ö	25	25
	2,4,6-Trichhouphend			Ť	Ü		 	Ü	ᇦ	10	 	l ŭ	"	10		ᡰ᠊ᡠ		10	10
	2.4-Dichknophenol	- 		۱ŏ	Ü	10	 	۳	Ü	10		۱ŭ	Ü	10		10		10	10
	2.4-Directly/phenol	ug/L	 	l ŭ	Ü	10		l ü	Ü			1 0	Ü	10		Ü	1 ö	10	10
	2,4-Denstrupheted	ug/L.		Ť	Ŭ	25		Ü	ü	25		Ü	w w	25		+		25	25
	2.4-Denotestablishe	- Jul		Ü	Ü	10		Ť	Ü	10	·	Ü	Ü	10		۳	l ü	10	10
NW-19	2.6- Deservindacts:			Ü	Ü	10		Ū	Ū	10		υ	ů	10		ř		10	10
		ug/L.		Ū	Ü	10		U	Ū	10		Ü	Ü	10		1	l ŭ	10	10
	2-Chleropheard	- T-		Ü	Ü	10		U	Ü	10		Ü	Ü	10		٦	Ū	10	10
MW-ty	2-Mcshylmaphthalem:	w/L		Ü	Ü	10		Ü	Ü	10		Ü	ΙÜ	10		0	Ü	10	10
MW-19	2-Methylphanid	-		Ü	Ü	10		Ū	Ü	10	·	Ū	w	10		٣	ΙŬ	10	10
MW-19	2-Nanuanhae	- L		ŭ	Ü	25		Ü	Ü	25		Ü	Ü	25		1	ΙŬ	23	25
NIW-IV	2-Nanaphrand	- T-		Ü	Ü	10		Ü	Ü	 	 	Ü	Ü	io		1	Ü	10	10
MW-19	1.1'-Dichlandscaviding	up/L_		Ü	Ü	10		Ū	-	10	1	Ŭ	Ü	10		5	ΙŪ	10	10
MW-19	1-Nanamilan			Ü	Ü	25		Ü	-	25	·	Ŭ	Ť	25		Ü	Ü	23	25
MW-19	4.6-Dunter-2-methylphetrol	wy.		Ü	۳	25		Ù	Ü	25		Ü	Ü	25		Ü	Ŭ	25	25
	4- Bromophenyl-phonylether	ug/L		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	L Ü	10	10
	4-Chileter 3-marthylphomes	-1		Ū	101	10		Ū	15	10	 	Ü	Ü	10		5	ΓŪ	10	10
	4 (histographisms	w/L		Ū	Ü	10		Ü	5	10		Ü	Ü	10		ľ	Ü	10	10
	4-Chinophenyl-phenyl other	ug/L		Ť	1	10		Ü		10		Ü	Ť	10		Ü		10	10
	4-Methy phenol	ug/L		Ū	U	10		Ū	2	10	 	Ü	Ū,	10		Ċ		10	10
	4-Nine and one	W/L		Ū	Ū	25		Ü		25	 	Ü	Ū	25		Ü		25	25
	4- Maryphanid	72.		Ü	Ü	25		Ū	5	25		Ū	Ü	25		Ü		25	25
MW-IV	Accuaphilicue	W/L		U	Ū	Id		Ū	U	10		Ti-	Ü	10		Ü		10	10
	As chaptedly lette	W.		2	Ū	10		U	5	10		Ü	Ü	340		Ü	Ū	10	10
MW-19	Anthraces	w/L		U	Ū	10		Ū	Ü	10		Ü	Ü	10		Ü		10	10
MW-19	Benzo(alanthracene	w/L		Ü	Ū	la		Ü	U	90		Ü	Ü	10		Ü		10	10
	Benzula teprete	w/L		Ü	Ü	les .		U	5	10		Ť	Ü	10		U	Ť	10	10
	Menous is influentable the	upL		v	U	10		U	5	10		Ù	U	10		U		10	10
MW-14	then/or g.lt. Apperyleme	ug/L		U	U	10		U	5	10		Ü	Ü	10		Ü	Ü	10	10
	Benzuti Muntambene	w/L		Ü	U	10		U	2	10		Ť	Ü	10		Ü	Ü	10	10
	bio(2-Chiomatheay)methan.	w/L		Ü	Ū	10		Ū		10		Ü	Ü	10		Ü		10	10
	heat 2-4 "biomedian"; other	1/4	- 11			NA .	12			10	9.0	1	Ť	10	12	<u> </u>	<u> </u>	10	12
	bind 2-Euley Backy Suphishulate	w/L		7	U	90		U	U	10	14		-	10		U	U	10	14
	Marty Brewy physiologicals:	- A.		Ü	انا	lo lo		Ü	U	10		Ü	Ü	.10		Ü	Ü	10	10
	Carbarole	- Juget		Ü	Ü	10		Ü	Ü	10		Ü	Ü	140		Ü	Ü	10	10
NW-19		- T-		Ť	Ť	10		Ü	Ü	30		l ü	Ü	100		Ü	Ü	10	10
	1 to an heaty light hall also	w/L		Ü	Ü	30		Ū	Ü	ia		l ii	Ü	10		Ť	Ŭ	10	10
	(No more, by lightly late	w/L		Ŭ	Ü	10		Ū	Ü	10		T U	١Ü	10		Ü	۱ŭ	10	10
	(John marie a deligation according	Jugit.		Ü	Ü	10		Ü	Ü	10		Ü	۳	10		Ü	Ü	10	30
	Delicariolation	- June	 	Ü	Ŭ	10		Ü	1	10		Ü	Ť	10		Ü	Ü.	10	10
	Decitylphilates	ug/L		Ū.	Ü	10	4.0	Ť	<u> </u>	10		Ü	╁	10		Ü	Ü	10	10
MW-19	Descriptional	ug/L		Ü	Ü	10		i	Ü	10		U	Ü	10		Ŭ-	1 0	10	10
MW-IA	Flux syndrom:	- Jupil		5	Ü	10		Ü		10		Ü	+	30		Ü	ťΰ	10	10
VI-WIA	Howe	Jul.		7	Ü	10		Ü	7	10	<u> </u>	H	Ť	10		Ü	Hüll	10	10
VI-W14	He no, blommer em	ug/L		Ü	۱Ť	10		١٠٠	6	10		Ü	Ť	10		Ü	l i	10	10
	He has belonded being	ug/L		Ü	Ü	10		Ü	-	10		Ü	Ü	10		Ü	Ü	10	10
	Here library, lapostadiene	ug/L		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ŭ	1 5	10	10
	Here blotsethere			10	Ū	10		Ť	Ü	10		Ü	1	10		Ŭ-	١ŭ	10	10
MW-19	Indicated 1.2. Verdippens	19/L		Ü	Ü	le le		U	-	10		Ü	Ü	10		Ü	l ü	10	10
MW-19	I suplements	ug/L		Ü	Ū	10		Ū	-	10		Ü	Ü	10		Ü	1 0	10	10
MW-19	N-Naumandon-propylamine	- Jugit		Ü	ΙŬΙ	10		Ü	Ü	10		Ü	7	340		Ü	Ü	10	10
	N-Numerandiphonylastics	WAL		Ü	١٠	Je Je		Ü	Ü	10		۱ ٽ ۱	1	10		-	H	10	10
	Naphthakue	ug/L		٦	l ŭ l	10		Ü	Ü	10		Ü	۳	10		Ü	l ü	10	10
	Numbensene	ug/L		Ü	l ö l	la		Ü	Ü	10	 	Ü	"	10		Ü	U	10	
MW-IA	TANDAK BANK	-85			لتحد			لستسا	ليتيا	- ""	نــــا	_ ٰٰ	<u>ٿ</u>				L. U	10	10

	i	1	<u></u>	1	Event	Detect [,imit	Result	1.0	Event		Result	14	Event	Detect Limit	Henuit	1.0	Event	Detect Limit	Highest Detection
Well	Analyte	Units	Kevalt	망	17	25	Result	Ü	177	25	N. Company	12	UJ	25	Nestra	117		25	25
MW IV	Pentachlorophenol	nk/r	 	1-5	10	10	 	Ü	H	10		1 0	1 0	10		╁	10	10	10
MW-IV	Phenanthrene	wg/L		10	10	10	20		-	10		1-5-	10	10	- 11 -	۳		10	- ;;
MW-19	Phenol	ug/L		1 0	l ü	10		U	Ū	10	 	i	Ü	10		Ü	U	10	10
		nk/r		10	1 0	10		Ü	Ü	10	 	1 0	Ü	20	 	ü	Ü	NO	20
MW-22	1,2,4-Trichlorohenzene 1,2-Dichlorohenzene	ug/L		1 0	Ü	10		Ü	Ü	10	 	۱ ٽ	Ť	20		Ü	l ü	140	300
MW 22	1,3-Dichlenebenzene			1 0	l ü	10		Ü	Ü	19		 	Ü	20		Ü	Ü	IK)	300
MW-22	1,4-Dichlorohenzene	ug/L ug/L	 	l ŭ	1 5	10		Ü	۳	10		+ ŏ	Ť	20		Ü	Ü	80	100
MW-22	2,2'-oxybo(1-Chloroptopane)	ug/L	 	۱ř	Ü	10		Ü	1	10	 	Ü	Ü	20		Ü	Ü	10	30
MW-22		⊌µ/L	 	10	T U	25		Ü	1	25	 	t ü	Ü	50		Ü	Ü	200	200
MW-22	2.4.6-Tru, blueophrand	ug/L		Ť	Ü	10		Ü	Ü	10		Ū	Ü	20		Ū	Ü	W)	80
MW-22	2,4-Dichistophenol	wg/L	 	Ü	Ü	10		Ü	v.	10		U	U	20		Ü	Ü	30	80
MW-22	2.4-Dimethylphanol	ug/L		U	U	10		V	Ü	10	1	U	U	20		U	U	30)	160
MW-22	2,4-Dimitrophenul	ug/L.		Ū	U	25		U	Ü	25	1	U	U	50		Ü	U	200	2(31)
MW-22	2.4 Dimerniolismo	ug/L		U	U	10		U	Ü	10		U	U	20		U	U	80	MC)
MW-22	2,6- Dimersiolisms	ug/L.		U	U	Ю		U	۲	10		υ	Ü	20		U	U	WC)	NO.
MW-22	2-Chlorosaphthalese	ug/L_		U	U	10		U	٦	Ł0		U	U	20		υ	U	(A)	160
MW-22	2-Chlorophenol	wg/L		υ	U	10		U	٦	10		U	υ	30		U	Ü	30	MO
MW-22	2- Meshy inaphthalese	w/L		ับ	U	10		Ü	Ū	10		U	U	20		ט	U	(M)	MO
MW-22	2- Mestry lpheunt	ug/L		U	5	10		=	5	10		U	υ	20		נ	υ	86)	80
MW-22	2-Netroantine	ug/L		U	U	25		U	>	25		U	U	50		U	U	2001	200
MW-22	2-Nutraphenol	ug/L		U		10		<u></u>	2	10		2	U	20		U	U	383	340
MW-23	1,1'-Dichlorobenzidate	uje/t.		U	c	10		V	2	10	<u> </u>	U	U	20	<u> </u>	U	U	80)	260
MW-22	3-Nansanime	ug/L.		U	<u>_</u>	ซ		U	2	25	<u> </u>	U	U	50		U	U	200	2(1)
MW-22	4.6-Dimirro-2-methylphenol	uje/L	.	U	c	25		V	2	25	<u> </u>	U	υ	50		U	U	200	200
MW-22	4-Brissinghenyl-planylether	up/L		υ	U	10		Ÿ	U	10		U	U	20	ļ	U	U	36)	80
	4 Chloro-3-methylphenol	up/L		U	υ	10	ļ	U	U	10	 	U	U	20		U	U	381)	80
MW 22	4-Chloroundate	ug/L	 	U	υ	10		Ų.	۳	10		U	U	20		U	U	3()	80
MW-22	4-Chlorophenyl-phenyl ether	up/L	ļ	U	U	to		U	U	10		_	Ü	20		U	υ	80	80
MW-22	4-Methylphenol	up/L	 	U	U	25	ļ	U	2	25	 	U	Ü	20 50		U	U	200	W)
MW-22 MW-22	4-Neurosaniling	wy/L		 "	Ü	25		Ü	"	25		10	"	30		10	U	200	200
MW 22	4-Nitrophenol	ug/L		٠,	Ü	10		Ü	8	10	 	1 0	Ü	20		-	Ü	200	310
MW-22	Accuaphthene Accuaphthylene	Spl.		l ü	Ü	10		Ü	Ü	10		۳	Ü	20	 	l ü	Ü	B()	#()
MW-22	Anthraces	way.		l ü	Ü	10		Ü	Ü	10	 -	Ü	Ü	20		U	Ü	340	141)
MW-22	Henrota kanthracene	ug/L		ΙÜ	Ü	10		Ü	Ü	19	 -	Ť	٠	20		l ü	Ü	360	80
MW-22	Henzotalpyrene	ug/L		Ť	Ü	10		Ü	, B	10	 	۱ ٽ	Ü	20		Ü	Ü	80	20)
MW-22	Benzeihilungnihene	July 1		Ü	Ü	10		Ü	Ü	10	 	Ť	Ü	20		Ü	Ü	360	20
MW-22	Benzutg.hatperylene	ug/L		Ü	Ū	10		Ü	Ü	10	 	Ť	Ü	20		Ü	Ü	340	20
MW-22	Menoral kalamanahane	W/L		Ü	Ü	10		Ü	Ü	10		Ü	Ū	20		Ť	Ü	30	30)
	No.(2-Chieroethouy)marthane	ug/L.		Ū	Ü	10		U	Ü	10	1	Ū	Ũ	20		Ť	Ü	NO.	20
	hint 2-C falorine Bry Extres	ug/L		U	U	10		U	Ü	10		Ü	Ü	20		Ü	Ü	IRO	80
	hos(2-Ethylficxyf)phthalatc	werL	4%			NA NA		U	٥	10	14			20		Ü	Ū	80	80
	Hutythenrylphthalate	ug/L		U	υ	10		U	U	10		U	U	20		٦	U	360	80
	Carharole	ug/L		U	U	10		ט	υ	10		U	U	20		כ	U	3/0	300
	Chrysene	ug/L		U	U	10		U	٥	10		U	U	20		U	υ	200	360
	Dr-n-hutylphthalate	ug/L		U	C	10		٦	υ	10		U	U	20		U	U	300	30)
	Di-m-maylphillulate	ug/L.		2	c	10		5	۲	10		U	U	20		υ	U	360	80
MW-22	Dyben roja, bjandiracene	ug/L		٦	C	10		E	۲	10		U	Ų	20		U	٦	30)	161)
MW-22	Differentialism	ug/L		U	5	10		=	C	10		U	U	20		U	C	380	80
	Decthylpishalate	ug/L		U	U	10		U	2	10	L	U	U	20		٥	c	Mr)	8 ()
MW-22	Denocity inhibition	ug/L		U	υ	10		U	2	10		U	U	20		٥	c	JM)	80
	Floriantiche	ug/L		U	U	10		Ü	2	10		U	U	20)		2	U	36)	80
	Fluorenc	ug/L		V.	; c	10		2		10		U	U	20			5	*	80
	He kachkerehenzene	ug/L		٥) - -	10		U	U	10	 	U	U	20		U	U	30)	80
MW-22 MW-22	Hexachiombutadiene	uk/L		"		10		<u> </u>	Ü	10		ÿ	נט	20		2	Ε.	84)	80
	Henachtorn yelopentadione Henachtoruthane	l vyµ/L }		+	Ü	10		ᄬ	U	10	 	Ų.	נט	20		>	U.	36	80
MW-22	Indenot1,2,3-cd1pyrese	ug/l.		₩	ان	10		+	-	16	 	U		20		U	c c	W)	140
	Isophiroic	ug/L		- 0	l ö	10		l i	Ü	10	 	Ü	-	20		U	۳	R()	80
				ــــــــــــــــــــــــــــــــــــــ	لـــــــ			لـــــــا	<u> </u>	L		لت	ر ت	L	L	<u>.</u>		8()	80

		1	T		Event				Event	,			Event.				Event :		Highest
Well	Analyte	Unite	Hereit	10	DQ	Detect f.imit	- Maradi	110	I DQ	Detect Limit	Rent	TIO			Reset	140	DQ	Detect Jank	Detection
		up/L	 	Ü	U	10		T U	U	10		U	U	20		1	U	30)	*0
	N-Neuros-de-n-peopylatum: N-Neuros-deptenylatum:	ug/L		l ü	Ť	10		l ö	۱ü	100	 	1 0	"	20		Ü	-		30)
MW-22	Naphthalene	we/L	 	Ü	l ü	10		1 5	Ü	10	 	l ő	l ö	20	 	l ö	Ü	30	80
		up/L	 	Ü	Ü	10	 	t ö	l u	16	 	Ü	l ü	20		Ü	0	80	W/)
MW-22	Negerbane			Ü	۳	25		1 0	"	25		Ü	Ü	50		Ü	_	200	
	Pentachkoophenol	wp/L	 -	Ü	Ü	10		1 6	ᇦ	10			Ü	20	ļ		U		200
	Phenandrene	wp/L		l ö	Ü	10	1.0	1:		10	 	u	٠,		130	U	C	80	100
	Phonel	w/A.		1 0	Ü		1,0	_			100	.		20	130	-		300	310
MW-22	Руксис	wert		l ü		<u> </u>		U	U	10	 	U	U	20	ļ	l u	-	100	360
	1,2,4-Trichhorobenzene	ug/L	 		Ų	10		U	U	10		ļ	U	10		5	c	10	10
	1.2-Dichlorobenzene	ug/L		Ü	ū	10	 -	Ü	U	10		—	U	10		U	=	10	10
	1,1-Dichlombenzene	m/L		Ų	Ų	10	 	U	Ų.	10	<u> </u>		U	10	 	٦	2	10	10
	1,4-Dichlombenzene	ug/L		U	U	ю		Ü	U	10	ļ	-	U	Ю	ļ	c	ے	10	10
	2,2'-estytes(I-C'hloropespanc)	ug/L_		U	U	10	ļ	Ü	U	10	 	<u> </u>	U	10	ļ	E	5	10	10
MW-21	2,4,5-Truchlumphemil	ug/L.	ļ	U	U	25	<u> </u>	U	U	25			U	25	ļ	E .	۲	25	25
	2,4.6-Teachlomphonal	wg/L		2	c	10		U	U	10	<u> </u>	ļ	<u>c</u>	10		U	3	10	10
	2,4-Ds. hkmaphenol	ug/L	<u> </u>	U	0	10		U	٧	10	<u> </u>	ļi	-	10		<u>"</u>	5	10	10
	2,4-Describylphensi	ug/L		U	U	10	 	Ų	v	10	Ĺ	$oldsymbol{\bot}$	U	10		<u>u</u>	5	16	10
	2.4-Dinarophenol	age/L		2	2	25		U		25	<u> </u>		=	25	ļ	U	٥	25	25
	2.4-Dinitrotalucite	wp/L		U	U	10	L	U		10			2	10		U	۵	IA	10
	2,6-Dissirehalische	ug/L		U	U	10	<u></u>	U	2	10			C	10		5	حا	10	10
MW-23	2-Chioronaphaliatere	- Juge	<u> </u>	_	0	10	<u> </u>	0	2	10			U	10		U	U	10	10
MW-23	2-Chire-phonet	ug/L		=	=	ю		C	5	10			ע	90		U	5	10	10
MW-21	2-Methylmaphahalene	ug/L		U	U	10		U	5	10			U	НО		C	5	10	10
MW-23	2- Mothy lphonol	ug/L.		U	U	10		υ	5	10			Ü	10		C	U	10	JO.
MW-21	2-Notes canaling	- John		ט	υ	25		Ų	حا	25		1 -	Ū	25		U	נט	25	25
MW-21	2-Natrophemal)		C	U	10		U	5	10			U	10		U	U	10	10
MW-21	1,1'-Da bhreshen/idene	7		υ	U	10		U	U	10		T^{T}	Ü	10		Ü	U	10	10
MW-21	1-Netrometing	ug/L		U	Ü	25	J	U	C	25			U	25		Ü	U	25	25
	4,n-Dissert-2-methylphensi	140		U	U	25		Ü	5	25			U	25		U	Ü	25	25
	4- Bermuphanyl-phenylether	w/t.		U	U	10		U	U	10			U	10	l	Ù	U	10	10
	4-Chiara-3-meshylphenol	- Jupi		U	U	10		Ü	5	10		1	Ü	10		Ü	Ü	10	10
	4-C'hdewenambling	ug/L		Ü	U	10		U	U	10			Ü	10		ū	÷	10	10
	4-Chlorophenyl-phenyl ether	ug/L		U	U	10		Ü	U	10			Ü	10		Ü	Ü	10	10
	4- Methy letternal	ug/L		Ü	Ü	10		Ü	Ü	10		1	Ü	10		1	Ü	10	10
	4- Nancaphine	ug/L		Ü	Ü	25		Ü	Ü	25			Ü	25	 	Ü	Ü	25	25
	4-Nanaphanui	ug/l.		Ü	۳	25		Ťů	Ü	25		-	Ü	25	<u> </u>	۱ů	Ü	25	25
	Accomplished	w/L		Ü	Ü	10		Ü	- 0	10		-	Ü	10		ŭ	Ü.	10	10
	Accomplishylene	- Juga	 	Ü	۳	10		Ü	Ü	10		-	ان ا	10		Ü	Ü	10	10
	Anthraces	401		Ū	Hill	10		Ť	Ü	10		-	Ü	10		ŭ	Ü	10	10
	Henridanikaseke	w/L		10	١٠	10		Ü	Ü	10			۳	10		1	Ü	10	10
MW-21			 	Ü	انا	10		1-5	7	10			۳	10		Ü	0	10	10
	Benneshyddin	4	 	٠	انا	10		Ü	Ü	10		┼──	l ü	10		1	Ü	10	10
		- T-	 	1 5	١٠	10		۱ŏ	U	10		 	Ü	10		H	U	10	10
	Benzeighapperyfene			10	ان	10		۱ŭ	Ü	10		 	 	10		- 5	-	10	10
	Benzer i Hammathene	wg/L	 	l ö	1	10		1 0	U	10			0	10		Ü	U	10	10
	hest 2-Chiloropthus y beethore		 	10	Ü	10		1 5	"	10		-	3	10		۳	_		
	hos(2-Chlomothyl) other	- 		Ü	ᄬ	10		10	U	10	7.0		┝╩┥			_	۳	10	10
	hes(2-Eskylhenyliphakalate	ug/L		1 5	ㅐ			Ü			7.0	-	٠	NA .	 	ÿ	U	10	10
	Butythen/ylphulules	ug/L.	<u> </u>			ю		_	2	10		-	5	LO		2	5	10	10
	Carburde	ug/L		<u></u>	2	10	ļ	2	2	10	<u> </u>	\vdash	5	10		<u> </u>	c	10	10
	Chrysene	<u> </u>		U	U	10	<u> </u>	C	2	10			5	10		۳	U	10	10
	De-a-husylphahalala	wa/L	L	U	ַ ע	10	<u> </u>	<u>_</u>	5	10		لــــــــــــــــــــــــــــــــــــــ	2	10	·	5	5	10	10
	Den-nctylphthalate	ug/L		U		10		<u> </u>	2	10			٦	10		5	-	10	10
	Difficure (a.fr) and receive	- Juge		U,	لا ا	10		6	U	10			5	10		5	Ü	10	10
	Dehenorieran	upl.		U	5	10		U	5	10			5	10		٥	Ü	10	10
MW-21	Diethytphthalate	upl.		C	5	10		U	ט	10			5	10		U	Ū	10	10
MW-21	L'amerity iphthalate	wg/L		U	٧	10		U	دا	10			ט	10		U	C	10	un .
MW-21	Fluoranthene	ug/L		U	U	10		U	حا	10			Ü	10		Ü	C	10	10
MW-21	Fluorenc	up/L		Ü	υ	10		U	5	10			Ü	10		U	U	10	10
	Hexachlorohenzene	Hg/L		U	U	to		U	2	10			Ü	101		U	Ü	10	10
	He are blorobutatione	ug/L		U	U	10		U	Ü	10		\vdash	Ü	10		Ū	Ü	10	10
									<u> </u>										

	,	· · · · · · · · · · · · · · · · · · ·																	-
		Units	Result	1.0	Event	Detect Limit	Kesek	10	Event	Dutect Limit	Roselt	LQ	Event		Kesuk	1.0	Event	Delect Limit	Highest Detection
	Analyte	ug/l.	RESUR	U	U	10	Resear	2	7	10		1:3	"	10	- News	Ü	7	10	10
MW 23	Hexachtorocyclopentatione Hexachtorocthane	ug/L		Ü	Ü	10		Ü	Ü	10		 	Ü	10		Ü	Ü	10	10
MW 23	Indens(1,2,3-cd)pyrene	up/L		Ü	Ü	10		Ü	Ū	10			U	10		Ü	U	10	10
	Isophorone	Uy/L		Ü	Ü	10		Ü	U	10			U	10		Ü	U	10	10
MW 21	N Nazoso di n-propylamine	ug/L		Ü	U	10		U	U	10			U	10		υ	ບາ	to	10
MW 21	N-Nurseanisphenylamine	up/L		U	U.	10		U	U	10			5	10		U	U	10	10
MW 23	Naphhalene	ug/L		U	υ	10		٥	U	10			ح	10		Ü	U	10	10
MW-21	Narohenzene	ug/l.		U	U	10		5	U	10			υ	10		U	U	10	10
MW-23	Pentachlerophenol	ug/L		U	C	25		٦	۵	25		L.	٧	25		U	U	25	25
MW 21	Plicnanthrene	wg/L		U	U	10		٥	<u>u</u>	10		_	=	10		Ü	U	10	10
MW-21	Phone	ug/L		U	U	10	30	L	ـــا	10	18	<u> </u>	1	NA.		U	U	10	30
MW-21		uk/L		U	_U_	10		=	Ų.	10		٠	= c	10	 	Ü	U	10	10
MW-24		wg/L.		U		10		2	U	10		U	"		 	U	U	10	10
	1,2-Dichlorohenoene	or/L		U	-ت ا	10		U	Ü	10	 	1 5	10	10		1 5	1 0	10	10
MW 24	1.3-Dichlorohenzene 1.4-Dichlorohenzene	ug/L		l ü	Ü	10		TU U	Ü	10		Ü	Ť	10		Ü	 ŭ	10	10
AIW 24		ug/L		Ü	Ü	10		Ü	1 0	10		1 5	ن ا	10	 	l ö	l ŭ	10	10
MW 24	2.4.5-Tradicouphered	ug/L		Ü	Ü	25		Ü	Ü	25		ΙŬ	Ü	25	 	1 0	Ü	25	25
MW 24	2.4.0-Trachlorophenoi	υμ/1.		Ŭ	Ü	10		Ü	Ü	10		Ü	UI	10		Ü	Ü	10	10
MW 24	2.4-Dichlorophetiol	ug/L		Ŭ	Ü	10		Ü	Ü	10		Ü	UJ	10		Ū	Ū	10	10
MW 24	2.4 Dimethylphenol	ug/L		Ū	Ū	ţa		U	U	10		Ū	U	10		U	U	10	10
MW-24	2,4-Dinstrophenol	υμ/1.		U	U	25		5	υ	25		U	וט	25		U	J.	25	25
MW 24	2,4 Dangotolyene	ug/t.		U	U	10		د	υ	10		U	٥	10		U	U	10	10
MW 24	2.6-Dimitrotolyche	ug/L		5	U	10		U	U	10		U	U	10		υ	U	10	IU
MW 24	2-Chloronophthalene	ur/t.		U	U	10		٦	U	10		U	٦	10		U	Ų	10	10
MW-24	2-Chlorophenol	uy/L		U	U	10		٥	U	ίū		U	เก	10	.	Ū	U	10	10
MW 24	2-Methylmaphthalene	og/l.		U	U	10		U	L U	10		U	U	10	! _	U	U	10	10
MW 24	2 Methylphenol	ux/t.		U	G	ta		υ	υ	10		U	UJ	10	 	U	U	10	10
MW 24	2-Nutrocapiline	ug/l.		U	U	25		U	U	25		U	U	25		U	UI	25	23
MW 24	2-Netropis:not	ug/l.		U	U	16		υ	U	10		U	נט	10		U	U	10	10
MW-24	3.V-Dichlorohenzidine	ug/L		U	<u></u>	25		2	U.	10		U	U	10		<u>!</u>	ü	10	10
MW-24	1 Nitroanline	WK/L		U	U	25		+	U	25 25		10	5	25	 	U	U	25	25
MW-24	4.6-Desert-2-methylphenel	ug/L ug/t.		l u	Ü	10		Ü	Ü	10		10	"	10	 	1 0	1 0	25	25
MW-24	Brounghenyl-phenyletter Chlore-1-methylphenol	ug/L		U	Ü	10		U	Ü	10		- u -	"	10		10	U	10	10
MW 24	4 Chloroanding	ug/L		Ü	U	10		Ü	Ü	10		10	l ü	10		10	Ü	10	10
MW 24		WK/L		Ü	Ü	10		Ü	Ü	10		Ü	ان ا	10		l ŭ	Ü	10	10
MW 24	4 Methylphenni	ug/L.		Ü	Ŭ	to		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW 24	3 Nationalities	wg/1.		Ü	Ü	25		Ü	Ū	25		Ū	Ü	25		Ü	U	25	25
MW-24	4 Narophenol	ug/L		Ü	Ū.	25		υ	Ü	25		Ü	Ü	25		Ü	Ü	25	25
MW-24	Accuaphthene	ug/L		Ü	U	10		2	U	10		U	ט	10		U	U	10	10
MW-24	Accouphilis lene	uk/L		U	U	10		5	U	(0		Ü	٦	10		U	U	10	10
MW-24	Anthracete	wy/L.		Ü	U	la la		>	U	10		U	U	10		U	U	10	10
MW-24	Benzulatanhrazene	nk/r		U	U	10		=	Ü	10	L	U	U	10		υ	U	10	[0
MW-24	Henzo(a)pyrene	ug/l.		U	U	10		υ	Ü	Įū.		U	υ	10	ļ	U	U	10	10
MW-24	Henzoth)thungathene	ug/L	<u> </u>	U	Ü	10	 	2:	Ų	10		U	U	10		U	U	10	10
	Henzotg.h.riperylene	ug/L		Ų	U	10		Ü	U	18	 	U	Ü	10	ļ	Ü	U	10	10
MW-24	Benzork (Huoranthene	up/L.		···	U	10	 	2	U	10		Ų.	U	10		U.	U	10	10
MW-24	hist2-Chloroethoxymethane hist2-Chloroethyl) ether	ug/L.		U	U	10		Ü	U	10	 	U	C C	10		 	U	10	10
MW-24	bist2-Ethythenyhphihalate	ug/L	 	Ü	U	10		Ü	Ü	10	4.0	1		10		7		10	10
MW-24	Huty then/y liphthalate	ug/L		"	Ü	10	 	+	Ü	10	9.0	10	U	10	 	Ü	U	10	10
	Carbazole	ug/L		Ü	Ü	10	 	Ü	Ü	10		1 0	U	10		Ü	U	10	10
MW 24	Ulifysche	ug/L		Ü	Ιŭ	30		υ	Ü	10		Ü	Ü	10		Ü	U	10	10
MW 24	Di-n-busylphthalate	up/1.		t	Ü	10		Ü	Ü	10		Ü	ان	10		Ü	Ü	10	10
	Den en tylpholialate	ug/1.		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10	10
MW 24	Dibenzoja,hjanthracene	ug/L		Ü	U	10		Ü	Ü	14)		Ü	Ü	10		Ū	Ü	10	10
MW 24	Uthenzoluran	ug/L		U	U	10		Ü	Ü	10		Ü	Ü	10		u	Ü	10	10
MW 24	Diethylphthalate	ug/L		υ	U	ţo _		U	Ü	10		Ü	Ü	10		Ü	Ü	10	10
	Directly lphthalate	υμ/l.		υ	υ	30		U	U	10		Ü	Ū	10		Ū	v	10	to
													<u> </u>	·				لــــــــــــــــــــــــــــــــــــــ	

Appendix C
Maximum Concentration of Semivolatile Organics

Baseline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana

					Erest				Event	<u> </u>			Event	1			Kyent -		Ilighesi
Well	Analyte	Under	Nemali	14		Detect Limit	Reselt	IQ		Deduct Limbt	Namek	14	BQ	Heed, I Farded)	Manual	14	υQ	Detect f.leuk	Detection
MW-24	Floor andresse	wg/L		U	U	_10		υ	U	10		U	U	ŁO		Ü	U	10	14)
MW-24	Hungene	wg/L		U		10		U	_	10		U	U	10		Ü	U	10	16
	Hexa, Mondement	wy/L		U	=	10		U	Ü	10		U	2	10		U	-	to	10
	Heraja lakoteatustaataa ta	up/L		Ü	C	10	<u> </u>	U	Ü	10	<u> </u>	U	۳	141		Ü	נט	10	10
	Hexa, Monocy, Espentatione	W/L		Ü		10		U	Ü	10		Ū	U	10		U	۵	10	10
	Hexas bismethane	ug/L.		U	=	10		U	Ü	10		U	U	10		U	UI	10	10
MW-24		we/L		U	= =	10	 	U	Ü	16		U	U	10	ļ	Ų		10	10
	Exemple or rate:	mg/L		l U	۳	10	 	U	Ü	10		U	2 2	10		U	2 3	10	10
	N-Ngami-di-ii-propylamin:	ug/L		Ü	۳	10		U	1 8	10	 	 "	Ü	10		- U	٣	10	10
	N Nationaliphony Lanunc	ug/L		Ü	۳	10		10	Ιΰ	10		Ü	Ü	10		1 8	ᇦ	10	10
	Naphakakee: Namikakees	- Jupi		Ü	Ť	10	 	Ť	ř	10	 	10	Ü	10		Ü	Ü	10	10
	Pentachkrophend	ug/L		Ü	Ü	25		Ü	Ť	25	 	۲ů	Ü	25		l ü	-	25	25
	Physiothesis	- Jul		Ü	Ü	10		Ū	Ť	10	 	Ü	Ü	10		Ť	Ü	10	10
MW-24		up/L		Ü	U	10	16	<u> </u>	Ť	10	2.0	1	7	10		<u> </u>	Ü	15	16
MW-24		w/L		Ü	Ü	_10		U	U	10		Ü	Ü	10		T	7	lo	10
	1,2,4-Trachhambenzene	- Juju		Ů.	5	10		Ū	Ü	10		Ü	Ü	10		Ü	5	10	10
	1,2-Uschhaubenzene	·w/L		Ü	5	10		U	Ü	10		U	2	10		Ū	U	10	10
	1,1-De Mondenzene	w/L		ΰ	5	Ю		U	٦	16		Ū	5	10		v	5	10	10
MW-28	1.4 Dichimbetrane	-yyl		U	U	- 10		U	υ	10		U	5	10		Ü	د	16)	10
MW-28	2.2'-maybood 1-Clobsroperspans:)	w/L		٥	5	16		U	U	10		U	U	10		U	U	10	10
	2,4,5-Trachbatophenol	ma/L		U	U	25		V	U	25		U	U	25		Ű	U	25	25
	2,4,n-Trichhangheast	ug/L		5	5	10		U	Ų	10		U	٧	10		U	U	10	10
	2,4-Ds. bikaraphesisi	-Juget		5	2	10		U	Ü	10	<u> </u>	U	ט	10		U	U	\$0	10
	2.4-Diracthylphenol	ug/L		V	ح	10		U	U	10		U	2	10		Ü	2	to	10
	2.4-Dimetrophenial	up/L		Ü	٦	10		U	U	25		U	2	25		U	c	25	25
	2,4-Dantestature	up/L		Ē	: د	LO		U	U	10	}	U	U	10		Ü	_	to to	10
	2.6 Destroublesse	- Jup/L		٦	: د	10		Ų	U	10	}	U	٦	to	<u> </u>	U	c	20	IU
MW-2H	2-(Televenaphthalene	w/L		CC	2	100		U	Ū	10		U	٦	10		U	C.	to	10
	2 Chicopheted	Ug/L		U	۳	in .		Ü	Ü	10		U	>	10		U	-	ig .	(0
MW-28	2- Methylmathalune	wg/L		1 8	١٠	10		U	נ	10	 	U	۳	10		U	U	10	10
MW-28	2-Methylphenul	w/L		Ü	١٠	25		۳	Ü	25		Ü	: اد	10	<u> </u>	Ÿ	>	10	10
MW-2a	2-Nitesaniline	-M		1 0	۳	10 .		10	Ü	<u>B</u>	 	C C	2	25		U	נט	25	25
MW-2K	2-Numphend 3.V-Daddardenzultte	uµ/L uµ/L		Ü	۳	10		Ü	Ü	10		Ü	5	10		0	c c	10	10
	3. Notes considered	W/L		Ü	Ü	- 8		Ü	Ü	25		Ü	Ü	25		10	+	25	25
	4,6-12matru-2-m;shylphemil	W/L		Ť	Ü	25		Ü	- 0	25		Ü	Ü	25		Ü	Ü	25	25
	4- Broncephanyl-phonylether	- L		Ü	Ü	10		Ť	Ü	10		1 0	7	10		Ü	+	10	10
	4-Chiero-N-methylphemil	wit		Ť	Ü	10		1-5-	Ť	ie	 	Ü	-	10		Ü	Ü	10	10
	4-Chhonadan	we/L		Ť	1)(1		Ü	Ü	10		10	Ü	10		"	H	10	10
	4-Chinophynyl-phenyl ether	ug/L		Ü	Ü	10		Ü	Ů	10		Ü	5	10		- ü	- 	10	10
	4- Methylphonol	- L		Ū	U	10		Ŭ	Ü	10		Ü	Ü	10	·	3	Ü	10	10
	4-Nan-uniting	-WL		V.	5	25		U	Ü	25		Ŭ	Ü	25		Ü	-	25	25
	4-Nan-photos	- Juge/L		Ü	5	25		U	Ü	25		Ü	U	25		Ü	UI	25	15
	Accompletores	- Jupil		Ü	٦	10		U	Ü	lö		U	د	10		Ü	υ	lo lo	10
MW-28	Acctuptathylene	- Juge		Ü	5	10		U	U	10		U	V	10		U	5	140	10
NEW-28	Anthracette	ug/L		U	5	10		V	Ü	10		V	5	Ю		٥	5	(a	10
MW-28		-W/L		2	3	10		U	U	ţa		U	ט	30		2	5	10	10
MW-2K		wel		47	3	10		U	9	10		U	U	10		U	U	10	16
MW-28	Metrosyl in 18 gent and deter	- Juge		C	=	10	ļ	U	5	10		U	2	io		ט	U	fo	10
MW-28		ug/L		U	2	10		U	۵	10		2	=	10		5	5	10	10
	Bennish Mariandiene	- Jupil		U	ט	10		U	2	10		U	V	10		5	=	10	ĮD.
MW-2%	Fried 2-C'hillestrephiers y toperfision:	w/L		, C	٦,	10		U	U	10		U	۳	10		5	5	10	10
MW-28	hist2-C'hhannthyl) ether	wp/L		<u> </u>	: =	10		U	U	10		U	2	16		=	=	10	10
	Nova 2-Enhytherny I sphahadan:	- mg/L		Ų	۲	10	19		 _	NA NA	4.0	1		10		2	۲	10	19
MW-28	Buty the wylphtholute:	-		Ü	۳	le le		U	Ü	10		U	2	10		٥	2	10	10
	Carbarole	ug/L		Ÿ	2	10		Ü	Ų	30		U	٦	10		>	٧	10	10
MW-28	Сигунски	ug/L		: C	: د	In .		U	Ų.	10		Ü	>	10		כ	U	10	10
	Di n-hutylphthaluic	ug/l.	<u> </u>	2	> :	10		U	9	10	ļ	U	>	30		U	U	10	10
MW-2X	Denos, tylphthalate	ug/L	L	U	U	10	L	U	U	10	<u> </u>	U	٦	10		U	U	10	10

								_											
					Event				Event.				Event				Event .		Highest
W-HI	Analyte	Units	Result	1.0	8	Detect Limit	Result	3		Detect (.lenk	Result	10	20	Detect Limit	Result	IQ	3	Detect (,last)	Detection 10
	Dibergora blandwarete:	ug/L		U	2	10		c c	U	10	}	0	U	10		U	U	10	10
MW-28	Dehenzolstan	up/L		U	ce	10		"	 0	10	 -	10	ü	10		Ü	0	10	10
MW-28	I heathy liphthalate	up/L	 	Ü	- 0	10		Ü	Ü	10		T U	Ü	10		Ü	Ü	10	10 1
NIW-28	Directly lphthalate	ug/L		"	1	10		5	Ü	15	 -	l ů	Ü	10		Ü	Ü	10	10
MW-28	E have analysise.	up/L	 -	Ü	- ;	10		Ü	Ü	10	 	1 5	Ü	10		Ü	Ü	10	- 10-
	Heachlorshenzene	ug/L		Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		t	Ü	10	10
	Henschleishundten:	ug/L		Ü	Ť	10		Ü	Ü	10		tö	ű	10		Ü	Ü	10	10
	Herachbrioschipentatione	ug/L		Ü	Ü	10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	10	10
	Hearthmethan	ug/L	 	Ü	Ü	10		Ü	Ť	10	·	Ü	Ü	10		Ü	Ū	10	10
	Indens(1,2,3-ed)pyrche	ug/L	 	Ü	Ť	10		2	Ü	10	 	U	Ū	10		Ü	Ū	10	10
	I supplie strated	ug/L.		Ü	Ü	10		U	Ü	10		Ü	Ü	10		U	Ü	10	10
	N-Nations dem-propylamen:	up/L		U	5	10		5	Ū	10		Ü	U	10		Ü	W	10	10
	N-Naussadiphanylamine	ug/L		U	υ	10		٦	U	10		U	U	10		U	Ü	10	10
	Naphthalese	ug/L		v	υ	10		5	Ü	10		U	U	10		Ū	U	10	10
	Nanhenzene	ug/L		Ü	U	10		5	Ü	10		U	U	10		U	U	10	10
	Pentachiorophenoi	ug/L		U	U	25		٥	Ü	25		U	U	25		U	U	25	25
	Phenanthrete	wg/L		υ	U	10		5	Ü	10		Ü	U	10		U	U	10	10
	Plend	υμ/L.		U	Ü	10	75				(4)			10	37			10	75
MW-28	Pyrene	ug/L		U	U	10		U	U	L (u		U	Ü	10		V	U	10	10
		w/L		Ü	5	jo –		٦	U	10		U	U	10		U	U	10	10
MW-29	1.2-Dichlorohenzene	ug/L	1	U	U	to		บ	V	10		U	U	10		U	U	10	10
	1,3-Dichlorohenzene	ug/L	1	U	U	10		υ	U	to		U	υ	10		U	U	10	10
	1,4-Oschlosshenzene	up/L		Ü	U	10		U	Ü	10		Ţΰ	υ	10		Ü	U	10	10
	2.2'-oxybis(1-Chloropropane)	ug/L		U	•	ło		ט	Ü	10	L	Ū	U	10		Ü	U	to to	10
	2.4.5-Truchhemphenol	ug/L		U	Γ. Τ	25		U	Ü	25		Ü	U	25		U	U	25	25
MW-29	2.4.6-Teachiorophenol	ug/L		U	U	10		اح	Ü	10		U	Ü	10		U	U	10	10
MW-29	2.4-Dichlorophenol	ug/L	I	U	U	10		٦	U	10		U	٦	10		U	U	10	10
MW-29	2.4-Dimethylphenol	ug/L		٦	U	10		٥	U	10		U	U	10		V	U	10	10
MW-29	2.4-Dimitrophenol	ug/L		U	ט	10		5	UJ	25		U	U	25		U	U	25	25
MW-29	2.4-Dimitrimilação	ug/L		υ	υ	10		>	U	10		U	U	10		U	U	10	10
MW-29	2.6-Distroiolactic	ug/L		U	U	to		>	U	10		U	U	10		U	U	10	10
MW-24	2 Chlorosuphthulene	mg/L		Ü	U	ta		ے	U	19		U	Ü	10		U	U	10	10
MW-29	2-Chloroptenul	ար/Լ.		د	U	10		حا	U	10		U	U	10		U	U	10	10
MW-29	2: Methy Inaphthalene	ug/1.		U	U	10		د	U	10	L	U	Ü	10		U	U	10	10
MW-29	2-Methylphemil	ωμ/1.		حا	2	10		ے ا	U	(0		TU	ט	10		U	U	10	10
MW-29	2- Netroamiling	wg/L		U	U	25		>	Ü	25		U	٦	25		U	U	25	25
MW-29	2-Nitrophemit	ug/L		>	ב	10		ح	υ	10		Ţυ	2	10		U	U	Į0	10
MW-24	3, V-Dichlorohenzidine	ng/L		٥	5	10		2	U	10		Ū	Ų	10		U	U	10	10
MW-24	\ Nationalistic	up/L		U	U	25		2	U	25		V	U	25		U	U	25	25
MW-34	4.6-Dentro-2-methylphenol	wg/L		U	U	25		ני	Ū	25		U	U	25		Ū	U	25	25
	4 Bromiphenyl-phenyletter	uµ/L		=	U	10		٦	Ü	10		U	V	10		U	U	10	10
	i Chloris i methylphenii	ug/L		U	U	10		U	U	10		U	v	10		Ü	٦	10	10
	4 Chloropoline	ωg/l.		U	U	16		٦	U	10		U	٧	10		U	U	10	10
	4 Chlorophenyl-phenyl etter	ug/l.		v	-	10		٦	Ū.	10		Ų	U	10		U	U	10	la la
MW 24	Methylphemil	ug/L		C	c	10)		2	U	10	<u> </u>	U	V	10		U	υ	10	10
	4 Netrougether:	ug/L		υ	υ	25		5	U	25	 	U	U	25		Ü	U	25	25
	4-Netrophenol	ug/L	<u> </u>	U	U	25		c	U	25		U	U	25		U	U	25	25
	Acenaphthene	ug/L		U	U	10		-	U	to to		Tu.	U	10		Ų.	U	10	10
MW-29	Accuaphibylene	ug/L		υ	=	10		Ü	U	10	 	U	U	10		U	U	10	10
MW-29	Anthracene	ug/L.		U	5	10		: اد	L.	10	 	U	Ü	10		U	U	10	10
	He nanta i anthracene	ug/L		٦	=	10		: اح	Ü	10		Ü	U	10		U	U	10	10
	Henzo(a)pytene	uy/L	}	Ü	U	10		2:	Ų.	10	 	U.	Ų	10		U	U	10	10,
MW-29	Heneu(h)Huotanthene	up/L		Ų.	<u>ا</u> د	10		2	Ü	10	 	با	Ų	10	<u> </u>	U	Ų	to	10
MW-29	Henzotp.h.operylene	up/L		U	2	10		2	U	10		U	υ	10		Ū	U	10	10
	Henziekithurranthene	wy/L.		Ü	: د	10		Ü	Ų.	10	 	Į Ų	U	10		U	U	10	10
	hrs(2-Chloroethoxylarethane	up/L		Ü	Ÿ	10		U	U	10	 	l u	V	10		U	U	Į0	to
MW-29	hist? Chlomethyl) ether	ug/L	 	٦	-	10		2	U	10	 	U	Ū	10		U	U	10	10
	hist2-EthylhexyLiphihalate	ug/L	27	 	اا	10	116	⊢.	٠	10	 	4	U	24	6.0	1	1	10	27
MW 29	Hoty thenzy lphthalate	ug/l.	L	U	U	10	<u></u>	υ	υ	10	I	U	U	10	L	Ü	Ü	10	10

World Analysis Units Result LQ DQ Desired Limit Desired Limit Desired Limit Result LQ DQ Desired Limit Desired Limit <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>																				
Mary Company Mary			l		T	Kvett			1 100			 				<u> </u>	1 4 43			Highest
Section Sect				- Division								- RAMES				Research				
Service 1987 1988 1989				L												<u> </u>				
Service 1975	MW-29	Свиумене	wer.									ļ								
Min	MW-29	Lie a-butylphilalaic	up/L	L																10
March Marchard March M	MW-29	I is in-in-tylphinalate	ug/L		U	ע	10		U	U	10		U	٦	10		Ü	Ü	10	10
March Marc	MW-19	L'inhement a l'organthrace de	- Jake		U	Ü	10		U	U	10		Ü	U	16		Ü	U	10	10
Mar. No. Processing Mar.	MW-24	Defectored with the			U	U	10		Ü	U	10	T	U	U	10		U	U	10	IO IO
Mary Property Mary Property Mary Mary Mary Mary Property Mary Mary Property Mary	MW-29	I to the lebthal at:	we/L		v	Ū	10		U	U	10		U	U	14		Ū	U	10	10
March Marc							10		U	U		1	U	Ü						
Mary Princip Princip Sept. U U 10 U U U 10 U U U U U U U U U					Ü	Ü	10		U	U			Ü	Ū			-		16	lo.
March Marc				 								·								
Mary N M																·				
Mar. No. No. American Ame										_										
Mart No.												 								
Mart Mart												}								
Mark No. Profession Sept. U U D D D D U U D D D U U D D D D U U D D D D D U U D D D D D D U U D D D D D D D D U U D																		_		
Mar. V N. Prince 1961 U U 10 10	MW 29	Indenot1.2.3-calipyrene							_			L								
MW-V Notherwith Physicians	MW-29	ls ophores		L								ļ								
Martin M	MW-29	N Netterardi-m-ptopylamine	Juget.	L												l	บ	V	10	10
Mar. No. Marchander Mart. U U 10 10 U U U 10 U U U 10 U U U U U U U U U	MW-29	N-Nationaliphonylamone	west.		U		10		U		10		U	Ų	įd.		U	U	10	10
Mary Mary					Ū	υ	10		U	U	10		U	Ü	10		Ü	Ü	10	10
MW-N-P Princed												r								
MW-VS												, 	_	_						
Service												 					_			
SW-V V 12-Fix SW-V V 12-Fix SW-V V 10-Fix V V								- 30				 	۳-	ـــّـــا			ب∟			
Serve 1 2-4 Trus Merce Strains styfe U U 10 U U 10 U U 10 U U 10 10						_		5.0				14				**				
Serve 10 1.5 The State showed 10 10 10 10 10 10 10 1	MW-29	Pyrciic																U		
1 Declaration 1 Declar	MW-W	1.2.4-Trichlorehenzene	ug/L									L	ט	۲	10		٥	Ł i	10	to
MAN W 1 A Shehr-bergaree mg/L U U 10 U U 10 U U 10 U U 10 10	MW-W	1,1-Dufderohenzette	July I		U	U	10		U	U	10			2	16		U		10	10
Mary 10 4-1 Park Sergestones mg/L U U 10 U	MW-W	1.3 Dichlorobensene	wel.		Ū	U	10		Ü	U	10		Ü	บ	10		Ü		10	10
1. 1. 1. 1. 1. 1. 1. 1.					U	U	10		U	U	10			Ü	10		11			10
New York 1, 2, 5, 7 he, Management Yes Y									_				_					-		
Section Sect												 								
NW N 2-4 Declaration																	_	╌┤		
NW-10 1-10 NW-10 NW-10 1-10 NW-10												 						1-1		
NW-10 2.4 Descriptional Sg/L U U U 10 U U 25 U U 25 25 25 NW-10 2 Descriptional Sg/L U U U 10 U												ļ								
NW-VI 2-1 Description Sign	MW-W	2.4-Dimenty Inhanol	ug/L														_		10	10
SIW-VI 2 P. Design to Register Mg/L U U 10	MW-W	2.4 Dansophrad	wg/L		U							L]	U	٥	25		٥		25	25
Second Column Second Colum	MW-WI	2.4 (Prostrettelected	ug/L		U	U	10		Ü	>	10		c	=	10		U		10	10
SW-10 2 Editymaquidadence MgA	MW-30	2 to Dissiputationers	· Jan.		U	U	10		U	υ	10		U	Ü	10		U		10	10
NW-VI 2-Cheespekmad					U	U	10		U	U-	10		U	6	10				10	
No. 10 N						_	10		-	10		 		_				 		
NW-10 2 Nethylphomid sg/L U U 10									_			 						┝─┤		
NW-VO 2 Non-marketing												 		_				┝─┤		
New York 1, Y. De, Alestro-Quarterians supt. U U U U U U U U U U U U U U U U U U																		┝─┤		
NW-Va V-Dackbert-degradum Ng/L U U H0 U U H0 U U H0 U U H0 H0												[I					_			
New York 1 Notes assisting sign										_		لــــــا								
MW - 10 3 5 Dimeter 2 - membry phenerial mg/L U U U 25 U U 25 U U U 25 U U U 25 25	MW-W	1,1'-Da.likushgazidan:													10		υ		10	10
MW-10 4.0 Dimeter 2.0 Sementially places MW-10 4.0	MW-W	* Nersandra:	ug/L		U	Ū	25		U	U	25		U	U	25		Ü		25	25
MW-10	MW-30	4.6: Dinates 2 graphylphanis			U	Ū	25		U	Ü	25			Ü	25		U			
NW-10 4 Chlorus-Unacelylphoned ug/L U U U 10 U U 16 U U U 16 U U U 16 O NW-10 A Chlorus-Unacelylphoned ug/L U U U 10 U U 16 U U U 16 U U U 16 U U U 16 U U 17 U 17 U 18 U U					Ü	V	10		U	U	10		7							
MW-VI 4 Characteristic Mg/L U U 10 U U 16 U U 10 U U 10 10 10 MW-VI 4 Characteristic Mg/L U U 10 10									i ii			f						 		
MW-30 4 Charaphay/phenyl-thery with mg/L U U U 10 U U 10									_			 						┝─┤		
MW-10 A Methylpter and mg/L U U U U U U U U U U U U U U U U U U												 		_				┝┷┩		
MW-10 4-Notemanting mg/L U U 25 U U 25 U U 25 25 25																				
MW-VI A National Mg/L U U 25 U U 25 U U 25 25													_					\vdash		
MW-30 Accomplete-tree ug/L U U H0 H0												اـــــا								
MW-VI Accomplishy line upt. U U 10 U 10 U U 10 U U 10 U U 10 U U 10 10 U U 10 10 MW-VI Anthrocene upt. (1.90) I U U 10 U U 10 U U 10 U 10 U 10 MW-VI (1.90) I U U 10 U 10 U U 10 U 10 U U 10 U U 10 U 10 MW-VI (1.90) I U U 10 U 10 U U 10 U 10 U U 10 U 10 U	MW-W	4 Natrophenol	ug/L]			25		U		25	25
MW-Vi Ambiracone ug/L 0.95 1 10 U U 16 U U 16 U U 10 10 10 10 10 10 10	MW-WI	An a maphillacing	ug/L		U	U	10		U	U	10		U	Ų	10		Ü		10	10
MW-Vi Ambiracone ug/L 0.95 1 10 U U 16 U U 16 U U 10 10 10 10 10 10 10	MW-NI				Ū	U	10		U	U	10		Ü	U				1		
##W-10 Bearman and Comment Burnet				0.90																
MW-N						7,							_					 		
NW - 0									_									├──		
NW to Harright-typerylene ug/L U U III U U III U U III U U III U U III U III I												\vdash								
												—		_						
MW-Vo Benerick illowambene ug/l. U U 10 U U 10 U U 10 U U 10						_				_		[]		_		I		I	10	10
	MW- WI	Benzinkithooianthene	ug/l.		U	U	10		U	U	10]	υ	U	10		U		10	10

March March Section March Section March																				
No. 10 N	}		1.			Event.		 								<u> </u>	1			Highest
Sect Market Comparison Sect Market Comparison Sect Market Comparison Sect Market Comparison Sect			Kenuli				KasuM		_		Result				Kesuk	_	I DQ		Detection	
Section 1987 1982			ug/i.															1		10
No. 90 Department Sept. U U U B D U U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U U B D U B D U U B D U				L	U	U		L		V V		L						.		10
Section Computer		hist2-Ethylhexylaphthalate	ug/L	VX .	<u> </u>	ļ		20								50		U		638
18 18 18 18 18 18 18 18	MW-30	Hutythenzylphilialate	υ <u>κ</u> /1.									<u> </u>				ļ				10
Section 18th 10	MW-30	Carbazole	ug/l.	<u> </u>					_							<u> </u>		-		10
The Part 1	MW 30	Chrysene	ug/1.																	10
No. 10 N	MW W	Os in-hutylphthalate	up/1.					L												10
Section Description Section	MW-30	Di m-netylphthalate	ug/L										_							10
1876 15 1876 18	MW-Vii	Dibenzo(a,h)anthracene	ug/1.		U		10													10
Section 19th MW Ki	Differenturan	ug/L																	10	
Marchaetes	MW-W	Dicthy lphilishae	ugst						_				_							10
New No. Personal Section P			ug/L.															\Box		10
No. 10 No. 20 N		Fluoranthene	eg/L																	10
Mar. Mar.		Plainete	ug/l.						_								_			to to
Mar In Na Anthony Septembers cycl. U U 10 U U U U U U U U U																		 		10
Mary No. New Anthron Service 1971. U U 10 U																		$lue{}$		ю
MAN W. Machael 3.7-stypynom wff. wff														_				—]		10
May 10			ug/L.		_							LI								10
MAN. B. September wpf. U U 10 U 10 U U U U U U U U U		Indenot 1,2,1-ed)pyrene	ug/l.		_							I								10
MN W N Prince MN Prince	MW W	L'aspharence	ug/t.																	10
MAN to Methodology planes	MW 10	N-National distribution in National distribution in the National distribution distribution in the National distribution distribution distribution distribution distribution distribution distr					10						_							10
MNV to Northebrerone																				10
No. 10 Consult No. 10 Consult No. 10	MW-30	Naphthalene			C	c	10		داد	ט	10		Ç	5	10		U		fu f	10
NN N Parameters	MW-W	Nutohenzene	ug/1.		U	U	10		5	5	10		C	c	10		U		10	10
MN to Phamatheric gg/L	MW ki	Pentachhrophend			ַ	U	25		٦	U	25		Ü	U	25		U		25	25
NN N			_		۲	υ	10		U	U	10		U	C	10		U		10	10
NN N	NW W	Picted			2	U	10	21			10	40			10	17			NA	40
NN VI 12-3 Tra (Introductories upt. U U 10 U U 20 U U 10 U U 20 U U U	MW W	Pytone			5	U	10		U	U	10		Ü	C	10		U		10	10
MN VI 2-0 holder-forwares ug/L U U 10 U U 20 U U 10 U U 20 MN VI 1 2-0 holder-forwares ug/L U U 10 U U 20 MV U 2-0 MV U U U U U U U U U					_	U	10		υ	Ü	20		υ	U	10		U	U	20	20
MN 1 1 1 1 1 1 1 1 1					U				U	C	201		υ	υ	10		v	U		20
MN 1 2 Destination U U Destina					-				U	U	20		U		10		Ü	Ü		20
MN 1 2.2 expect Chlorophenel wgt U U 10 U 25 U U 20 U U 25 U U 25 U U 25 U U 25 U U 26 U U 26 U U 26 U U 26 U U 27 U U U U U U U U U					-		10		_	U	20		-		10		ū			20
MN 1 2.5.7 This histophened wg/l. U U 25 U U 30 U U 25 U U 30 NN 1 2.5.7 This histophened wg/l. U U 10 U U 20 U U 10 U U 20 U U													Ü					_		20
MW 11 2.4 Pr. This hosephane Ug/L U U 10 U U 20 U U 10 U U 20																				50
No. 11 2.4 Destably optional Upl. U U U U U U U U U U U U U U U U U U											20		U				_			20
MW 1 2.4 Design planear Ug/L U U 10 U U 20 U U 10 U U 20																	_			20
No. 11 2.4-Dantis robustnet	-																			20
NW 11 2.4-Distription description Sept. U U 10 U 10 U U 20 U U 10 U U 20 U U 10 U U 20 U U 10 U U 20 U U 20 U U U 20 U U						_								_			_	_		50
MW-11 2-6-Dostpordame																				20
NIW-11 2 Chlororephenol																				20
NW 11 2-Chlarephenol ug/L U U 10 U 20 U U 40 U U 20 NW 14 2-Chlarephenol ug/L U U 10 U U 20 U U 10 U U 20 NW 14 2-Chlarephenol ug/L U U U 25 U U 25 U U 25 U U 25 U U 26 U U 27 U U 28 U U U 28 U U U 28 U U U 28 U U 28 U U 28													_							20
NW-V1 2 Methylaphtonid												 	_							20
NW-11 2-Nethylphenid ug/L U U 10 U 25 U U 30 U U 25 U U 30 NW-11 2-Nethylphenid ug/L U U 10 U U 25 U U 30 U U 25 U U 30 NW-11 2-Nethylphenid ug/L U U 10 U U 20 U U U 10 U U 20 NW-11 U U U U U U U U U																	_			20
NW 11 Statementone U												 								20
AlW 1 2-Nitrophenol ug/L U U 10 U U 20 U U 30 U U 20				<u> </u>	_												_			30
MW-11 1.1-Dechtorobehratine ug/L U U 10 U U 20 U U 10 U U 20 MW-11 Nitranaline ug/L U U 25 U U 50 U U 25 U U 50 MW-11 4 Domiture 2-inchlylphaned ug/L U U 25 U U 50 U U 25 U U 50 MW-11 4 Domiture 2-inchlylphaned ug/L U U 10 U U 20 U U 25 U U 30 MW-11 4 Chloro-1-inchlylphaned ug/L U U 10 U U 20 U U 10 U U 20 MW-11 4 Chloro-1-inchlylphaned ug/L U U 10 U U 20 U U 10 U U 20 MW-11 4 Chloro-1-inchlylphaned ug/L U U 10 U U 20 U U 10 U U 20 MW-11 4 Chloro-1-inchlylphaned ug/L U U 10 U U 20 U U 10 U U 20 MW-11 4 Chlorophinyl-phanyl-																				20
NW-11 Nitromatine ug/L U U 25 U U 30 U U 25 U U 30												 	_							20
MW 13 4 to Dumitro 2-inschipping mode mg/L U U 25 U U 50 U U 25 U U 50					_								_				_			50
NW-11 1 Brownghanyl-phanyl-ther ug/l U U 10 U U 20 U U 10 U U 20																	_			
NW 11 4 Chloro-Unachbylphaned ug/L U U 10 U U 20 U U 10 U U 20						_				_										50
NW 31 4 Chhorsanitine ug/l U U 10 U U 20 U U 10 U U 20 NW 31 4 Chhorsanitine ug/l U U 10 U U 20 U U U 10 U U 20 U U U 20 U U U 20 U				<u> </u>	_							 	_							20
NW 1 4 Charaphay)-plany-culer								 				 	_	_			_			20
NW 1 4 Natisylpherial Ug/I U U 10 U U 20 U U 10 U U 20 NW 11 4 Natisylpherial Ug/I U U 25 U U 50 U U 25 U U 50 NW 11 4 Natisylpherial Ug/I U U 25 U U 50 U U 25 U U 50 U U 25 U U 50 NW 11 Accorphilis Ug/I U U U 10 U U 20 U U 10 U U 20 NW 11 Accorphilis Ug/I U U U 10 U U 20 U U U 10 U U 25 U U U 25 U U U 26 NW 11 Accorphilis Ug/I U U U 10 U U 20 U U U 10 U U 20 U U U U 20 U U U U 20 U U U U 20 U U U U 20 U U U U U U 20 U U U U U U U U U U U U U U U U U U													_							20
NW 11 4 Nitrosantine ug/1 U U 25 U U 50 U U 25 U U 50 NW 11 4 Nitroplatind ug/1 U U 25 U U 50 U U 25 U U 50 NW 11 4 Nitroplatine ug/1 U U 10 U U 20 U 20 U 20 U U 20 U													_							2()
MW-31 4 Nitrophenol Ug/L U U 25 U U 90 U U 25 U U 50 MW-31 Accemplatione Ug/L U U 10 U U 20 U U 10 U U 20 MW-31 Accemplative Ug/L U U 10 U U 20 U U U 10 U U 20												 								20
MW-31 Accomplaine ug/L U U 10 U U 20 U U 10 U U 20 MW-31 Accomplaintykine ug/L U U 10 U U 20 U U 10 U U 20																			şo.	
61W-11 Accomplaints no ug/1 U U 10 U U 20 U U 10 U U 20				 									_							50
												 	_							20
S NOW 33 TANDERS 1 100/1 5 [4] [3] 100 [4 [4] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																				20
▎▀▘▀▎▀▀▀▝▗▀▗▀▗▀▗▀▗▙▗▙▀▟▀▄▎▀▀▝▗▞▗▘▜▀▃▜▗▀▀▀▀▍▀▘▜▀▗▀▍▀▞▜▞▃▜▞▄▃▄▙▀▄▃▄▐▗▜▄ <u>▃▄▙▃▃▄▃▊▝▃▋▝▗▋▃▗▃▓▗▁▁▐</u>			ug/L	ļ								 	C	5	2		U	U	20	20
MW-11 (Expropriatabilitiescine: up/) U U 10 U 20 U U 10 U 20	MW II	the tozoga kantiferace ne		لـــــــــــــــــــــــــــــــــــــ	<u> </u>	الالا	10	لسيسا	U	ע		لـــــا	U	U	10	Ll	U	LU	20	20

		,													,				
			-	110	Event	Detect Limit		1 46	Event		-	1 10	DQ		- N	1	Event		Highest
Well	Analyte	Unite	Result		DQ.		- Kensk	13	av.	20	Renali	13			Remails	10	DQ		Delection
	Hennialpyrette	ug/1.		U		10	ļ	1 5	U		 	U		10	 	U	U	20	30
	themost billion sandhere:	up/L		U	U	10				20	├	_		10		U	Ü	2 n	20
MW-11	Henselg harperylene	we/L	L	U		10		U		20		U	V	10	<u> </u>	U	U	20	20
11 WIA	He would bloom and them.	vg/t.	<u> </u>	Ų.	U	10	ļ	U	U	20	<u> </u>	U	U	10	<u> </u>	U	U	20	20
IF WM	hist 2-Cloker editory investigate	wy/L	l	U	U	10	<u> </u>	U		20	<u> </u>	U		10		<u> </u>	U	20	20
MW II	hest 2-Chinecolly is other	we/L	<u> </u>	Ū	U	10	<u> </u>	U	U	20		U	Ü	10	<u> </u>	Ü	Ų	20	20
MW 11	hest 2. Ethy theny liphthalate	wg/L		U	V	10	9.0	1		20	4.0	1	1	10	6.0	1	1	20	20
11 W14	Huty Mcm/y Iphahukate	wg/L		ַט	U	10		ע	U	200	L	U	U	IA I		V	Ų	20	40
11.WM	Caluarite	wg/L		U	٦	10		U	L	20		U	Ü	10		U	U	20	20
IF WIA	Chrysene	wg/L		U	U	(4)		U	U	20)]	U	Ü	16		U	U	2(1)	20
MW U	(to 16-bracy April abrahaba	mg/L		Ü	U	10		U	U	20		U	Ū	10		U	Ü	20	20
MW 11	i in money lpinihalane	ug/l.		U	U	10		U	U	20		U	U	10	1	U	Ū	20	20
MW-31	Delicated a friantificación	ug/L		Ū		10		Ü	Ü	20		U	Ü	10		ਹ	v	20)	20
II-WIA	(laboraced security	up/L		v	t 1	10		v	Ū	20		U	Ū	10		10	U	20	20
MW 11	1 he thy liphthed and	ug/L	 	Ü	T 5	10		v	Ü	20		Ü	Ü	10		Ť	Ü	20	20
MW II	Chan, thy balantains	ug/L		Ū	Ū	10		U		20	f	Ū	Ü	10	 	ΙŬ	Ū	20	20
MW 11	1 State and besse	up/t.	 	Ü	Ü	10	·	Ū	Ü	20		Ü	l ü	10		۱ ٠	Ü	20	30
MW-11	f-fearcase	ug/L		Ŭ	Ü	ю		Ù	Ü	20		Ü	Ü	10	 	۱ ٽ	ŧΰ	20	20
	Hesachhordenzene	ug/L		Ŭ	Ü	10		Ü	Ť	20		Ü	l ü	10	 	۳	Ŭ	311	20
MW II	He say blombutadiene	ug/L		Ü	Ü	10		l ö	ϋ	20		Ü	l ü	10		1 0	- 6	30	20
	His varidamin yeliqirmi adiene	we/L		Ü	Ü	30		Ü	Ť	20	 	ΙŬ	Ü	10	 	10	Ü	20	20
	He sachherechane		 	Ü	"	10		l ü	Ü	28	 	۳	Ü	10	 	10	l ü	20	20
II WM	Fic. va. Morriethane Indense (2,3-calipyrene	we/L we/L		U	5	10		Ü	U	20	 	 	Ü	10		분	10	20	20
				Ü	Ü	10		Ü	Ü	30		+	Ü		 				
	Isophurone	ug/L												10		U	U	20	20
	N National a propylamine	up/L		U	U	10		Ü	U	20		U	U	10		U	U	20	20
MW U	N Namualophenylamene	ug/L		Ü	U	10		U	U	20		٦	Ü	10		U	U	20	20
MW 31	Naphthalene	wer		U	U	10		U	U	20		V	۳	10		U	υ	20	20
MW-31	Nationalence	ug/L	L	U	E	10		U	U	20		9	U	10	<u> </u>	U	ŲJ	20	20
MW 11	Pentachine planted	w/L		U	U	25		U	U	50		ح	Ü	25		U	U	50_	50
MW 11	Physianthrony	we/L		υ	Ų	9		U	حا	20		U	U	10		U	ט	. 20	20
MW-31	Phoned	. Z		U	U	10	100			20		5	U	10	130	Γ		20	130
MW II	Pytene	Ne/L		Ü	u	10		U	U	20		V	U	10		U	Ü	30	20
AFW: 12	1,2,4-Trichlorificazene	- Julie			U	10		U	U	10		U	U	10		U	U	30	20
NIW 12	1.2 Dichlarobenzene	w/L			U	Į a		U	Ü	10		U	Ü	10	·	v	v	20	20
MW 12	1.3 Dichbershouse	wg/L			U	10		U	υ	10		U	U	10		v	U	20	20
MW 32	1.4.Do Missidemoune	w/L			U	la .		v	v	10		U	Ú	IØ.		ĪΨ	Ü	20	20
MW 12	2.2"-craybod I-Chinepropunc)	w/L			U	10		U	U"	10		2	Ü	10		Ü	Ü	20	20
MW-12	2.4.5-Trichhoughead	w/L		_	Ü	25		Ū	Ü	25		-	Ü	25		Ū	Ü	50	50
MW-12	2.4.n-Trachiorophemol	₩/L		_	Ü	10		Ü	Ŭ	10		Ü	Ü	10		Ü	Ŭ	20	20
MW 12	2.4 Decident playment	W/L		<u> </u>	Ü	10		Ü	Ť	10	·	Ü	Ü	10	 	1 5	Ü	20	20
MW 12	2.4 Descriptional	ug/L			Ť	10		Ü	Ü	10	·	Ü	LÜ.	10	 	╁	Ť	20	20
MW 12	2 1-Unamophoni	ug/L			Ü	10		Ü	Ü	23		۳	Ü	23		Ü	Ü	30	50
MW 12	2 4 Dimiteral fuelte	wg/L			Ť	10		Ü	Ü	10		Ü	Ü	10		10	<u> </u>	20	20
MW 12	? o Dinitro ductos	up/L		_	Ü	10		Ü	Ü	10		Ü	ŭ	10		Ŭ	٦	20	26)
MW 12	2 Chieremaphiliateme	wg/L		-	Ü	10		Ü	Ü	10		۳	Ü	10		Ü	"	20	30
MW-12	2 Chiamphand	ug/L	 		Ü	10		Ü	Ü	10		늉	Ü	10		10	"	30	20
				├─	Ü	10		Ü	Ü	10		10	Ü	10			+		
MW 12	2 Mythylmaphthalone	we/L			- 6	10		0	"	10						ü		20	20
MW 12	2 Methylphend	w/L		— —	_	25					ļi	ا د	UJ.	10	 _	U	7	20	20
MW-12	2 Numantine	- WL	ļ	 -	U		ļ	Ų	2	25		9	0	25		U	3	50	50
MW-12	2 Nanaphenid	wy/L		 	U	10	·	Ų	Ų	10		اد	UJ	10	 _	U	2	20	20
MW 12	3.37-Dichlorohenzidine	W/L		-	C)()		ט	U	10		7	=	10	L	U	2	20	20
MW-12	1 Negroandine:			<u> </u>	U	25		U	Ü	25		U		25		۳	5	50	50
	4 to Dimento 2-meetby lphenoid	ug/L			2	25		U	Ü	25		3	23	25		U	5	50	SO T
MW-12	4 Bromphonyi-phenyiether	wyl.			-	10		٦	ح	19		5	ט	10		ย	2	20	20
MW-12	4 Chlure 1 methylphenni	me/L			ح	10		٥	5	9		5	וט	16		U	2	20	20
MW-32	4-Chloroandine	ug/L			U	10		5	5	10		U	3	10		5	C	20	20
MW 12	4 Chiumphanyl-phenyl ether	ug/l.			٥	10		U	5	10		U	=	10		5	U	20	20
	4 Methylphenol	ug/L			U	10		٥	c	10		U	Ü	10		Ü	Ü	20	20
MW 12	2 Nationalistic	ug/L.			Ü	25		U	5	25		Ü	Ü	25		Ü	Ü	50	54)
	4 Narophynol	up/L			Ü	25		Ü	Ŭ	25		Ü	5	25		Ü	Ü	50	50
*****					لــــّــا												٠,		.40

													Event .				Event		
					Event	Delect f.imit	Kernik	14	Event	Detect (.imit	Result	1.0	IN)	Detect Limit	Meault	14	DQ	Detect Limit	Highest Detection
Well	Analyte	Units	Result	10	INV		Remail	_	S		0.0000	Ü	7	10	Menda	Ü	7	20	
MW-12	Accusphilicite	uk/L		ļ	U	10		U	U	10		Ü	U	10		U	Ü	20	20
MW-12	Acenaphitylene	ug/L	ļ	_	U	10		<u>د</u> د	c c	10		Ü	Ü	10		U .	l ü	20	20
MW-32	Anthracenc	uµ/L		_	U	10			_			Ü	Ü	10			Ü	20	20
MW-12	Benzota kanthracene	ug/L	 -		U	10		U	U	10		Ü	U	10		V	Ü	20	20
MW-32	Невлосиругене	ug/L.			U	10		- 0-	۳.	10		Ü	ü	10		10	Ü	20	20
MW-12	Henzoth Hustanthene	ug/L		 	U	10		Ü	Ü	10		Ü	-	10		10	Ü	20	20
MW 12 MW-12	Henzoty, h. Hperylene	wert		 	Ü	10		5	Ü	10		Ü	5	10		Ü	Ü	20	20
MW-12	Henzink illisoranthene	ug/L			Ü	10	-	7	Ü	10		Ü	1	10		Ü	U	20	20
MW-12	bast2-Chloroethoxy)methane bast2-Chloroethyt) ether	up/L			"	10		Ü	l ö	10		l ö	+	10	20	1+	۳-	20	20
MW 12	hest2-Ethytheny Ophthalate	ug/L ug/L	11		<u> </u>	NA NA		Ü	ü	10		Ü	Ü	10	10	广	-	20	31
NIW 12	Butyleur ylphthalate	ug/L			Tu I	10		0	Ü	10		Ü	١÷	10	: -	Ιú	U	20	20
MW 12	Carbando	ug/L		-	0	10		Ü	Ü	10		T T	Ü	10		۱ü	Ü	20	20
MW-12	Chrywne	ug/L		-	;-	10		Ü	Ü	10	 	Ü	5	10		Ü	Ť	20	20
NIW-12	Dr. n. huty hylathulate	up/L			J -	10		Ü	Ü	10	 	Ü	- T	10		Ť	Ü	20	20
MW 12	Di-n-is-tylphihalaic	ug/L			Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	20	20
MW-12	Deben on a hisanthracene	up/L		 -	Ü	10		Ü	Ü	10		Ü	Ü	10		Ť	۱ ٠	20	20
MW-12	Delicaritation	up/L		1	Ü	10		, c	Ü	10		Ü	Ü	10		Ü	Ū	30	20
MW-12	Destry iphthalate	ug/L		 	Ü	10		Ü	Ü	10		Ü	, , , , , , , , , , , , , , , , , , ,	10		Ü	Ü	20	20
MW-12	(honeshylplothalate	wg/L			Ü	10		Ü	Ü	10		Ü	Ü	10		Ū	Ü	20	20
MW-12	Fluoranthone	wg/L		_	3	10		Ü	U	10		Ü	Ü	10)		Ü	U	20)	20
MW 12	Flustene	ug/L	 		Ü	10		ΰ	Ü	10		Ü	Ū	10		Ū	Ū	20	20
MW 12	Heagelikorobenzene	ug/L			U	10		5	Ü	10		U	U	_10		U	v	20	20
MW-12	Hexachlerebutadiene	wa/L			U	10		U	U	80		U	U	10		U	U	20	20
MW-32	Hexachherecyclopentadiene	uy/l.			U	10		U	U	10		U	U	10		U	U	20	20
MW-32	Hexachloricthane	ug/L			U	10		U	Ü	10		U	U	Į0		U	U	20	20
MW-12	Indenct 1,2,3-edipyrene	wg/L		_	υ	10		U	U	10		U	U	10		U	Ū	20	20
MW 32	Isophinoic	eg/L			v	LQ .		U	υ	10		U	U	10		U	U	20	20
MW-12	N-Numar-di-n-propylamusc	ug/L		T	U	10		٥	U	10		U	U	10		U	U	20	20
MW-12	N-Nurveidiphenylamine	uy/L			ַט	10		Ü	Ü	10		U	2	10		U	U	50	20
MW-32	Naphthalene	wg/L			U	10		Ü	U	10		U	U	10		U	U	20	20
MW-32	Numberzeic	ug/L_			U	10		U	U	10		U	5	10		U	ບນ	20	20
MW-32	Pentachherophenol	wyA			5	25		5	U	25		Ü	5	25		U	U	Sti	50
MW-12	Phenanthrene	WK/L			5	to		حا	ט	10		Ü	5	10		U	C	20	20
MW-12	Phrend	wg/L			U	10	75			10	12		-	10	110			20	110
MW-12	Pyrene	uy/L			د	10		5	٦	10		Ü	>	10		U	U	20	20
MW-11	1,2,4-Trichlorobenzene	wg/L		U	U	10		2	0	20		U	٥	10		U	U	20	20
MW II	1,2-Dichhorobenzene	ug/L.		υ	U	10		2	U	20		U	U	10		U	-	20	20
	1.3- Dichlorohenzene	w/L		υ	5	10		U	U	20		U	5	ŧ0		U	U	20	20
MW-11	1.4-Dichlorohenzene	ug/L		U	~	10		۳	U	20	L	U	3			٦	c	20	20
	2.2" suspins(1-Chloropropanc)	ug/L		c	2	Ю		2	2	20		U	3	to to		U	2	20	20
MW-11	2.4.5-Teschionophenoi	up/L		=	Ü	25		=		50	<u> </u>	Ü	 	25		U	U	50	50
	2.4.n Trichlorophenol	up/L		CC	<u> </u>	10	 	2	: =	20		U	7	10	ļ	U	Ü	20	20
	2,4-Dichlorophenol	ug/L		-	2	10	 	ב	U	20	 	U	= =	10		Ų.	ų.	20	20
	2.4-Dimethylphenol 2.4-Dimethylphenol	ug/L		Ü	Ü	10	 	-	U	20 \$0		10	۳.	23		U	c c	20 50	20 50
	2.4-Dentrophena 2.4-Dentrophena	ug/L ug/L	 	Ü	+	10	 	Ü	U U	20	 	7	10	10		1 5	-	20	20
	2.0- Dentroudgege	ug/L	 -	Ü	"	(0		Ü	- 5	20		10	+	10		10	U	20	20
NW-33	2-Chhrimaphilialene	ug/L		Ü	Ü	10	 	-0	0	20	 	U	U U	10		1 5	Ü	20	20
MW-33	2-Chlorophenol	uµ/L		Ü	Ü	10		-	Ü	20		Ü	Ü	10		10	Ü	20	20
MW-13	2- Methylnaphthalene	ug/L		Ü	Ü	10		บ	Ü	20		Ü	۳	10		0	Ü	20	20
MW-33	2- Methylphenol	up/L		Ü	Ü	10		Ü	Ü	20		Ιŭ	2	10		Ü	Ü	20	20
MW-33	2-Nitroandate	WE/L		Ü	Ü	25		Ü	Ü	50		Ü	٧	25		Ü	-	5()	30
MW-33	2-Natorphenol	up/L		Ť	Ü	10		ü	Ü	26		Ü	۳	10		Ü	Ü	20	20
MW-11	1.1'-Du blatchenzuline	wg/L		Ü	Ü	10	 	Ü	Ü	20		Ü	۳	10		Ü	Ü	20	20
MW-33	1- Narrhandanc	ug/L		Ü	5	25		Ü	Ü	30		l U	Ü	25		1	Ü	50	50
	4.6-Dimitro-2-methylphenol	uje/L	<u> </u>	Ü	Ü	25		Ü	Ü	30		Ü	۳	25		+	Ü	50	50
	4 Brum-phenyl-phenylether	uje/1.		₩	Ü	10		Ü	Ü	20		Ü	-	10		5	+	20	20
	4-Chlore-1-methylphenol	ug/L		Ü	-	10		Ü	빵	20		Ü	۳	100		+	-	20	20
	4-Chiocanime	ug/L		Ü	"	10		Ü	H	30		Ü	+	10		٦	U	20	20
		44,5		لٽا	لـــــــا				لتا			ـــــــــــــــــــــــــــــــــــــــ	ليتيا			<u>v.</u>			

					Event				Event :				Event:				Event		Highest
Well	Anable	Units	Result	TIQ		Detect Limit	Bend	1.0		Detect Limit	Morell	IQ	DQ	Dylast Limit	Route	LO	PQ	Detect Limit	Detection
	4-Chicophenyi-phenyi-ether	we/L		1:7	-77	10		17	7	20		<u></u>	7	10	_	T V	1	20	20
MW-33	1-Methy inhered	w/L		T U		10		1 6		20	 	Ü	ϋ	10		Ιΰ	lΰ	20	20
	4 Narrandesc	ug/L	 	Ť	Ü	25		ĺΰ	٣	30		Ü	Ü	25	 	Ηŭ	1 5	50	30
	4 Nanaphand	uµ/L		Ť	Ü	25		Ü	Ü	50	 	Ü	Ü	25		۱ ٽ	Ť	50	30
MW-33		up/L		1 0	Ü	10		l ü	Ü	20	 	ü	Ü	10	 	10	Ü	20	20
	Accuplificat			۱ ٠	Ü	10		Ü	Ü	20		Ü	Ü	10	 	۱ů	Ü	20	
MW-11	Accumplately tene	w/L		10	Ü	10		1 5	Ü	20		₩	₩	10		10	ان ا	20	20
MW 11	Anthracac	w/L		1 ö	10	10		Ťΰ	Ü	20)		Ü	"	30		Ü	"		20
II WIL	Hemotakanthracene	we/L		1 5	10	10		Ü	"	20		_	10			_		20	20
MW 33	Benzitalpytene	ug/L		╽╫		10	ļ ———	ᇦ		20		Ü		jo		U	U	20	20
	Henrichtlussanhen:	- Mark		_	U				Ü	20	 	U	٧	10		U	U	20	20
MW-11	Benosty, b. stpctylene	- Jugh	<u> </u>	l v	U	10		U	Ų			<u> </u>	U	10		U	U	20	20
MW-11	Henrick plantantiene	W/L	L	U	U					20		Ü	U	10		U	U	20	20
MW-11	hes(2-Chismathusymethane	·w/L	<u> </u>	U	U	10		U	U	20	\longrightarrow	U	, U	30	ļ	U	U	20	20
	hest2-Chiomothyl) other	up/L		U	E	10		U	٧	20		U	6	10	ļ	U	U	20	20
	hos(2-Ethylhesylaphthalate	ug/L		U	U	10		U		20			E	31	76	<u> </u>	<u></u>	20	76
	Hely then / yiphthulate	ug/L		U	U	10		U	C	20	 	U	=	10		U	U	20	20
MW-11	Carbonic	ug/L		U	U	10		U	0	70		Ü	5	<u>to</u>		U	Ü	20	20
MW-31	(Torysene	up/L		U	U	10		U		20		c	2	10		U	Ü	20	20
MW-11	(3)-or-busy iphidialaic	up/L_		U	C	10		U	=	20		Ü	۲	10		U	U	20	20
MW-11	N-m-ricty lphtholate	w/L		U	5	10		U	6	20		U	U	10		٥	U	20	20
MW-33	J tohenzeit a fistandiracene	uy/L.		U	C	2		Ü	U	20		C	U	10		U	U	20	20
MW-11	t John strategram	up/L		U	U	16		U	٥	20		U	υ	10		U	V	20	20
MW-13	i Inches in delicates	ug/L		U	Ü	10		U	U	20		U	U	10		Ü	Ū	20	20
MW-11	(Jeson: they Spitalitations:	ww/L		U	U	10		U	U	20		Ų	U	10		Ü	Ü	20	20
MW 11	I funtamiene	ug/L		U	TI II	10		U	U	260		U	6	10		Ü	U	20	20
MW-33	I-leasterie	w/L		U	\vdash	10		U	U	20		U	U	10		Ü	Ū	20	20
	Hexa blooderene	ug/L.		U	1	10		U		20		Ü	U	10	 	Ü	Ť	20	20
MW-11	i le natible or doubable the	up/L		Ü	Ü	10		Ü	Ü	20		Ü	Ü	10		Ü	Ü	20	20
MW-11	He nachkaracyclopentadione	ug/L		U	U	10		Ü	U	20		U	Ü	10		Ü	Ť	20	20
MW-11	I be had belong theme	ug/L		Ū	Ü	10		Ü	Ü	20		Ü	Ü	10		Ü	Ü	20	20
MW-11	Indence 1,2,3-exhipyrenc	w/L		Ū	Ü	10		Ü	Ü	20		Ü	Ü	10		Ü	Ü	20	20
		ug/L		Ü	Ü	10	1.0	1	۳	20	 	Ť	Ü	10	1.0	15	1	20	
MW-11	Emphasisac			l ü	Ü	10		l ii	U	20	 	Ü	Ü			t	+ +		20
	N-Nurosa-de-n-propylamane	we/L		1 5	U	10		Ü	۳	20		₩	+	10				20	20
	N-Natar-adoptica-yLandac	upl.		1 5		10		1 5	_	20				10		U	U	20	20
MW-13	Naphthakoc	ug/L			_		 	Ü	Ų.	20	├──┼	U	۳	10		U	U	20	20
MW-33	Nandenzene	ug/L		U	U	10	 		U			C	U	10	<u> </u>	U	U	2:0	20)
	Pentachiorophenoi	wg/L		U	C	25		U	U	50		U	۳	_25	L	U	U	50	50
MW-11	Physiatticat	ug/L		U	٦	10	<u> </u>	U	C	20	<u> </u>	c	3	10	L	U	V	20	20
MW-11	Phone	w/L	60	1		10	83			20	50			_10	65			20	#3
MW-33	Pyrene	ug/L	L	U	U	19		U	۳	20		Ü	٦	10	L	U	U	20	20
MW-14	1.2.4-Trachlenohouseur	ug/L		٥	–	10		U		HA		U	٦	10		U	V	30	90
MW-14	1,2-Dichloroftenzene	ug/L		U	U	10		U.	2	16		c	ט	10		ט	2	90	380)
MW-34	1,1-Dichloroffenzene	ug/L		U	U	10		U	-	1)		c	U	10		U	U	1013	307
MW-4	1.4 Dichlorobenzene	ug/L		U	U	10		Ü		1)	T	U	U	10		U	U	300	360
MW-34	2,2'-may best I-Claim up to punct	w/L		V	U	10		U	UI	10		U	υ	30	L	U	U	300	20
MW-14	2.4.5-Teachlomphenol	ug/L		U	U	25	L	U	U	25		U	٧	25	L	υ	V	200	2(31)
MW-14	2.4.6-Trichhomphemil	up/L		U	U	10		U	U	10		v	v	10		U	Ü	35	80
MW:14	2.4-Dichlotophenol	w/L		U	U	10		U	U	_10		c	U	10	Γ	v	Ü	100	300
MW-14	2,4-Dencuty/phonel	ug/L		U	U	10		U	U	10		υ	Ü	10		Ü	Ū	30	100
	2,4 Dinarephonal	ug/L	T	U	Ü	10		Ü		25		Ū	Ū	25		ΙŪ	Ü	200	200
MW-14	2.4-Denotes tellague	····/L		Ü	Ū	10	1	Ü	U	10	 	U	Ü	10	T	Ü	Ü	30	10
MW-14	2.6-Desarrandação	Jup/L	1	Ū	Ū	10		Ü	Ü	10	 	Ü	Ü	10		Ť	Ü	300	- Fi
MW-14	2 Chirpsmaphthalane	w/L		Ü	U	10		Ü		10	 	Ü	Ü	10		ΙŬ	Ü	1 10 10 10 10 10 10 10 10 10 10 10 10 10	
MW-14	2-Chinophenol	ug/L		Ť	Ü	10		l ö	Ü	10	 	Ü	Ŭ	10		Ť	Ü	100	100
MW 14		ng/L	 	1 0	Ü	10		Ü	Ü	10	 	Ü	۳	10		l ü	₩		
	2. Methylmaphthalene	ug/L		Ι ٽ		10	 	1 0	Ü	10	 	Ü	Ü	10	 	Ü		30	BD
H-WIA	2. Methy tphenol		 	1 5	Ü	25		1 0	Ü	25	 	_			 	_	2	80	365
WM-J1	2-Nationalistic	ug/L					 					Ü	U	25		U	U	200	200
MW-34	2-Nitrophysoil	ug/L	 	Ü	U	10		U	U		├ ────┤	U	V	10		U	>	30	<u>(#1</u>
																			1
MW 14	1.3'-Dichlorobenzaline 1 Nitreambine	ug/L ug/L		+ +	Ü	25		1 0	U	10 25		U	U	25	 _	U	U	2(31)	36)

													Event				Event -		Highest
		1	Result		Event	Detect Limit	Kepult	1.0	Event	Detect Limit	Kanada	14		13utect Limit	Result	1.0	DQ	Delect Limit	Petection
Well	Anulyte	Units	Keen	IQ U	170	25	N.Com	12	U	25	-	U	7	25	- NEXES	·~	U	200	200
		ug/L		Ü	Ü	10		Ü	Ü	10	-	Ü	Ü	10		Ü	Ü	80	80
MW 14	4 Brownplanyl-phonylether	<u>∪µ/1.</u>		U	U	ţa		Ü	10	10	 	l ü	Ιΰ	t 10	 -	Ü	Ü	80	*0
MW 14	4 Chicaro 5 methylphenol	ug/L	 	1 0	Ü	10		Ü	U	10	├ -	10	Ü	10		Ü	Ü	1(1)	361
MW 14	4 Chlorounline	ug/L				10		10	l ü	10		Ü	Ϊ́	10	-	"	Ü	80	20
MW H	4 Chlorophenyl-phenyl ether	ug/L	ļ	U	U			Ü	۳	10		10	U	10		"	10	80	36)
MW 14	4 Methylphenol	ug/L		U	U	10													
MW II	4 Netroantine	ug/L		U	U	25		U	U	25		Ü	U	25		7	Ų.	200	200
MW 14	4 Narophonol	ug/L	ļ	U	C	25		U	U	25	 	U		25			U	200	200
MW 14	Асспарынско	ug/L	ļ	U	C	10		U	۳	10		U	U	10	 _	U	U	10	160
HW H	Acenaphiliylana	ug/l.		U	U	10		U	U	10		U	V	10		U	C	XI)	B()
M# 34	Anthracenc	ug/L	L	U	Ü	10		U	Ľ	10		U	U	10		U	U	901	36)
MW 14	Henzota confinacene	ug/L	 _	U	U	10		υ	V	K)	ļ	U	U	10	ļ	U	U	10)	36)
MW 14	Henzigapytene	ug/l.		U	=	10		U	=	10	L	U	U	10	L	٦	c	36)	XI)
MW N	Henrichtelmstanthene	ug/L		U	Ū	10		U	U	10		U	U	10		U	U	M)	201
MW-14	Henrigehaperylene	ug/l.	L	U	U	10		U	U	10	L	U	U	10	<u> </u>	ح	Ü	80	163
MW-14	Beszetkathoranthese	ug/l.		U	U	10		U	U	30		U	U	10	<u> </u>	U	U	(81)	3(1)
MW 14	hist2-Chloroethoxy)methane	ug/L	<u></u>	U	U	μ)		Ü	V	10		U	U	10		U	U	(E)	36)
MW 14	his(2-Chloricity)) other	ug/L		U	C	10		υ	U	10		U	U	10		U	U	80	39()
MW 14	hist2-Ethylhexylaphthalate	ug/L		U	U	10	5.0	1		10	L		U	14		Us	U	3 0)	36)
MW-14	Butytheneylphthalate	ug/l.		υ	υ	10		U	U	10		U	U	10		U	U	BO.	30)
MW H	Carbazole	ug/L		U	U	10		U	U	10		U	٧	10		U	υ	MO	381)
MW H	Chrysche	ug/L		U	U	10		U	U	10		U	U	10	I	U	Ü-)(1)	80
MW-14	Di-ti-butylphthalate	ug/L		U	U	10		Ü	U	10		Ū	U	10		U	U	360	30)
	Di n-octylphihalate	ug/l.		υ	Ü	10		v	U	10		Ü	U	10		U	Ü	M()	363
MW 34	Dibenzota hianthracene	ug/L.		Ū	Ū	10		U	Ü	10		Ü	U	10		υ	υ	M2)	30
MW: 14	Unbenzoturan	ug/L		Ū	Ū	10		Ü	Ū	10	 	Ü	ΨŪ	10		Ū	Ū	X()	80
MW-14	Dicthylphthalate	ug/L.		Ü	Ū	10		Ü	Ū	10		Ü	Ū	10	 	Ū	Ü	36)	8(1)
MW 14	Dinemplohilate	wg/L		Ü	Ü	10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	NO.	80
NW 14	l horanthene	ug/L	 	Ü	Ü	10		Ü	Ü	10		Ü	Ü	10		Ü	Ü	80	80
NW 14		ug/L		Ü	lŏd	10		Ü	 	10		l ü	l ü	10		۱÷	Ü	80	40
WW 14	Pluorene			-	10	10		Ü	U	10		10	Ü	10		Ü	Ü	30	BK)
	He tac liber then zene	ug/l.		ŀΰ	1	10		Ü	10	10		۳	ΗŬ	10		l ö			
MW 14	He tachhoobstadiese	ug/L	ļ					_					_			_	Ų.	NO NO	80
MW-14	Hean likercyclopentatione	ug/t.		U	U	10		U	Ų	10	 	U	U	10		U	U	160	38()
MW 14		wg/L		U	U	10		U	U	10		U	U	10	 	U	U	NO NO	\$80
MW: 34	Indenot1,2.3-edipyrene	uµ/L.	ļ	U	U.	10		U	U	10		U	U	10		U	<u> </u>	80	80
MW 14	lsaplanac	ug/L		U	U	10		U	U	10		٧	U	10	L	U	U	160	30
MM. 14	N Nurvio di n-propylamine	ug/L		Ü	U	10		υ	U	10		U	U	10		ح	U	80	100
MW 14	N National ophenylamine	uy/L		U	U	10		U	U	10		U	U	10		U	U	36)	300
	Naphthalene	ug/L		U	U	10		U	U	10		U	U	10		ح	U	MC)	361
MW-14	Notrobenzene	ug/t.		U	U	(0		Ü	U	10		U	U	ta ta		U	u	WG	387)
MW-14	Pentachiorophenol	ug/L		V	5	25		υ	U	25		U	U	25		U	U	2(x)	200
MW-14	Phenanthrone	ug/l.		U	U	10		U	Ų	10		U	U	10		U	U	NO .	38()
MW: 14	i'l te Real	ug/L		U	۲	10		U	٥	10	33			10	340			860	140
MW. H	Pyrene	wµ/L		Ü	U	10		U	U	10		U	U	10		۲	υ	W)	39(3
MW In	1,2,4-Trachiorobenzene	ug/L		U	υ	10		U	U	30		U	U	20		5	Ü	30	30
MW in	1.2-Dichlorobeterenc	ug/L		U	C	10		Ü	U	70		U	U	30		٦	ט	No.	30)
MW-36	1,3-Dichlorobenzene	ug/l.		υ	U	10		U	U	N)		U	U	20		V	U	30	Ni
MW-36	1,4-Dichlorobenzene	ug/L.		U	Ū	10		Ü	U	30		U	U	20		0	U	V ()	30
MW 16	2.2'-mybrs(1-Chloropropane)	ug/L		Ü	U	fü		Ü	U	30		U	U	20		5	U	30	10
MW in	2.4,5-Ten hiorophenol	ug/L.	Ι	U	U	25		U	U	75		U	U	50		U	Ü	75	75
MW les	2.4.6-Trichiorophenot	ug/L		υ	V.	10		U	U	30	I	U	U	20		U	Ü	30	30
MW to	2.4-Dichlorophenol	wg/L		U	U	10		Ü	v	30		U	U	20		U	U	30	30
MW-Vo	2.4 Dencetrytphenol	ug/i.	I	U	U	10	Ι.	U	Ü	30		Ü	Ü	20		٦	Ü	N ()	W)
NW to	2.4 Districtional	ug/L		Ü	U	10		U	U	75		U	U	50		حا	<u> </u>	75	75
MW In	2.4-Danta stolucine	ug∕1.		Ü	Ü	10		Ü	Ū	30		Ť	Ü	20		Ü	Ü	30	10
MW In	2.n-Dinitrotolucie	ug/L.		Ū	Ü	10		Ü	Ü	10		Ü	ΰ	20		Ü	Ü	Vo Vo	30
NW In	2 Chieron-philadene	ug/l.		Ť	Ü	10		ϋ	Ü	30		ΙŬ	Ü	20		Ü	Ü	30	30
MW In	2 Chloroph and	ug/L.		Ιř	υ	10		Ü	Ü	10		1 0	Ü	20		÷	Ü	30	- NO
MW to	2 Metty inaphthalene	ug/L	 	۱ü	Ü	10		Ü	Ü	30		10	۱ ٠	20	 -	+	Ü	30	30
MW to	2 Methylphenol	ug/L		10	1 0 1	10	 	Ü	U	30	 	10	10	20	 	۳			
	Temilidanima	<u> </u>	L	<u> </u>	لٽ		<u> </u>		٣.			٠,	<u> </u>		<u> </u>	<u> </u>	<u>. ب</u>	30	N)

March Control Contro										N	,									10.1
March Marchael M				<u> </u>				-	1 10			 								
Section 1985				Result				K-100				T-mark				N-mark.				
Mart No. Company Mart No.	MW-W											<u> </u>								
Minimark Speciment Speci	MW W	2-Nintephened	up/L	<u> </u>			10			_		<u> </u>	U	<u> </u>			U	U	30	30
March Company photography of the Service Service	MW-Va	1,1'-Dichlerebenzuhne	wg/L		2	U	10		Ū	U	.30		U	U	20		U	ט	30	30
March Marc	MW- In	1-Nationaline	up/t.		2	C	25		U	U	75		U	U	20		U	U	75	75
Mary No.	MW- Vo	4.6-Denotes 2-methylphenol	1987		Ü	Ü	25		U	U	75		U	U	50		Ü	U	75	75
Activate Contemplate Mile Mile Contemplate Mile Mil					2	U	10		U	U	30		Ū	Ū	20		U	Ü	30	Vo
Mile					U	U	10		U	U	10		Û		20		U	U	10	30
## 1					_	_							_				_			
March Marc										_			_	_						
Mark Content Mark Mark Content												 				 	_			
Section Sect																 				
Mary Mary													_	_						
MY No Machemelystes																				
Authors																				
March Marc					_							ļ						_		
March Department March											- 30	 _	_							
Secretar Secretar Secretar										۳	- 30	 								
## AFF TO BASES A CAPTION STATE OF THE PROPERTY OF THE PROPERT				L	_								_	_		L		_		
Service Minor Conference	MW-1n	Henry hithuranthene																		
No. March	MW- In	Henritg.hatperylene	uµ/l.		_															
No. No.			ug/L		U	U	Ю		ַ ע	U				U	20		U	U	No.	340
Mark No. No. Program Mark No. No. Program No.					U	U	10		U	Lυ	.10		U	Ū	20		U	U	30	30
Mart Mart					U	Ū	Į0		U	U	30	1	Ü	U	20		Ū	L L	30	30
Section Sect					υ	U	10	56		Г	30	- 11	<u> </u>		20	60	7		10	56
Mark No. Confusion Mark No. Confusion									T 10	u				ii.				Ü		
Section Sect					_															
Section Sect													_					_		
New York Telephone New York									_											
												 								
1987-10 1988-10-10-10-10-10-10-10-10-10-10-10-10-10-						_											_			
SW-76 Destroylegishelate					_				-	_										
NW - 10 Househy-picholade	MW-lo	Officerolistan	up/L														U			30
New York Policy and Processes Sept. U U 10 U 30 U U 20 U U 30 No No No No No No No N	MW-In	t Jectiley April Marketts	we/L		٦		10		U	U	30		U	U	20		>	Ų	30	30
NW- 10 Planetical Suppl. U U 18 U U 30 U U 20 U U 30 NO NW- 10 NW-	M-Wi	Describy initialists	wg/L		U	U	10		U	U	30		Ų	Ü	20		U	C	30	30
No. No. Pharwise	MW-36	Hauranthene	wg/L		U	G	10		U	V	30	_	Ü	Ü	20		U	U	30	30
NW-No	MW-Vo	Planeratic	wyt.		V	v	10		U	Ü	30		U	Ū	20		U	U	30	30
New York			/L		-	U	10		U	U	30		Ü	Ū	2n		U	Ü	70	20
NW-16 New Notes NW-16					Ü							 								
NW No Note					U	- 0	10		Ü	Ü										,,,,,
NW- to Indemnt 2.3-collypythric sqrt U U 10 U U 30 U U 30 30 NW- to Indemnt 2.3-collypythrinic sqrt U U 10 U U 30 U U 30 U U 30 30									_								_			
NW-16 Registration Registratio					_												_			
NW - No No No No No No No No				 					_				_							
A.W. In No.																				
NW-10 Namhquere				⊢																
AlW - 16 Nonedespecies Spf. U U U 10 U U U No U U U 30 U U U 38 No No No No No No No N					_				_											
NW-10 Penta-thiorophenol ug/L U U U 25 U U I U U 30 U U U 75 75																				
NW-10 Phenolecued mg/L U U 16 U U 30 U U 30 30 330 340 NW-10 Phenolecued mg/L U U 160 180 180 30 320 30 240 30 240 30 240 30 240 30 240 30 340 NW-17 1.2.4-Ten histophenoren: mg/L U U 160 U U 1																				
MW-10 Phone mg/L																				
MW-10 Pyreine	MW-Vh	Phonomiscus	mg/L		_				U	U			U	U	20		U	U	30	30
MW-10 Pyrene	MW-16	Placted	up/L		U		26	1100				120		L^{-}	20	240			30	240
MW-37 1,2,4-Trs.hlorubencence mg/L U 10 U U 10 U U 10 U U 10 10					ีบ	U	10		Ü	U	30		U	U	20		U	U	30	36
MW-17 1,2-Dishinorhunces gg/L U 10 10 U U 10 10 U U 10 10 10 10 MW-17 1,3-Dishinorhunces gg/L U 1 10 U 10 10 10 MW-17 1,3-Dishinorhunces gg/L U 1 10 U 10 10 U U 10 10 U 10 10 MW-17 1,4-Dishinorhunces gg/L U 1 10 U 10 U 10 U 10 U 10 U 10 U 10 U					U		10		Ü	UI	10									
MW-17 1,1-Dishhordences: ug/L U ' 10 U U 10 U U 10 U U 10 U 10 10							JQ .		Ü											
\$\text{54W}.77 \ \begin{array}{cccccccccccccccccccccccccccccccccccc						 1			_								_			
MW-37 2.7-inspheigh-Chlorophymic) ug/L U 10 U 10 U U 10 U U 10 U U 10 10 III MW-37 2.4.5-Tris-Rhirophymid ug/L U 25 U U 25 U U 25 U U 25 25 U U U 25 U U 25 U U 25 U U 10 III MW-37 2.4-Dis-Rhirophymid ug/L U 10 U 10 U U 10 U U 10 U U 10 III MW-37 2.4-Dis-Rhirophymid ug/L U III III III III III III III III III						-														
MW-17 2-4.5-Tex Minosphered up/L U 25 U UI 25 U U 25 25 U U 25 25 MW-17 2-4.0-Introduced up/L U III III III III III III III III III						\vdash										———				
NW-17 [2,4,6-Tre-fishersphermed gg/L]. U 10 U 10 U U 10 10 U U 10 10 U U 10 10 10 10 10 10 10 10 10 10 10 10 10						\vdash														
MW-17 (2,4-Dackbarophenud up/L U 10 10 U U 16 U U 10 10 U U 10 10 10 MW-17 (2,4-Dackbarophenud up/L U 10 10 U U 10 0 U U 16 U U 10 10 10 MW-17 (2,4-Dackbarophenud up/L U 125 U U 125 U U 125 15 MW-17 (2,4-Dackbarophenud up/L U 10 10 U U 10 0 U U 10 U 10 U 10 U 10						\vdash														
MW-17 2-4-Dimitrophysical ug/L. U 10 U 10 U U 15 U U 25 U U 25 U U 25 25 MW-17 2-4-Dimitrophysical ug/L. U 10 U 10 U U 10 U U 10 U U 10 U 10 U						┝╼╾┤														
NW-17 [24-Dissist-phosed ug/L U 25 U UI 25 U U 25 25 MW-17 [24-Dissist-phosed ug/L U U 10 U UI 10 U U II U II U				├		┝							_			لــــــــــــــــــــــــــــــــــــــ				
MW-17 [24 Dimitriologue ug/l. U In U UI In U U II U II U II U II II U II II U II II				 _		lacksquare												_		10
	MW-17	2.4-Dinatrophenol		l		<u> </u>													25	25
NIW-17 [A-(Supernote-baser Ug/L U 10 U U 10 U U 10	MW-17	2.4 Dimetentolucite	ug∕t.						U		10		U	V	10			U	ta	10
	MW-17	2.6-Diminotohiche	ug/L		U		10		U	UJ	10		U	ĹŪ	10			U	lo lo	10

]]			Event				Event 2				Event.		 	T	Event		Highest
Well	Analyte	Units	Heralt	1.0	DQ	Detect f.imit	Remit	3	3	Detect 1.imit	Hanak	10	DQ.	Hetert Limit	Result	1.0	DQ	Detect Limit	Detection
	2 Chloronaphthalene	Up/L		U		10		= :	3	10		U	U	10			U	10	10
MW 17	2 Chlorophenol	up/L	 	U	-	10		=	5	10		1 0	Ü	10			"	10	10
MW 17	2 Methyliaphthalene	ug/L.	[U	┡	10		U	111	10		+ +	 	10		-	 	10	10
A1W 17	2 Methylphenol	up/L		U	├	10			5			1 0	"	25		-	1 0	25	
MW 17	2 Nitroandine	uµ/L		U		25		2	נט	25		1 0	Ü	10		-	10	10	10
MW 17	2 Natrophysical	up/L		Ų		10		υ	3			10	Ü	10	— ———	-	1 8	10	10
	1.1 Dichlorobenzidine	wg/L		U		25		<u>د د</u>	U)	10 25		10.	"	25	ļ	├	10	25	25
MW 17	1 Nitroamine	ep/L		10		25		-	8	25		10	Ü	25	 	├	1 5	25	25
MW 17	Le Danier 2-methylphenol	ep/L		10	-	10		۳	Ü	10		۳	Ü	10		-	l ü	10	10
	4 Hromophenyl-phenylether	ug/L		Ŭ	-	10		-	Ü	10		۱ ű	Ü	10		-	1 5	10	10
	4 Chloro 1 methylphenol 4 Chlorosothuc	wg/L		Ü	1-1	10		Ü	"	10		Ü	Ü	10	 	├	ΙÜ	10	10
-	4 Chlorophenyl-phenyl ether	ug/L		Ü	1	10		1	Ü	10		Ť	Ť	10		┼	Ü	10	10
	4 Mestry Hylicand	ug/L		Ü		10		1	10	10		Ü	Ü	10	 	 	۱ ٠	10	10
	1 Nationaline	wy/L		Ü	1	25		Ü	3	25		ΙŪ	Ü	25	 	╅──	Ü	25	25
	4-Nutrophronit	ug/L		Ü	-	25		Ü	3	25		Ū	Ť	25		_	ŭ,	25	25
	Acenaphiliene	sq/L		tü	_	10		Ü	3	10		١Ť	Ū	10			1 0	10	10
	Accuaphtly lene	ug/L	 	Ť	1	10		Ü	Ü	16		Ü	Ü	10		 	Ü	10	10
-	Anthracene	ug/L		Ť	1	10		Ü	Ü	1		10	Ü	10		_	Ü	10	10
	Benzistatanthracene	we/L		Ŭ		10		Ü	Ü	10		tΰ	Ü	10		 	١ ٠	10	10
	Bearingpriene	ug/L		Ü	1	10		Ü	3	10		Ū	Ü	10		1	Ü	10	10
	Henzeich (fluoranthene	up/L	 	Ü		10		Ü	Ü	10		ΙŪ	Ü	10		_	T ii	10	10
	Benzeig hasperylene	Hgt/L		Ū	1	10		U	5	10		Ū	U	10	<u> </u>	_	Ü	10	10
	Henziek Blueranthene	uge/L.		Ū	_	10		Ü	5	10		Ū	Ü	10		-	Ü	10	10
	bis(2-Chlorocibina) muchanc	up/L		Ť	 	10		5	3	10		Ü	Ü	10		_	Ü	10	10
	bis(2-Chlorocthyl) ether	up/L		Ŭ		10		7	UJ	10		Ü	Ū	10 -	 	 	Ü	to	10
	bis(2-Eitis)thexyliphthalate	ug/L		Ü	-	10		۲	Ü	10	и	+-		10	 	 	Ū	10	H
	Huty the next intuitable	ug/l.		Ť	1	10	h	Ü	Ü	10		U	U	10		┼─	Ü	10	10
MW 17	Carbarok	up/L		Ü		10		-	Ü	10		Ť	Ü	10		-	Ü	10	10
	Chrysene	ug/L		Ü		10		Ü	Ü	10		١÷	Ü	10		_	Ü	10	10
	In-n-busylphthalah:	ug/L		Ü		10		U	US	10		Ü	Ü	10		_	T U	10	10
	Denocy phthalate	up/L		Ū	1	10		U	3	16		Ü	Ü	30		 	Ü	10	10
	Intervolational acuse	ug/L		Ü	1	10		Ü	3	10		Ū	Ū	10		_	Ū	10	10
	Listenza duran	up/L	 	Ü		10		Ü	3	10		Ť	Ū	10		_	Ü	10	10
MW 17	Decthylphristate	up/L		Ū	†	10		Ü	U	10		Ū	U	10		1	Ū	10	10
	Distantisyipitate	ug/L		U	1	10		Ū	3	30		Ü	Ü	10			Ť	In In	10
	Figure and a re-	wy/L	·	Ū		10		U	3	10		Ü	U	10		_	Ü	10	10
MW-17	Fluorenc	up/L		Ü		10		U	3	10		Ü	Ü	10			Ü	10	10
	Hickachlenshenzene	w/L		Ū		10		U	5	10		U	Ū	10			Ü	10	10
	He Auchierobutadiene	ug/L		Ü		10		U	U)	10		Ü	Ü	te		1	Ü	10	10
	Hexaeldoro yelopentadiene	wp/L		U		. 10		U	2	10		Ü	Ü	in		1	Ū	10	10
	Henry blownethane	up/l.		U		10		U	5	ın		U	U	10		1	U	10	10
	Indenocal 2.3 cultipyrene	ug/L		U		10		U	5	10		U	U	10	Ι.	T	U	10	10
	(suphireux	wg/L		U		10		υ	3	10		U	U	10		I	U	10	10
NIW-17	N-National de-n-propylamine	uje/L		U		10		5	U	10		V	U	10			U	10	10
	N-Nitroschiphenylamine	uy/L		U		10		>	3	Ю		U	U	10			U.	10	10
	Naphthali is:	ııg/L		U		10		٥	5	10		U	υ	10			U	10	10
MW-13	Nationalist	mp/L		U		10		٥	IJ	10		U	U	10			U	10	10
MW-17	Pentachiorophenol	up/L		U		25		2	נט	25		U	Ü	25			U	25	25_
MW-17	Phonanthrone	ng/L		U	1 7	10		Ü	UJ	10		U	U	10			U	10	10
	Planol	#IP/L		U	ַ וַ	10	2.0	7	-	10	23			10		L^-	U	10	21
	Pyrene	ug/L		U		10		ט	UJ_	10		U	Ü	10			U	10	10
AIW-IX	1,2,4-Teschlosoftenzene	up/L		U		10		٦	>	10		V	U	10		U	U	10	10
MW-3x	1,2-Dichlorobenzene	ny/L		U		10		ح	د	30		Ü	U	10		U	U	10	10
MW-W	1.3-Dichlorobenzene	wy/L		υ		10		٦	٦	10		U	U	10		U	U	10	10
	1,4-Dichlorohenzene	ug/L		- U	C	ŧa		٦	υ	10		U	U	10		U	U	10	10
	2.2'-craybis(1-Chloropropane)	HJE/L		٦		10		3	C	10		Ü	U	10		U	UJ	10	10
	2.4.5-Tricidotophenol	wp/L		υ		25		ح	c	25		Ü	U	25		U	U	25	25
MW W	2.4.6-Trichlorophenol	wg/L	L	U		10		5	5	10		U	U	10		U	U	10	10
	2.4-Dichlorophenul	J/Nn		U_		10		c	C	10		U	U	10		U	Ü		

Practice.

Mary Description Description Control																				
Service 1 2 2 2 2 2 2 2 2 2	ì			<u></u> _		Event														l lighed
1874 M. 124 Demonstrate				Monet	_	DQ		Remk				Noneth .				Kensk				Detection
1871 12 12 12 13 13 13 13 1	NW-W	2.4-Dinacitylphenol	wg/L			L \pm l					10				10		Ü	U	10	16
1879 12 12 12 13 13 13 13 13	MW-W	2,4-Danmopheant	ww/L												25		U	U	25	25
Section 1987	MF-WIA	2,4-Danitronolactic	7		U		10		כ	2	10		٦	U	10		U	Ü	10	10
Section Sect	MW-W	2,6-Danis colucte:	wμ/L.		U		10		C	_	10		U	Ü	10		ΓÙ	Ų	10	10
Town 10 The American	MW-18	2-Chilosomarkillalotte	we/L		U		10		U	U	10		v	U	30)		Ü	Ü	10	10
Win 1 Win 2 Win					U		10		υ	-	10		٦	U	10		ū	Ü	10	10
1876 15 1646 1647 16					Ü		10			u	10		-	Ü						10
No. State					1						 				 	_			10	
No. 10 N						-							_							25
Wilson W						-							_							10
No. 10 N					_	-														10
Section Sect												 								
												 	_					_		25
Section Content Cont						 											_			25
SNY UN Company Compa						1 -1														10
SNY U Champinoty physylvent QPL U D U U D U U D U U						14			_	_										10
SMY-UR Abbutypin and UPL U 10 U U 10 U U 10 U U 10 In In In In In In In I						اـــــــا						L					_			10
SMY 10	MW-18	4-Chkumphenyl-phenyl other															_			10
MAN W.		4-Meskylpheted	ug/L		_				_	_							U	U	10	10
SMY 10 Steeperhood	MW-W	4-Netropoline	og/L												25		U	U	25	25
Martin Accomplishment myPL U 10 U U 10	MW: W	4- Nancards; and	W/L		C		_25		C	u	25		C	Ui	25		Ú	Ü	25	25
Mart Marchaphthylore control					U		10		U	υ	10		U	U			Ū			10
MW VI Audinocyne mg/L					U		10		U	U	10		U	Ü						10
MM V V Secreta-series Spf. U 10 U U U 10 U U U U U U U U U					U		10		υ	2	10		-	U	10		_			10
Mart						1-1	10		U		ia									10
Second Procession Seco						_				_										10
Marting Mart				<u> </u>									į							
Metal Manageria Manageri									_											10
MN - 12 May 2 Contenting yearchairs mgf. U 10 U U 10						 			_			 		_		ļ				in
18						├ ──┤			_											10
No. 2 Edyslack Pipelinduke 1961. 1						-														ţo
No. 10	AIW-18	hist2-Chloroethyl) other											2						10	10
MW-18 Companies	MF WIA	hest 2-Ethy lise a yl) phthalate	wg/l.								10			U	10		Ų	U	10	10
No. 18 Charges Land La	NW-W	Bury the sery liphotealuse:	ug/L		د		10		U	>	10		כ	U	641		U	U	10	10
NW - NW Chey reset sight U 10 U U	MW-18	Catharnic	we/L		د		10		υ	=	10		U	U	10		U	U	10	10
MW-VALUE 15 to Purply plobabation mg/L U 10 U		W/L		U		10		U	U	16		U	U	160		U	Ū		10	
NW-NR Descript philosophic NPT. U 10 U U 16 U U 16 U U 16 NW-NR Descript and or opt. U 10 U 10 U U 10					U		Iu.		Ü	-	10		5	Ū	No		_			10
NW-18 Discursion NW-18					U		10		U	Ü										10
NW-18 Decentation							10		Ü	-			_							10
MW-34 Description Descri						1							_							10
NW-18				<u> </u>		1														10
NW-18 Physical Physics Spf. U 10 U 10 U						╁┈┤				_		 								10
NW-W Figure NW-W Figure NW-W Figure NW-W NW-W Figure NW-W						╀─┤							·			——				
NW 18						╌┤										<u> </u>				10
At At At At At At At At				ļ		┝╌┥		 	_					_						10
AW-18 Reachines pulseprenalisme						 								_						30
AW NR Secun Information Secun Information Secundaries Secundar				ļ		 			_									_		30
NW-18 Inspired I						↓			_											10
NW-18 Inspiration: U U 10 U U U 10 U U U 10 U U U 10 U U U U U U U U U												ļ	_						10	10
MW-18 M-Nistran-kn-pappylatisme sgrL U 10 U U U 10 U U U 10 U U U 10 U U U U U U U U U	MW-W	Indexe(1,2,1-ad)pyrene	w/L														Ü	U	10	10
No. No. No. No. No. No. No. No. No. No.	MW-W	Inspiration:	wg/L		U				U	U	10		U	U	(4)		U	Ų	10	10
No. No.					U		10		U	U	10		U	U	16		U	U)	10	10
NW-18 Naghisharing ug/L U 10 U U U 10 U U U 10 U U U U U U U U U					U		10		U	V	10	,	U	U	10		U	U		10
NW-18 Nigerishment mg/L U 16 U U 16 U U 18 U U 18 MW-18 Nigerishment mg/L U 25 U U 16 U U U 16 U U U 16 U U U U U U U U U							10		Ü								_			10
MW-VI Permanharan mg/L U 25 U U U 10 U U U 10 U U U U U U U U U						T														10
MW-18 Phenometric mg/L						_				_										25
MW-18 Phone 4 agr/L U 10 13 68 U 96 J U 10 10 MW-18 Pyron 5 agr/L U 10 U U U U 10 U U U U 10 U U U U U U U U U				 -		-						·								10
MW-18 Pyrice						┰			<u> </u>	٠			<u> </u>				_			
NW-19 1,2.4-Tris historideparates				 		 -		 				 	 							13
NW-19 1.2 Decidenthements: up/L U 10 U 10 U U 10 U U 10 U U 10 NW-19 [1 The bloods receive: up/L U 10 U 10 U U 10 U U 10 U U 10				ļ		╀╌╾┥		 												10
NW-1V [1.5 Da, bit or the streets: ug/L. U 10 U 10 U U 10 U U 10 U U 10				 	_	╁┈┥						h	_							10
						↓ - ↓										ليسييا				10
1 true to 1 to 1 to 1 to 1 to 1 to 1 to 1 to						↓ - ↓			_				_				_		L to	10
	MW-19	1.4 Dichlorohenzene	wgt/L		5	لــــا	10		U	٥	10		5	U	10		υ	Ü	10	10

		,								. 			Event				No. at 4		10.1
			Result	1.0	Event	Delact Limit	Hessel	1.0	Event	Delact Limit	Handt		DQ	Detect Limit	Renak	140	DQ DQ	Detect Limit	Highest Detection
Well	Analyte	Units	Resuk		12		Keren	_		10		170	U	10	REVOR	U U		10	
	2.2 -psybisel-Chloropropane)	J.Ne.	 	U	-	10		U	2	25	 	Ü	U	25			5	25	10
MW W	2.4,5-Ten hiorophenol	ug/L	 +	U		25		U	v	10		10	l ö	10		U	U	10	25
AIW 19	2.4,6-Trachhorophenol	ug/L	├ ──-			10		U	U	10	 	H	1 0	10	 			10	10
MW 19	2.4 Dichlorophened	1/4/0	├ ──	U		10		U	Ü	10	 	U	Ü	10		U	U	10	10
MW 19	2.4 Dim hyphenol	1/46	├ ──-			10		U	2		 		10			U.			10
MW 19	2.4 Unintroplacined	Up/1		<u>U</u>	├	25		l u	زد	25		U	l U	25		U	<u></u>	25	25
MW-19	2.4 Unitronoluene	<u> </u>		Ü		10		Ų	داد	10		- U	10	10	 	U	۲	10	10
MW-19	2.6 Dimironolucine	ug/L	-					U	_				Ü			_	2		10
114.14	2 Chinomophthalene	l my/L		U	\vdash	10		U	יי	10		Ų.	1 11	10		U	۳	10	10
MW W	? C'hikweyela; med	- 1/ge/1		-		10		U	۲	10		U	Ü	10		1 0	٦	10	10
MW 19	2. Methy trophthalene	wg/1.		-	-	10		1 5	دد	10		10	1 5	10	 	† 	Ü	10	10
MW-19	2-Methylpticnol	ug/L		- ''	-	25		1 5	۳	25		1 5	Ü	25	 	1 0	נט	25	25
NW W	2 Nitroantine	UP/L			-					10	 	╁╬	10			10		10	
MW 19	2-Netsuphenid	Up/L		U	\vdash	10		U	۳	10		卡	10	10			U	10	10
MW-19	1,1'-Dechlerohenzuline	Ug/L		U	\vdash	10		U	2			₩.	l ü	10	 	U	· ·		10
	1 Nitroaniline	NA/L	 	C	_	25		Ü	2	25		10		25		U	υ	25	25
	4.6-Dinnero 2-menty lphenol	wy/1.	L	U		25		U	U	25		╁╬╌	U	25		U	U	25	25
	4- Hronoglamyl-phenylether	ug/L	L	U	$\vdash \vdash$	10		U	۲	10				10		U	U	10	10
	4-Chiloro-1-methy-lphenol	19/L	 	<u>ت</u>	$\vdash \vdash \vdash$	10		U	2:	10	 	2	U	10	 	U	U.	10	10
	J-C'hloroandate	W/L		2		10		U	2	10	 		_	10		U	Ü	10	10
	4-Chlorophenyl-phenyl ether	WB/L		:	-	10		u	2	10	 	<u> </u>	<u></u>	10		U	υ	10	10
	4 Methylphenni	- New	\vdash	U	\vdash	10		U	3		 	U	U	10		Ų.	U.	10	10)
	4-Nitrismiliac	w/L		U		25		U	2	25	 	U	U	25		U	U	25	25
	4 Nitrophonal	ug/t.		U		25		U	>	25		U	UJ	25		U	UJ	25	25
	Acenaphtiene	ug/L		U		10		U	U	10	}	U	L.	10	ļ	U	Y.	10	10
	Accraphilis lene	ug/L		c		10		U	٦	10		<u>u</u>	U	10	 	U	U	10	10
	Anthracene	ug/L		U		10		U	>	10		U	U	10		U	U	10	10
	Henzo(a)anthracene	ug/L		U		10		U	U	10		U	U U	10		<u>u</u>	٧	10	10
	Heinzota (pyrene	up/L		C		10		U	U	10		Ų.		10		U	٦	10	10
	Benzo(httiuoranthene	uje/L		υ		10		U	U	10	 _	Ü	U	10		U	U	10	10
	Henzoty,h.ttperylene	ug/L		υ		10		U	2	10	ļ	۳	U	10		U	U	10	10
	Henzogk irfnorampene	up/L		U	-	10		U	=	10	 -	U	U	10	 	U	5	10	10
	his(2-Chloricthing) include	up/L		U		10		U	5	10		U	U	10		U	٧	10	10
	his(2-Chloroethyl) other	ug/L		-		10		U	>	(a	1.0	1		10	2.0	14	-	10	10
	his(2-Ethyllicxyl)phihalaic	W/L	40	7		NA_		U	٥	to	 	1	V	. 18		Ü	د	10	18
	Hutythenzy lphthalate	ug/L		U		10		U	U	10	 	۳	U	10		U	٧)()	10
	Carhazok	ug/L		L		10		C	'n	10	 	U	2	10		U	2	10	10
MW-19	Chrysene	We/L		U		10		U	2	10	} _	U	U	10		U	٥	10	10
	De-as-buty lpisthallate	WAY.		υ		10		U	Ü	10		U	Ų.	10		U.	>	10	10
	Protess ty Ipinihalate	ug/L.		U	┶┷┥	10		<u></u>	ט	10	 -	۳	2	10		U	2	10	10
MW-10	Deficirzita litanthracene	ug/L		U	└─ ┩	10		U	۳	10		LY.	v	10		U	5	10	10
NW 19	l bhen colut an	wert.		<u>v</u>		10		C	2	10		۳	2	10	 	U	٥,	10	to
MW 19	i tecthy lphilistate	ug/L.		c c	├	10		10	c c	10		<u> </u>	2	10	 -	Ü	2	10	10
MW 19	Omethylphitalate	•g/1.		_		10			-	10		U.	U	10		Ų.	2	10	10
NW-W	Hustanthene	ug/1.		2	┝╼┩	10		Ü	_	10		2	<u>"</u>	10		Ų.	2	10	10
MW W	I harrene	ug/1.		U		10		1 5	2	10		U	U	10		U	2	10	10
A1W-19	He sachknohenzene	ug/L		-	┝╼┩	10			-	10		10	5				U	10	10
MW-19	fic suchim hutadiene	ug/L		끍	 	10		+ +	Ü	10		l ü	70	10		L.	101	10	10
MW-IV	Hexachlorox yelopentadiene Hexachloroxibane	ug/L		₩		10		Ü	Ü	10		1 5	102	10		U	<u> </u>	10	10
MW-19	Indenoi 1,2.3-cd pyrene	ug/L		-		10		-	Ü	10	 	방	U	10			UJ	10	10
MW 19		ug/L		-		10		Ü	Ü	10		۳	1			Ų	U	10	30
MW-19	Isophuton.	ug/L		÷		10		0	-	10		U	 "	10		Ų.	U	10	10
	N-National dise-propylamenc	ug/1.		-		10		U	Ü	10		_				U	נט	10	10
MW-19	N-Nitroscolophenylamine	ug/L		Ü		10		Ü	U	10	 	<u></u>	<u></u>	10		U	U		10
	Naphthalene	ug/L		-		10		Ü	U	10		2	U	10		Ü	U	10	10
	Nurshenzene	up/L		_				_				Ü	U	10	ļ	Ü	U	10	10
	Pentachhrophenol	uji/t.		U	├ ~	25		U	, i	25		Ų.	U	25		Ų.	U	25	25
	Phenanthrene	ug/L		c		10		 "	U	10		, v	U	10		U	ט	10	10
	Physical	wp/1.		: =		10	10	 		10		ب	U	10		<u> </u>	٧	- 11	<u> "</u>
NIN 10	Pytene	1/3m		U	لب	10		U	U	10		U	U	10	L	U	٦	(t)	10

Appendix C Maximum Concentration of Semivolatile Organic Baseline Groundwater Monitoring American Challela Services NPL Site

					62.								A5- A						
Well	Analyte	Undes	Result	W	Event I	Detect Limit	Result	14)	R-W		Bergh.	Lio	Event DQ	Detect frients	Result	165	Event	Dutect Limit	Highest Detection
	1 2.4 Tinhkeeleene	ug/L		7	-~	10		U		10	_==-	Ü	7	(0	- Western		17	10	10
	1.2-Dichhaubenzen	up/L	 	ř	1	10		1 5		10		Ü		10		_	Ü	10	10
MW 40	1.3-Dehisebenzar	ug/L	 	Ŭ		10		Ü	75	10		Ť	l ŭ	10		_	Ü	10	10
	1,4-1 to blood covere	ug/L	·	Ü		to		Ü	2	10	f	Ü	tΰ	10		_	Ü	ta	10
MW 40	2.2'-mylled 1-Chloropropane)	ug/L		Ť	1	10		Ü	-	10		Ť	Ü	10			Ü	10	10
MW 40	2.4,5-Trachinophenol	ug/L		Ù	1	25		Ť	1	25	 	Ü	Ü	13		_	Ü	25	25
MW:40	2.4.n-Tru, fidosophemid	ug/L		Ť	1	10		Ü	7	10	 	Ü	Ŭ	10		_	Ü	10	10
MW 40	2.4 Die bili vergebetreit	ug/L		U	11	10		Ū	1	10		Ū	Ü	10		_	Ť	10	10)
MW-40	2.4-Dissertley/places	ug/L		2	\vdash	10		Ü	5	J/O		Ü	Ü	10			Ŭ	10	16
MW 40	2.4-Chattlephened	wy/L		٦	_	25		Ū	5	25		ΙŪ	Ū	25			Ü	25	25
MW: 40	2.4-Dissilvaniació	ug/L		Ü		10		Ū	5	10		Ū	Ü	ja			Ü	Ю	Į0
MW-W	2.n-thinthenham	ug/L		Ü		140		Ū	5	10		Ü	Ť	10			Ü	10	10
NW-W	. (Telemonophtholem:	up/L		2		10		Ü	5	10		Ü	ν	IO		_	Ü	10	10
ASW:-MI	2 (Talegraphy that)	upl.		Ü	$\overline{}$	10		Ü	5	10		Ū	Ū	10			Ü	10	10
MW 40	2 Methylmaphthalene	ug/L		Ÿ		10		Ü	2	10		Ť	Ü	10			Ü	10	10
MW: 40	2- Methy lphemil	ugl		C	1	10		Ü	6	10		Ü	Ü	10			Ü	10	10
MW-WM	2 Nanagardana	ug/L		2		25		Ü	5	25		Ü	Ü	25		_	Ü	25	25
MW:40	1- Nanophend	up/L		7		10		Ť	7-	10		Ü	Ü	30			Ü	10	10
MM: 41	1,1'-Dichleroffencidene	Juji.		C		10		Ü	5	10		Ü	Ü	10		$\overline{}$	Ü	10	10
MW 40	Numerolium	up/L		5	\vdash	25		Ü	5	25		Ť	Ū	25		$\overline{}$	Ü	25	25
	4.6- Chanter- 2-morthy letternal	upL		7		25		U	2	25		Ū	Ū	25		_	Ü	25	25
MW 40	I British and photography	ugh		Ü		10		U	c	10		Ü	U	10		_	Ŭ.	10	10
	4 Chileron V. methylphetical	We/L		Ü		10		Ü	5	10		Ū	Ü	10		_	Ü	10	10
MW-40	4 (Tuloresamolone	ug/L		Ü		10		Ü	5	10		Ū	Ū	10			Ū	to	10
MW #II	4 Chiamptonyi-phonyi other	w/L		Ü		10		Ü	2	10		Ü	Ü	10		_	Ū	140	10
MW-40	4 Methylphonol	ug/L.		5		10		U	Ü	10		U	Ū	10			Ü	10	10
MW #II	4 Netropuline	up/L		-		25		U	2	25		Ü	Ü	23		_	Ü	25	25
MW-M1	4 Netrophysid	wer		Ü	1	25		U	5	25		U	Ü	23			Ü	25	25
MW MI	Accompleteur	·w/L		Ü	1	10		U	2	10		U	Ŭ	10			Ü	10	10
MW #ii	Accomplete to the	wg/L		2		160		U	c	10		v	Ü	10			Ü	10	to
MW-40	Ambuscuc	we/L		-		10		U	2	10		U	Ū	10		_	Ü	10	10
MW 40	Henziquianthracene	wg/L		>		30		U	2	10		Ü	Ū	10			U	10	Ю
MW-W	Beamlalpyrene	og/L		٦		10		U	2	10		U	Ü	10		_	Ü	10	10
	Heavieth of a statement	W/L		٦		10		C.	5	10		U	Ū	10		$\overline{}$	1 3	10	10
	He months in a special plants	W/L		5		10		U	5	10		U	Ū	10		$\overline{}$	Ü	10	10
	Bearing Management	we/L		5		ia		U	2	10		U	Ü	IA		_	Ū	10	10
	had 2-4 Televis of the stry procedure:	144		Ü		30		U.	S.	10		U	Ū	10			Ü	10	10
	Mrs 2-C'himarthyl) gilari	w/L		U		10		Ü	Ü	10		Ū	Ü	10			Ū	10	In
	has 2-baby the ny figitalistate	w/L		Ü		М		V	2	10			Ū	13			Ü	ia	13
MW-M	Hury theney terbalanter	my/L		>		10		Ü	5	10		U	Ū	10			Ü	10	10
MW 40	Carbonde	W/L		٦		149		Ü	2	10		U	ַ טֿ	10		_	Ü	10	to to
	Claryscine	w/L		٦		10		Ū	1	10		U	Ū	10		_	Ü	ta	10
	12s m-hasty leptathallatic	w/L		د		10		U	٦	10		บ	U	10		_	Ū	10	10
	Di n inctylphilialiste	- Jugar		٥		10		U	1	10		U	Ū	JQ.			U	10	10
	Price paga, his militarione	- Jugit		حا		10		U	7	10		U	U	IQ			Ü	10	10
MW-MI	Eleberty culture and	w/L		حا		10		U	1	10		υ	U	16)			Ü	10	30
MW-40	Decity Iphthalate	lug/L		5		10		Ü	5	10		U	U	10			U	to	10
MW-40	Descriptionslate	wel		2		10		U	٦	10		U	U	10			U	10	10
MW-40	1-leastantinene	ug/L		حا		10		U	٦	10		U	U	10			U	10	10
MW-HI	Planter	- Jupil		υ		10		U	٦	10		U	U	10			V	10	lo lo
MW-#I	He can hitmore rene	ug/L		υ		10_		U	5	10		U	U	10			U	10	10
MW-40	His was believed our advisors	يابوا		U		10		U	2	10		U	U	10			U	16	10
MW-40	He worldsten ye legicitablesic	w/L		٥		90		U	ح	10		U	U	10			U	10	10
MW-40	He sachhousetham:	ug/L		دا		10		U	>	10		U	U	10			U	LO LO	10
MW-40	Indent (,2,4-cd)pyrene	ug/L		حا		Ю		U	5	10		U	U	19			U	10	10
MW 40	Inception and a	ug/L		حا		10		U	V	10		U	U	10			U	io	10
MW-40	N. National de la propylament	WAL		כ		10		U	2	10		U	Ū	10			Ü	50	10
MW-M	N. Nonreadiplicity Landing	ug/L		Ü		10		U	د	10		U	U	10			U	10	10
MW 40	Naphthalenc	W/L		د		10		U	٦	10		U.	U	10			Ü	10	10
	National suc	ug/1.		IJ		10		U	د	10		v	Ü	10			انا	10	10

	·	1			Fivent 1				DO:	Detect f.insk	Result	10	Event :	Detect Limit	Mercula	140	DO	Detact Limit	Mighest Detection
Well	Analyte	Umits	Rout	1.0	IN	Detect Limit	Result	10			N. COLON				Restor	1.2			
	Pentachiorophenol	uy/L.		Ü		25		5	Ü	25		C	2	25		├	5	25	35
MW 40	Phenamintene	ug/l.		U	-	10		Ξ.	2	10		ς.	ט	10		-	Ų	10	10
MW-40	Phond	my/L		U	-	10	5.0	1		10	4.0	-	٠	10		├	U	15	- 15
MW-40	Ругене	ug/L.		U		10		U	υ	10		U	U	10		 	U	to	10
MW-41	1.2.4-Trichlorobenzene	ug/L.		U	\vdash	10		U	>	10		-	2	10		10	·U	10	10
MW-41	1.2 Dichlorobenzene	ug/L.	L	U		10		U	د	10			>	10		U	U	10	In
MW 41	1.3-Dichlombenzene	ug/L.	<u> </u>	U	\vdash	10	ļ	U	د	10		├	U	10		U	U	10	IO
MW 41	1.4 Dichlomben/ene	ug/L	<u> </u>	U	1-1	10		=	5	10		_	>	10	.	U	c	10	10
MW-41	2,2'-stay best I-Chloropropanc)	up/1.	<u> </u>	U		10		٧	=	10			>	10		U	=	10	10
MW-41	2.4.5-Tepchhorsphoust	ug/l.		U	1	25		U	2	25			٦	25	<u> </u>	U	٧	25	25
MW-41	2.4,6-Teachhorophenol	ug/L.		U		. 10		U	U	19			>	10	<u> </u>	U	U	10	ta
MW-II	2.4-Dichlorophenol	ugs/L		U		10	L	0	2	10	L		>	10	<u> </u>	U	C C	10	to
MM: 41	2.4-Directly/phenol	ug/1.		U		10		U	2	10	L		3	30	<u> </u>	U	U	10	10
MW-41	2.4-Dimitrophenol	ug/L		U		25		υ	٥	25	L		3	25		U	U	25	25
MW-H	2,4-Denorosobucus	mg/L		U		10		υ	حا	to			٦	10		U	Ų	10	10
MW-41	2,6-Dimerotoliuciic	mg/L		Ü		fO		ับ	υ	10			>	10		U	U	10	10
IF-WI4	2-Chloromaphthalone	up/L		Ü		10		U	2	10			٦	10		U	U	10	10
MW-41	2-Chlorophenol	ug/L		U		10		U	U	10			٦	10		U	U	10	10
IF-WI4	2-Methy inaphthalene	wy/L		U		10		U	حا	(0			ح	10		٥	U	10	10
II-WM	2-Methy Iphenul	ug/L_		U		10		U	٥	10		Ι	د	10		U	U	10	10
NW-II	2-Nursamine	ug/L	L	Ü		25		บ	٥	25			ีย	25		υ	U	25	25
NW 41	2-Natiophenial	ug/L		Ü		10		U	U	10	L		U	10		Ü	U	10	Ю
NW 41	3,1°-Dichlorobenzadate	wg/L	 	Ü		la		U	U	10			v	10		υ	U	10	10
MW-11	3 Numanitane	ug/l.		U		25		U	υ	25			Ū	25		U	U	25	25
NW 41	4.6- Dimirro 2-methylphenol	up/L_		Ū		25		U	υ	25			Ü	25	 	U	U	25	25
MW 11	4- Bronughenyl-phenyletter	ug/L		Ü		10		U	Ü	10		_	Ü	10		U	Ū	10	10
NW-41	4-Chloro-1-methylphenol	ug/L	-	Ū		10		U	U	10		 	Ü	10		Ū	Ū	10	10
NW-41	4-Chlorosonlanc	ug/l.		Ü	_	10	1	U	U	10		1	Ū	10	 	T U	Ü	10	10
NW 41	4-Chierophenyl-phenyl ether	ug/L		Ü	-	10		Ū	Ū	10		_	Ü	10	 	Ü	Ť	10	10
MW 41	4- Methy Iphenol	ug/L	 	Ü	_	10		Ť	Ū	10	 	_	Ü	10		Ť	Ū	10	10
NIW 41	4-Naroundine	up/L	 	Ť	-	25	·	Ť	Ü	25	}		Ü	25		Ť	T U	25	25
MW 41	4-Naropicael	ug/L		l ŏ	-	25		Ť	Ŭ	25		┼──	Ü	25		۱ŭ	ΙŬ	25	25
MW-41	Accuplations	ug/L		۱ŭ	 	10	 	۱ŭ	Ü	10		┿	Ü	10	 	1 0	1 5	10	10
MW-41				1 5	-	10	 	l ü	Ü	10		 	Ü	10	 	10	Ü	10	10
MW-41	Accumplishylette	wg/L		15	-	10		۱ů	Ü	10	 	 	Ü	10	 -	10	10	10	10
MW-41	Anthracenc	we/L		1 0		10		Ü	"	10		╂	Ü	10		10	10		
	Benzotatanthrasene	ug/L.		Ü		10		١ ٠	۳	aı	 		Ü					10	10
MW-41	Bennikalpytene	uu/L_	}		1			1 5	1 0			┞—		10		U	U	10	la .
PIM-11	Benzisch) (bustandiene	wg/L	 	Ü	1—	10				10			U	10		Ų.	U	10	10
PIM-11	Henzoty,b.tiperylene	we/L	 	U	-	10	 	Ü	U	10	<u> </u>	₩-	U	10		Į Ū	U	10	10
11-W14	Benneth (fluoranthene	ug/L		U	-	10	 	L u	Ų	10		-	Ü	10		Ų.	U	10	10
PIM:11	bist2-Chioroethisky)methane	ug/L	<u> </u>	U		10	 	U	U	10		—	Ü	10		U	U	10	10
PIM-11	hist2-Chloroethyl) ether	ug/1.		Ų	-	10	 -	U	U	10	<u> </u>	!	<u>u</u>	10		Į v	U	10	10
MW-11	hisi 2-Ethy Menyl philialate	ug/L.	80	1.	 	NA		U	Ų	10		-	Ü	10		U	U	10	10
MW-41	ButyBen/yiphthulate	ug/l.		Ū		to		U	U	10		-	U	10		U	U	10	10
MW-11	Catharole	ug/L		Ü	├	10	 _	U	U	10		├ ─	U	10	<u> </u>	L U	U	10	10
VIM 11	Chrysene	up/L		U	_	10		Ų	U	10		 	U	10		U	Ū	10	10
PIM-11	Dr-n-harry spindhalate:	ug/L_		U	 	10		U	U	(0	 _		U	10	L	U	U	10	10
MM-11	Di-m-en, ty lphthalate	ug/L		Ü	1	10	 	U	U	(0		!	Ü	(0	L	L U	U	10	10
PIM-41	Dihenzo(ath)ambracene	wg/L		U	1	20	<u> </u>	U	U	10			2	10	<u> </u>	U	U	10	10
NW-41	Dihenzuluran	uy/L		U	1	10		U	Ü	10	L	<u></u>	٦	(0		U	U	10	10
NW-11	Destryphthalate	ug/L		Ü	-	16		U	U	10	L		Ü	to to		Ü	U	10	10
NIW-41	Directoriphehalase	ug/L	L	U	\vdash	10		U	υ	10			Ü	la la		Ü	U	10	10
MW-41	I-language-in-	uy/L		U	↓	10		U	υ	10			Ü	10		U	υ	10	10
VIM 41	Fluorene	wg/l.		Ü		10	·	U	U	10			Ü	10		U	U	10	10
MW-41	Hexachlorobenzene	ug/1.		Ū		10		U	U	10			υ	10		U	Ü	to	10
NW H	Hexachtorobutadiene	ug/L		U		10		U	ح	10			U	10		U	U	10	10
MW-II	Hexachioris yclopentatione	ug/l.		U		10		U	Ü	10			دا	10		U	U	10	10
MW-41	Herachloroethane	ug/l.		U		30		Ü	U	10			UI	10		U	U	10	10
MW-41	Indenot 1,2.3-adipyrene	ug/L		U		10		Ū	U	10			Ü	10		U	U	10	10
MW-41	Insphracon:	ug/L.	I	U		ta		U	U	10			u	10		U	Ü	10	10

[·	Event				Kroud .				Kvrat .				Event		lighed
Well	Amelyte	1)mits	Hamali	_	DO	Detect Limit	Rent	1.0		Detect Just	Result	2		Detect Limit	Kesek	14	DQ.	Petert Limit	Detection
	N Natrose de a-propylamine	ug/L		V.	1	10	-	U		to	ļ	-	>	10	L	U	υ	10	10
	N Nutroardiphenylamine	ug/L		U	├	10	<u> </u>	U	U	10		-	U	10		U	U	10	10
	Naphthalim	ug/L_		U	ļ	10		U		10		-	٦	10		l v	U	10	10
	Nambenzene	up/L	 	U		10		U	V	10		┡	٦	10		U	U	10	10
	Pentachhrophenol	ug/L.		U		25		U		25	L	_	٦	25	1	U	U	25	25
	Phenanthrene	- we/L		U	-	10		U	U	10		-	>	10		U_	U	10	10
MW 41		Jug/L		U	-	141	17			10	<u> </u>	-	ט	10	- 4	 	L.,	10	34
MW 41		up/L	ļ	1 0	├—	10		U	U	10		-	2	10	ļ	U	U	10	ta
MW-42	1,2,4-Trichlaresbutteress	well.		10	─	10		Ü	 "	10			0	10		U	U	10	10
	1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/L		Ü	-	10		Ü	l U	10			۳	10		U	U	10	10
	1.4-Du himmingsoch:		! -	Ι ΰ	 	10		Ü	Ü	10	 		Ü	10		1 0	U	10	10
	2,2'-oxybrs(1-Chloropropane)	up/L		۱۰ ۵۰		10		Ü	Ü	10			-	10		1-5	"	10	10
		الون		l ü	-	25	·	U	U	25			Ü	25		Ü	Ü	25	25
	2,4,5-Tru-blosophetod 2,4,6-Tru-blosophetod	we/L		1 0	-	k)		Ü	Ü	10		┢╼┥	Ü	10		Ü	+	10	10
			}	U		10		Ü	Ü	10			Ü	10		Ü			
MW-42		wg/L		Ü	\vdash	10		Ü	Ü	10	 -		0	10		U	U	10	10
	2.4-(hoseshylphenol			ᇦ	Н	25		۳.	Ü	25		┝┯┥	۳	25				25	25
	2.4 Dinterphenol	ug/L		10		10		ا تا ا	U	10		-	U	10	 	U	U	10	10
	2.4-Dentertobacter	ug/L	<u> </u>	10	-	10		10	U	10			Ü	10	 _	_			
	2,6-Ehmiltoteilusus	up/L	ļ	1 0		10		0	۳	16	}	┝╼┥	Ü	10		Ų.	U.	10	10
NIW 42	2 (histomaphehelene	up/L		Ü	┝┈┤	10		Ü	Ü	10	 -	┝┷┥		10		Ų.	U	10	10
	2 Chlorophenot	up/L		Ü	 	10		+ +	"	10		┝─┤	Ü	10		U	<u>u</u>		10
MW 42	2 Methylmaphthalene	w/L		1 0	\vdash			_		10		┡━┥	_		L	U	U	10	10
MW 42		ug/L		1 0	Н	10 25		U	U	25			٦	10		U	U	10	10
MW-42	2 Nationalities	Up/L		l ü	-	10		Ü		10		\vdash	-	25		U	U	25	23
MW-42	2 Neurophenia	ug/L		1 0		10	···		U	10	<u> </u>		U	10		U	U	10	ta
MW-42	1.1'-Dichlorohenzulusc	ug/L		U	-			Ü	2	25	ļ		2	10		U	U	10	10
MW-42	1 Nationalities	ug/l.			\vdash	25	<u> </u>	U	۲				٥	25	<u> </u>	U	۳	25	25
	J rs-Danotro- 2-morthylphicted	ug/L		U	-	25		U	۲	25	 		2	25		U_	2	25	25
MW-42	4 Hermophemyl-phenylether	ug/L		U	-	10		U	: =	10		\vdash	_	- 10		U	٦	10	10
	4 Chlore t-mothylphonel	ug/L.		U	\vdash	10		U	2	10		Ь		10		U	٦	10	10
	3 (Jefenemefter	ugh		Ų.	\vdash	10		C	=	10		┝	U	10		U	٦	10	10
	4 Chlorophenyl-phenyl ether	ug/L		U	┝	10		CC	= =	10		\vdash	=	10		Ų.	Ų.	10	10
MW-42	4 Methylphenul	ug/L		U	\vdash	25		۳	Ü	25	ļ	\vdash	2	10		U	2	10	H)
MM 43	4 Negrossites:	up/L		U	\vdash	25		Ü		25		-	ע	25		U.	2	25	25
	4 Negraphanud	wp/L	<u> </u>	 U	Ь	10		-	c c	10		\vdash	נט	25		יי	3	25	25
MW 42	Acenaphilicue	ug/L				10			_	10		-	۳	10		U	נ	10	10
MW 42	Avenaphthylene	wg/L		U	<u> </u>	10		U	- C	10			2	10		U	>	10	10
MW 42	Anthracene	wg/L.		1 5	\vdash	10		Ü	۳	10		-	: כ	10		U	-	10	10
	Hetavota latethracene	mp/L			 									10		U	=	10	LIO .
	He to setal pyrens	ug/L		"		10		U	۳	10 to			: د	10		Ü	U	10	10
	He need billion and hence	ug/L		1 5	\vdash	10		Ü	c c	10		\vdash	: =	10		Ü	2	10	16)
MW-42	Henritg.h.iperylene	- Jupil		U	\vdash	10		7	5	10	 	\vdash	٦	10		Ų	U	10	10
MW-42	Henrick (Normanihone	w/L		U	$\vdash\vdash$	10		Ü	U	10		┝╼┥	: =	10		U	: د	10	10
	tory 2-C'idonoscaluszy inneritane	ng/L		U	\vdash	10		+	ט	10	 		U	10	L	U	>	10	10
	has 2-Cidentically it effect	wy/L	40	+-	⊢			Ü		10		$\vdash \vdash \vdash$: c	10		Ų.	=	10	10
	msq2-Eshythe sylsphubalate	wg/L	- 10	+ ;	\vdash	NA IO			2	30		⊢⊸	=	10		U	-	10	10
	Hutythetery liphthulate	-1/L		_	\vdash			Ü	יב			⊢⊣	=	10		U	<u>ا</u> د	10	10
	Carterule	ug/L		Ų	} ⊸	10		2	יי	10		\vdash	U	10		U	2	10	IO IO
	Chrysene	ug/L	<u> </u>	Ų.	⊦ -1	10		۳	۳	Jo.			.	10		U	Ü	10	10
	13-m-butylphabalate	we/L		Ų	} -d	10		<u> </u>	Ų	10		 	U	10		U	U	10	10
	1 h-m-encty liphobalate	ug/L		Ü	├	19		۳	יכ	10		├	U	10		U	=	10	10
	() Alternation in International Control	up/L		U	\vdash	10		۳	יי	16		\vdash	5	10		U	U	10	10
	(Nessential as	1991	<u> </u>	U	\vdash	10		Ų	יי	10		\vdash	: =	10		U	C	10	10
	i Activy liphishadate	wg/L.	<u> </u>	U	\vdash	10		ב	Ü	10		μЩ	Ü	10		U	U	10	10
	i innestry lphilialate	up/L	<u> </u>	U	 	10		Ü	2	to		 	<u> </u>	10		U	=	10	10
MW 42	I humanth ne	ug/L		U	\vdash	10		U	زد	10	ļ	┝	U	10		U	ט	10	10
MW-45	Highrene	up/L.		U	$\vdash \vdash$	10		۳	U	10		┝╼┩	U	10		٧	c	10	10
	He say historien/ene	. 1/gru		U	⊢⊣	10		<u></u>	C .	10		Ι	U	10		U.	U	10	to
MW 42	He was blotobutadone	uye/1.		U		to		U	U	10		LI	Ų	10		Ü	U	10	10

, ,

1

NIW 42 1 NIW 42 1 NIW 42 1 NIW 42 7 NIW 42 7 NIW 42 7 NIW 42 8 NIW 42 8	Analyte Te aachiotocychopentadiene He aachiotocychopentadiene microst 1, 2, 3-edipytene toplistone	Units ug/L ug/L	Hesult	1.0	Event DQ	Detect f.lmit	Kenuit	I.Q	Event	Detect f.imit	Hensk	14	Event				Event		Highest
MW 42 I MW 42 I	le sachiorocyclopentatiene Nexachioroethaue micnor L.2, 3-edipyrene tapliorone	ug/L	Result	_	DQ	Thirtact 1 Tables													
NIW 42 1 NIW 42 1 NIW 42 1 NIW 42 7 NIW 42 7 NIW 42 7 NIW 42 8 NIW 42 8	Hexachioroethane intenor1.2,3-edipyrene saphiorone								_		- RAMAN	~	υ <u>ν</u>	Detect Limit	Kessik	1.0	DQ	Detect 1.ismit	Detection
SIW 42 1 NIW 42 1 SIW 42 7 NIW 42 7 NIW 42 7 NIW 42 7 NIW 42 7	indenor 1.2,3-edipyrene scipliotone	Ug/L		U		10		5	U	10	 	├		10		U	U	- 10	10
NIW 42 1 NIW 42 7 NIW 42 7 NIW 42 7 NIW 42 8 NIW 42 8	septimiene			U		10		י	U	10	 		U	10	 	U	Ü	10	10
NIW 42 P NIW 42 P NIW 42 P NIW 42 P		ug/L		U		10		ט	U	10		├ ──	10	10	 -	U.	U	10	10
MW 42 P MW 42 P MW 42 P MW 42 P		ug/L		Ü		10		10	U	10 .		-	10	10	 	U	U)	10	
MW 42 P MW 42 P MW 42 P	N Nutroso-di-n-propylamine	ug/L		Ū		10			U	10	 	 -	10	10	 	1 0		10	10
MW 42 F	N. Nitrosodopheny Lanune	ug/1.		Ü		10		۲	U	10		-	 	10		_	U		10
MW 42 F	Naphilialene	ug/L		U.		10		2	U	10		}	ᆣ	10		U U	U	10	10
	Nurobcurene	<u> </u>		1 5	├	25		۳	Ü	25		├	Ü	25	 	l U	l ü	25	25
	Pentachterophenol	uy/L		"	} 	10		۳	Ü	10		├	۳	10	 	Ü	Ü	10	10
	Tenanticae	ug/L		 ₩	├ ──{	10	50	<u>ئ</u> ا	-	10	 	 	Ü	10	- 41	{ - ŏ -		10	41
	Paceul	wp/L wp/L		ϋ	·	10	<u> </u>	ψ	U	10	}	┼	Ť	10		U	ΙÚ	10	10
	1,2,4-Trichlorobetezene	ug/L		l	. →	10		Ü	Ü	10		U	Ť	10	 	۱ŭ	۳	20	20
	1.2-Diclibrobenzene	ug/L.	·	۲,	 - 	10		"	Ü	16		Ü	Ü	10		Ιŭ	Ŭ	20	20
	3-Decidentifications	ug/L		Ü	 	10		Ü	Ü	10		t ü	Ü	10		10	ιŭ	20	20
	1.4-Dichlorobenzene	ug/L		Ü	 	10		ŭ	Ü	10	 	Ū	Ü	10		Ü	Ü	20	20
	2.2"-oxybed f-Chloropropate)	up/L		-	┝╾┦	10		Ü	5	10		Ü	Ť	10		1-6	10	20	20
	2.4.5-Trichlorophenol	up/L		Ü	$\vdash \vdash \vdash$	25		บ	Ü	25		Ü	Ť	25	 	Ιŭ	ΙŬ	50	50
	4.6-Ten blorophenol	ur/L		Ü	-	10		-	Ü	10		υ	Ŭ	10	 	l ü	Ü	20	20
	A Oscidorophenol	ur/L		Ü		10		Ü	Ü	10		Ü	Ŭ	10		۱ŏ	Ü	20	30
	.4 Dinashylphenol	ug/L		Ü	\vdash	10		٦	Ü	10		Ü	Ü	10		۱ŭ	Ü	20	20
	.4 Dentrophenol	nk√r		Ü	├──┤	25		Ü	v	25		Ü	Ť	25		Ü	Ū.Ū	50	50
	4 Dissirotoliume	up/L		Ü	 }	10		Ü	Ü	10	 	Ü	Ü	10		l ü	Ü	20	20
	6 Dentisolation	up/L		υ	-	10		Ü	Ü	10		Ü	Ü	10	 	Ť	Ü	20	20
	Chloronaphthalene	mkyr.		υ	┝─┤	to		Ü	ŭ	10		Ü	Ü	10		Ť	Ü	20	20
	-Chlorophenol	uy/1.		-	├	10		Ü	Ü	10		Ŭ	Ü	10		υ	Ü	20	20
MW 41 3	Methylnaphthalene	up/L		Ü	}}	10		Ü	ü	10		Ü	Ü	10		Ι ŏ	Ü	20	20
MW 41 2	Methylphenol	up/l		Ü		10		Ü	Ü	10		Ť	Ü	10		T U	Ü	20	20
MW 41 2	Naroandine	up/L		υ		25		C.	Ü	25		Ü	۲	25		10	Ü	50	50
MW 41 2	Nitrophened	ug/1.		Ü	-	10		Ü	Ü	10		10	Ü	10		T U	Ü	20	265
	3.V-Dichlorobenzidine	ug/L		Ü	- 	10		Ü	Ü	10		 "	Ü	10		Ü	Ü	20	20
	Nationaline	ug/L		Ü		25		Ü	Ü	25		Ü	Ü	25		۱ŏ	Ü	50	50)
	A-Dimerro-2-methylphenel	ug/L		Ü	-	25			Ü	25		Ü	Ü	25		Ü	U	50	50
	Bronophenyl-phenylether	ug/L		Ü	-	10		Ü	Ü	10		Ü	-	10		Ŭ	Ü	20	20
	Chloro 3-methylphenol	ujr/L		ÿ	┝╼╅	10		Ü	Ť	10		Ü	Ü	10		Ü	Ü	20	20
	Chlerounding	ug/t.		Ü	-	10		Ü	Ü	10		Ü	Ü	10		Ü	ŭ	21)	20
	Chlorophenyl phenyl ether	ug/L		Ü	\vdash	10		Ü	Ü	10		l ŭ	Ü	10		Ü	Ü	20	20
	Methylphenol	uge/L		Ü	-	10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	20	20
	Nationaline	ug/l.		Ü	┝─┤	25		Ü	Ü	25		Ť	10	25		10	Ü	50	561
	Nanophrad	ug/L		Ü	\vdash	25		Ü	Ü	25		1 0	Ü	25		lΰ	Ü	50	50
	Accomplainme	up/L		Ü	┝─┤	10	<u> </u>	Ü	Ü	10		ان ا	Ü	10		Ŭ	Ü	20	20
	Accompletiylene	ug/l.		Ü	\vdash	10		Ü	Ü	10		Ü	Ü	10		Ť	ü	20	20
	Anglasecon	ug/L		Ü		to to		٦	Ü	30		Ü	Ü	10		Ť	Ü	20	20
	Bennijakahilitasene	up/L		Ü	1	10		U	ů	10		U	Ü	10		Ü	Ü	20	20
	the mental projections	ug/l.		Ü	1	10		Ü	ŭ	10		Ü	Ü	10		Ü	Ü	20	20
	lenzeth Higgstanthene	ug/t.		C		10		Ü	Ü	10		Ü	Ü	to		Ü	ن ا	20	20
	learn(g.h.)perylene	uji/l.		Ü	\vdash	10		U	Ü	10		Ü	Ü	10		Ü	Ü	20	20
	Benziel Hlustanihene	ujt/L		٦	 	10		Ü	Ü	10		Ü	۲	10		Ũ	,	20	20
	use 2-C'hilorenetheray kuerhane	uje/1.		U		10		U	U	10		Ū	-	10		Ü	Ü	20	20
	vs(2-Chloroethyl) ether	uş/L		5	\Box	10		Ü	Ü	ţO .		Ü	٦	10		Ŭ	Ü	20	20
	not 2-fathy the cyliphthalate	ujt/L		C		10	3.0	-		10		T -	Ü	13		Ü	Ü	20	20
	Butylinen/ylphthalate	uy/L		Ü	\vdash	10		Ü	U	10		U	Ü	10		Ü	- -	20	20
	Carbazole	wg/L		Ü	\vdash	10		Ü	Ü	10		Ü	Ť	10		Ü	٦	20	20
	Tury with:	ug/L		-	 	10		Ü	Ť	10		Ü	Ü	10		Ĭ	Ü	20	20
	Juan-but siphthalate	ug/l.		Ü		10		Ü	Ü	10		Ü	Ü	10		l ii	Ü	20	20
	31-16-cm tylphilhadate	uy/L		٥		10		U	Ü	10		Ü	۲	10		Ü	Ü	20	20
	bhenzota.htanthracene	ug/L		C		10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	20	20
	Shonzoluran	ug/L		C		10		U	Ü	10		Ü	Ü	10		Ť	Ü	20	20
	Dethylphthalate	uy/t.		U		10		Ü	Ü	10		Ŭ	Ū	10		Ĭ	Ü	20	20
	Diments (philialate	ujr/L		٦		10		-	J	10		Ü	Ü	10		Ū	Ü	20	20

					B)														
W-E		E-hadan	Russia	100	Event	Dotect Limit	Zonak	LQ	Event		Rossit	TIA	Event	Detect Limit	Hemil	10	Event	Detect Limit	Highest Detection
	Anulyte			U		10		Ü	₩	10		"		50	Remove	177		20	30
	Fluoranticus	ug/L	 	Ü		10		Ü	"		 	Ü	Ü	10		1 5			
	I ha denc	well	 _	Ü	-	10		Ü	"	ia		Ü	U	10				20	20
	He sas blootheurene	ug/1.		5		10		Ü	1	30		"	1 0	10		U	Ü	20	20
	He nachimelutudiene	- WL														U	Ü		201
	He sachhovs yelopentadiene	ug/L		U	 	10		Ų.	2	10		U	U	10		Ų.	Ų	20	20
	He suchiomedium	up/L	└	U	\vdash	10		C	٥	10		Ü	UJ	10		Ų,	Ü	20	20
	Indend 1,2,3-cdipyrene	upt	L	U	ш)()		U	2	10	<u> </u>	U	U	10		U	U	20	30
	l'scaphinicane	upl		U	\vdash	10		U	U	10	<u></u>	U	U	10			U	20	20
	N. Nameras-de-a-propylanum;	upl		U	-	10		۳	2	10	L	U	U	Ю		U	U	20	20
MW-11	N-National Applicacy Laurence	ug/l.	L	U	-	10		c	2	lo lo		U	U	10		U	Ū	20	20
MW-11	Naphthalene	ug/L				10		U	U	10	<u> </u>	Ų	L.U.	10		U	U	20	20
MM: 13	Numbersette	ug/L_		Ų		10		=	=	10		U	U	10		U	U	20	20
VIN. 41	Ps otachker-phaned	wg/L		٦		25		U	2	25		U	U	25		U	U	50	50)
MW-11	Physical discourse	wg/L		٦		10		υ	٥			U	U	10		·U	U	20	20
MW. 43	Permit	up/L		U		10	10			10			U	12	75			30	75
MW-11	Pyrotte	ug/L		٦		10		U	3	to		Ü	Ų	10		U	U	20	20
	1.2.4-Tradition/en/enc	ug/L		U		10	7 44		5	10		٥	U	10		U	Ü	10	10
H-WIA	1.2 Dichlorohenzene	ug/L		2		10			9	HQ		Ü	Ü	10		U	V	10	10
H-WIA	1,3-Dichlorohenzene	ug/L		5		10			5	\$10		υ	U	10		U	Ū	10	10
	1.4 Dichbertheitzuc	ug/L		3		10			0	50		Ü	U	10		v	U	10	10
MW-44	2,21-usyberi f-Chiereprepater)	ug/L		U		10			Ü	10	L	Ų	U	10		Ų	U	10	10
MW-H	2,4,5-Trachhomphemid	up/L		Ü	Γ^{-1}	25			UJ	25	T	Ū	U	25		Ü		25	25
MW-44	2,4,n-Trachharophenol	wg/L		U		10			נט	10		U	U	10		Ü	Ū	10	10
NW-44	2,4 Dichlorophenol	ug/t.		Ū		10			Ü	10		Ü	Ū	10		Ū	Ü	10	10
MW-41	2.4 Dimenhylphenid	wert		Ü	-	10		-	Ü	100		Ť	1 0	10	 	Ť		10	10
NW H	2.4 Damerophend	ug/L	 	Ü		25		 	Ü			Ü	Ιŭ	25		Ü		25	25
NW-44	2,4 Dangrotolucne	ug/L		Ü	-	10			Ü	10	 	Ť	Ü	10		۱ ٽ	۱ů	10	10
				Ü		10			Ü	10	 	Ť	۱ ٽ	10		1 0	1 0	10	10
MW-44	2.6-Dimerotolische	we/L		U	-	10		_	5	10	 	Ü	10	10		1 0	l ü	10	
MW-H	2 Chlorosophthalene	w/L		U	-	10		 	유				1 0						10
MW-H	2 Chlorophenol	up/L							į	10		U		10	 	ע [ţn	10
MW-44	2 - Mothy Inaphthalenc	wg/L	 _	V	-	10		-	2	10		U	U	10		U		10	10
MM-11	2. Methylphemil	- wel	L	U		10			٧	10		U	U	10		U	U	10	10
MW-44	2 Normandine	wg/L		U	-	25		-	à	25		U	U	25		U	U	25	25
HW-H	2-Natrophenol	wg/L	<u></u>		_	10		└	3	10	<u></u>	۳	U	10		Ü	U	10	10
MW-41	1,1'-Dichiondenedine	-Jupi		٦	$ldsymbol{}$	10			2	10	L	v	U	10		U	U	10	10
MW 44	3- Nanuanime	wg/L		٦		25			3	25		Ü	U	25		U	ט	25	25
MW-44	4.6-Dinimo 2-methylphensi .	we/L	<u> </u>	2	-	25			خ			Ü	U	25		U	U	25	25
MW-44	4. Hesmaphonyl-phonylether	- Jupi		٦		10			٥	10		٦	J	10		U	U	10	10
	# E'blute-3-methylphenol	Wg/L		٦		10			2	10		5	U	10		U	U	10	Ю
MM: 41	4 Chiromolone	Jan J		٦	لــــا	10		تتا	>	10		٥	U	10		U	U	10	10
HW H	4-Chlorophonyl-placnyl other	up/l.		7	لسا	10			>	į (c		9	U	jë.		U	U	10	10
HW. 44	4 Methylphend	ug/l.		٦	لــــا	10			2	10		٥	U	10		U	U	10	Ю
MW-44	4 Namualine	ug/L		٦		25			٥			U	U	25		U	Ū	25	25
MW-44	4 Napophemi	- WAL		٦	Ш	25			۳	25		Ü	נט	25		U	U	25	25
MW-41	Acceptations	ug/L		U		10			U	10		U	V	10		U	U	+0	10
MW-44	Accuaptably lene	wy/L		U		Ю			5	10	L	Ü	U	16		U	U	10	10
H-W14	Anthrasenc	wg/L		٥		10			2	10		Ü	U	10		U	v	10	10
MW-H	H-norta) anthrasens	-w/L		2		10			2	10		Ü	U	10		Ū		10	10
MW-44	Henridalpyrene	ug/L	i .	U		10			2	10		Ü	U	10		Ü	Ü	10	10
MW-41	Henry all hitter gantheter	ww/L		υ		14			10	10	J	Ü	Ū	10		Ť	Ü	10	10
	the needing in a tigate phone	ug/L		U		140			7	10		Ť	۱ij	10		۱ů		10	10
MW-H	Bennet Blandatiliene	ug/L		Ü		10		\vdash	-	16		Ť	Ü	10		Ü	Ü	10	10
H-WIA	boy 2-4 Inhoughus y meeting	mgt.		Ü	г	10		\vdash	Ü	10		Ť	Ť	10		Ü	1 5	10	10
	head 2-4 Tabases alloys a effect	w/L		Ü	\vdash	10		\vdash	10	1 16		۱ ٽ	Ιŭ	10		Ü	 ŏ	10	10
MW-H	hest 2-Ethyllicay i tobehalate	- Jugar		7	Н	10		_	۱ř	10	t	Ü	l ü		15	 ~	ات-ا	10	15
MW-H	Herytheary lebels late	ug/l.		0	$\vdash \vdash$	10		$\vdash \vdash$	₩	1 14	 	Ü	Ü	10		-:: -	 -		
				5	$\vdash \vdash$	10		\vdash	7	100	 	U	_			l "	1 4	10	10
NW-H	Carkazok	<u>•µ∩.</u>		1	$\vdash \dashv$	10		⊢⊣	"			_	11	10		2	U	10	10
MW-H	Chrysche	ug/L	<u> </u>	"	┝╼┥	10		┝─┤	۳-	10	—	U	U	10		U	U	10	10
HW-H	l te se-hossylphobasiate	wjr/L			├			\vdash	_	10		2	U	10		٧	U	30	10
5 455/ 1 L	Dr nowlyhphulate	wg/L	1	U	i I	10		1	Ų	10		U	lυ	10		U	Ū	10	10

		,															Event -		(10.4)
					HVest I	Detect Limit	Result	I IQ	Event 2 DQ	Detect Limit	Result	140	Event	()wheet J.lmik	Result	IQ	DQ	Detect (,imit	Highest Detection
Well	Anulyte	Units	Kennik	1.0	1.7		Result	1.7		10		"	U	10	None	3	Ü	10	10
	Dibenzoja liganthracene	ug/L		U		10	<u> </u>	1	-	10		Ü	Ü	10		U	1	30	10
MW-44	E Selfector en an	ug/L			╌┤				UJ	10		Ü	Ü	10		Ü	Ü	10	10
	Dethylphthalate	ug/L		U	├ ─┤	10			0)	10		U	10	10	90	- '-	۱+	10	10
MW 44	l 3selethy lplothalate	ug/L		U		10			"			۳,	Ü	in in	90	 '	1	10	
MW-H	t-lunitanthene	up/L		U		10		1		ķ:		10	10	10		U	Ü		10
MW-44	Hustene	ug/L	ļi	U		10		1	9	10			_					10	
VIM 11	Hexachlorohenzene	ug/L	!	U	├ ─┤	10			<u>.</u>	10		Ų.	Ü	10		Ų	Ü	10	10
	Hexachioribulations	- Juger	i	υ		10			2	10		U				U	2	10	10
	Hexachloricyclipentadiene	ug/1.		U	-	10)		-	-	10		U	U	10		U	U	10	10
	Hexachloroethane	W/L		U	_	10		_	5	10		U	U	10		U	U	<u>lo</u>	10
	Indenot1,2,3-edipyrene	ug/L		U	1-1	10	<u> </u>	-	۲	10	}	U	U	10		U	U	10	10
MW 44	Propheron:	ug/L		U	_	10			=	10		U	U	10		U	E	10	10
	N-Nurrendescriptopylanene	ug/L		U	1—1	10			٦	10		U	U	LO .		U	U	10	10
MW #	N-Nativisidophenylatione	wg/l.	L	U		10		\Box	٦	10		U	Ü	10		Ü	E	10	10
MW-44	Naphthalene	ug/L		U		10			ے	10		U	υ	10		U	U	10	10
MW-H	Netrobesizette	ug/t.		U		10			U	10		Ü	U	10		U	U	10	30
MW-H	Pentachkrophenol	ug/L		U	لتسا	25			7	25	L	U	U	25		U	2	25	25
MW-44	Plenumenc	ug∕l.		U		10			٦	<u>'</u>		U	U	10		U	U	10	10
MW-H	Photod	ug/L.		U		10	3.5			N,		1	U	10	Ξ	1		10	11
MW-44	Pyrene	ug/L		U		10			5	10		U	U	10		U	U	10	10
MW-41	1,2,4-Trichlombenzene	ug/L		υ		20			υ	20		U	Ü	20		Ü	U	20	20
MW 41	1,2-Dichlorohenzene	wg/L		U		20	4.0			NA	2.0	1		20	50		1	20	20
MW-45	1,3-Dichlorohenzene	ug/L.	1	v		20			-	20		U	Ü	20		U	U	20	20
MW-41	1,4-Dudskoohenzene	wg/L	1	U		20	- 11			NA ·		U	U	20	3.0	1	1	20	20
MW 15	2,2'-oxybis(1-Chloropropane)	ug/L	 	Ū	† ¬	20	95			NA NA		U	U	20	70	1	7	20	20
NW 41	2,4,5-Trichhoropheani	ug/L		Ū	1-	50			v	50		U	U	50		U	U	50	50
MW-45	2,4,6-Trichlorophenol	wg/L		Ü		20			Ü	20		U	Ü	20		U	Ū	20	20
MW 45	2.4-Dichlosophemol	we/L	 	l ü	1-1	201		1	۳	20		١ū	Ť	20		Ū	U	20	20
MW-15	2.4-Dimethylphenol	egt/L		Ŭ	1	20		1	Ü	20		Ť	Ιř	20		Ü	Ū	20	20
MW 45	2.4- Duntrophenol	ug/L		Ť	1	50		1	Ü	50		1 0	Ιŭ	50		Ü	۱Ť	50	50
MW 45	2.4-Dustrotolsene	wg/L		l ü	-1	20		 	۳	20		ان ا	Ü	20		Ιŭ	10	20	20
MW-45			 	l ö	1-1	20	 	 	ΗÜ	20		۱ ٠	Ιŭ	20		l ŭ	Ü	20	20
MW 41	2.6-Dinatrotolisene 2 Chlorosophilalene	we/L		Ü	1	20	 		7	20		ΙŬ	10	20		Ü	l ü	20	30
		ug/L	 	1-5	-	20		 	10	20	(10	Ü	20		ŭ	U	20	20
MW 45	2 Chlorophenol	we/L	40	 		NA NA	50	 	۳-	NA NA	7.0	 	+	20	5,0	1 5	1-5-	20	20
	2 Methylmaphthalene	we/L			-		3"	-	 	20	- /.9		 	20	3.33	_	1:		
MW-45	2 Methylphenol	ug/L		U	-	20	 	 	U			Ų.	U			U		20	20
MW 43	2-Nitroantine	ug/L		U	-	50	 		٦	50		<u>u</u>	U	30		U	U	50	50
MW-15	2- Nitrophenol	ug/L		U	ļ	20		-	>	20		Ų	U	20		U	U	20	20
MW-15	1.1'-Dichlorobenzidine	<u> </u>	Ļ	U	\vdash	NA NA		-	U	20		T <u>u</u>	U	20		L U	Ų.	20	20
MW 41	1-Nationalistic	up/L		U	├	50		₩	U	50		ļ.	U	50		U	U	50	50
MW 45	4.6- Dimitio- 2-inclinylphonol	ug/l.		U		50	——	-	U	50	 	Ų	Ų.	50		U	U	50	50
MW 45	4 Bromophenyl-phenyletter	w/L	 	U	 	20)		-	U	20		Ų.	Ü	20		U	U	20	20
MW 45	4-Chloro I methylphemi	ujt/L	ļ	Ų.	├ ─┤	20	 _		Ų	20		l u	Ü	an an	 _	U	U	20	20
MW 45	4 Chiercantine	ug/L		Ü		201		 	٦	20	 	ļ <u>ų</u>	U	20	ļ	U	U	20	20
VIM: 11	4 Chlorophenyl-phonyl other	ug/1.		U		20	 	+	V	20	 	Ų	15	30		U	U	20	20
MW-45	4-Methylphenel	<u> </u>		U	} -∤	20		├	Ų.	20	 	Į.	U	20		U	U	20	20
MW-45	4-Nationalities	we/L		Ü		50			U	50		U	U	50		Ü	U	50	50
MW 45	4-Nussephenes	ug/L		U	↓	50		 	U	50		U	U	50	<u> </u>	U	U	50	Sit
MW-45	Acetaphiliene	- NP/I		U	1	20		-	U	20	 	U	U	20		U	Ľ	20	20
MW-45	Accauphilylese	up/L		U	↓	20			U	20		U	U	20		U	U	20	20
MW-11	Amfitacenc	wp/L		U	1	20		├	U	30		U	V	20		υ	U	20	20
MW-45	Benzo(a)ambracene	wg/L		U	1	20	<u> </u>	 	U	20	 	U	U	20	<u> </u>	U	U	20	20
MW 45	Benzotatpyrene	ug/L_		U	1	20	<u> </u>	╄	U	30		υ	U	20	ļ	U	U	20	211
MW-15	Benziehilungathene	ug/L		U	↓ ↓	20		₩	٦	20		U	U	20		U	U	20	20
MW-45	Benzu(g.h.)perylene	ug/L		U		20			2	20		U	Ü	20		U	U	20	20
MW-45	Henzii(k)Hussanthene	ug/L	L	U		20			٥	20		U	Ū	20		Ü	U	20	20
MW 45	best 2-Chiercethoxy methane	ug/L.		U		20			U	20		U	U	20		Ü	υ	20	20
MW-45	bis(2-Chloroethyl) ether	ug/L	70	1		NA	14			NA	8.0	1		20	11	1	1	20	20
114.41	bost 2. Estry the ny hiphilialanc	ug/L		U		20			ט	20		12	U	4.0		Ü	U	20	20
MW 45	Hutylben/ylphihalate	ug/l.		Ü		20			U	20		U	U	20		Ū	U	20	20

March Marc						V				e e e e								No.		10000
NY A Part	NA	A mustantin	93-4-	-	110	Event .			116			-	110			Manufi	110			llighed Detection
March Control Section Control Contro						+			1.2											20
Six Or 1						+			-			 								20
Section Sect				 		_			1-			 				 				20
West Description West				}		1-			1			 				 				20
West West				1		 			1			 				 				20
W. A. Description Sept. U D D D D D D D D D					Ü	1	30			5	20									20
West Description West	MW 45			l	U	1	20			5	20		Ū	Ū	20		Ü	U	20	20
West Process Section					U		20			5	20	T	U	Ü	20		Ü	U		20
Windows Wind	MW-45	Elgoranthene	up/L		Ų		20			J	20		U	U	20		υ	U	203	20
Section Sect	NW-44	Flywete	up/L		٦		20			٥	20		U	U	20		ΰ	U	30	20
1874 18 18 18 18 18 18 18 1	MW-45	Herachlotohonzene	up/L		_					_			U				υ	L U	20	20
1971-8-1 1971-8-1	MW 45	Figure More installenc															IJ	_		20
Mile Mile																				20
Section Sect						_						<u> </u>	_				_			\$0
Second Color 1985						1			╌											20
Montemorphysylames						├ ──			}											35
Min Min				 		-			 			 				 				20
Windows Warf				 	۳	╁╼┤		110	├ ─┤	۳		1-12-	-"-ا	۳-		 	۳	┝╩┥		30
SWA 60 SWAMS AND PROPRIESS SWAMS AND P				 ~-		1-1		110	╂═╌┤	 -		141	 	 -		00A/	 	ا ا		140
Second S				 		 			╆╌┤			 	_			 				50
No. 10 No. 10 No. 10 No. 12 N						1-1			-							 				20
1966 1966				41	<u> </u>	\vdash		32	\vdash	<u> </u>		19		<u> </u>		50	├~	┝╩╢		50
1.5 1.5					<u> </u>					U				u			-			20
13-10-16-16-16-16-16-16-16-16-16-16-16-16-16-						_			U							 				10
1.5 Deck before services 1.5 Deck before ser					Ü		10		Ü	5	10						_			10
1.47 1.47					U		10		Ü	Ü	ĮØ.		Ü	Ü		 	_			10
NN - 60 2307-08-0-07-08-0-09-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0					U		10		U	U	10		U	Ü	10	t	-			10
May No. 2.5 The horsephanel sqrl. U 23 U U 25 U U 26 U U 16 U U U U 16 U U U U U U U U U					U		10		U	UI	10		Ü	2		t	_			10
Martin 2.4.5 Transburghment sqrl, U 10 U U					υ		25		U	ŲJ							_			25
Mile					υ		10		U	UI	10		U	2	16		5	U		lo lo
Mile					Ü		10		U	US	10		υ	2	10		5	U	10	10
MW-60 2-1 Deserved beautiful V V 25 V V 2	MW 46		ug/L		U		30		U	UJ	10		υ	υ	19		5	U	10	10
New No. 1	MW-4n	2,4-Dinarophenol	wp/L		٦		25		Ü				2	2	25_		U	U	25	25
New Architecture New Archite	MW. 40	2.4-Dingrinolactic	we/L										5	2	10		ט	U	10	10
MW do Chiang-planted mg/L U 16 U U 16 U U 16 U U 16 MW do Chiang-planted mg/L U 16 U U 16 U U 16 U U 16 MW do Chiang-planted mg/L U 16 U U U	MW-In	2,6-Danagouchache	we/L														υ	U	10	10
NW-4n 1-No-stephenolene	MW-46	2 Chierunaphilulette	wy/L										_				U	U	10	10
No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 1 No. 40 No	MW 40	2-Chlorophenol											_				_			10
No. 40 September Septemb	MW-4n	2-Meskylmophelmicae																		10
MV 40 1 Noticephened 10 10 10 10 10 10 10 1					_	1						L								10
NW - 40 1 \cdot 1 \c						 										<u> </u>				25
NW-to Neconstrict												 				 				to
NW - A Description Section						 						-	_							10
NV - A -				 -		┯┪						·								25
MW-86 Chloros-Leachbylphemed upl. U 10 U U 16 U U 16 U U 16 MW-86 Chloros-Leachbylphemed upl. U 16 U U 16 U U 16 U U 16 U U 16 MW-86 Chloros-Leachbylphemed upl. U U 16 U U 16 U U U U 16 U U U U U U U U U						1														10
MW-40 A Chiermanistee						1						 	_	_						10
MW-40 A Mechylphenal Mg/L N N N N N N N N N						1										 				10
MW-to 2 Metalphine Mg/L 3 M 3 M 3 M 3 M 3 M 4 Manualism Mg/L 4 M												·								10
MW - 6 A Nationalistics				3.0			NA		U			1		_			_			10
MW-40 Antengalament					V		25		Ü	UI	25		V							25
MW-4n Accessibilities ug/L U 10 U U U 10 U U U 10 U U U U U U U U U					U		25		Ü	UJ	25		U	Ü	25		Ü	U		25
MW-40 Accomplishy-kine ug/L U 10 10 U U U 10 U U U 10 U U U 10 U U U U U U U U U							10		ีย		10									10
MW-80 Anthraxes							10		U	UJ	10		U	U						10
MW-46					Ų		10		U		10		U	Ü	10		U			10
MW-10 Beneviabilitation M-40	Renordalanthracene	wg/L										U		10		U	U	10	10	
ATW-40 Removish Humanistance up/L U U 10 U U U 10 U U U 10 U U U 10 II II II II II II II II II II II II II	MW-40	Henzola)pyrene	up/L		U	\Box	10		U		10		U	U	10		U	U	10	10
	NW-In		up/L										U	U	10		υ	U	10	10
11 11 11 11 11 11 11	MW-46	Renzoty it aperylene	up/L											Ü	in		U	U	IO.	10
MA AD EXERCISE DESCRIPTION OF THE TOTAL OF T		Henzofk)Huorambene	ug/L		Ų		10		U	UJ	10		υ	υ	10		٥	U	10	10

	,								Event.				Event				Event		Highest
Well	Anulyte	Units	Hesult	1.0	Event	Dutest Limit	Result	110		Detect Limit	Remit	1.0	IN	Detect Limit	Heult	1.0	DQ	Detest Limit	Detection
	his(2-Chloroghusy)teachaic		PEND	Ü	1:2	10	Nesses	Ü		10		Ü		10	- KETON	"		10	10
MW 4n	bis(2-Chloroethyt) other	ug/L	30	۲,	 	NA NA	20	1	17	10	40	17	┝╩	10	30	۴-	۳	10	10
MW 40	box 2-bitiythexyliphihalate	w/L		Ü	-	10	<u></u>	Ü	Ü	10		T i	10	10		Ü	U	10	10
	Burythenzylphthalate	ug/L	 	Ü	 - 	10		Ū		10		Ü	Ü	10		Ü	Ü	10	10
MW 46	Catharole	ug/L	 	Ť	1	10		Ü	Ü	to	 	Ü	Ü	10		Ü	Ü	10	to
MW 40	Chrywin	ug/L		Ü	1	10		Ιů	Ü	10		Ü	10	10		Ü	Ü	10	10
MW 4n	Di n-bury iphthalate	ug/L		Ü	1	10		Ü	UI	1,1		Ü	Ü	10		Ť	Ü	10	10
MW In	Den exploithelate	ug/L		Ü	 	10		Ü	Ü	10		Ü	Ü	10		T	Ü	10	iö
MW 4n	Dihenzista triamba acene	ug/L		Ü		10		Ü	Ü	10		Ū	Ū	10		Ü	Ü	10	10
AIW 40	Othenzoiuran	up/L		U		10		Ü	UI	10		U	U	to		Ü	U	to	10
MW-4n	Decity lphilalate	ug/L		U		10		U	UJ	10		Ū	U	10		Ü	U	10	10
MW-40	Directly (philiplate)	ug/L		Ū		10		v	v	10		U	Ū	10		Ü	U	10	10
A1W-46	Pharandene	ug/l.		U		10		U	U	10		U	U	10	· · · · · ·	Ü	Ü	10	10
MW-4n	f lunenc	up/L		Ü		10		Ū	Ü	10		U	U	10		U	U	10	10
MW 4n	Hearthornbewere	Wg/L		U		10		U	U	10		U	U	10		-	U	10	10
NIW In	Hennehlereitstadiene	up/L		5		10		U	W	10		U	U	10		10	U	10	10
AIW 4n	Hexachhorn, yekipentadiene	ug/l.		7		10		U	U	10		U	U	10		2	U	10	10
MW-46	He nachloriethane	ug/L		5		10		Ü	UI	10		U	U	10		U	U	10	10
MW-46	Indenet1.2.3-ed/pyrene	up/L		٧		10		U	UJ)0		U	U	J6)		U	Ü	ta	10
MW 40	fraphinists	wy/L		5		10		V	נט		L	U	U	10		Ü	U	10	10
NW-40	N-Numer-de-a-propylamanc	wg/L		٦		10		Ü	ĹŰ	10		U	υ	10		2	W	10	10
	N-Nussmalsphenylandne	uy/L.		5		10		U	W	10		U	U	10		υ	Ų.	10	10
MW-40	Naphthalene	ug/L		U		10		U	UJ	10		U	U	16		5	Ü	to	10
MW-40	Narohenzene	wg/L		C		10		U	נט	10		U	U	10		5	U	16)	10
A1W40	Pentachlarophenol	wy/L		5		25		U	U	25		ט	U	25		2	U	25	25
MW-46	Phenantuese	ug/L		٦		_10		Ü	3	10		U	U			دا	Ü	10	10
MW-40	Phone	ug/L		U		10	8.0		-	10		U.	U	10		U	U	fO.	10
MW-40	Pyrene	ug/L.		5		ţo		U	נט	10		U	U	30		٥	U	10	10
MW-47	1.2.4-Traditorobearene	uy/L		Ü		10		5	J	10		υ	υ	10		U		10	10
MW-47	1.2-Dichlorobenzene	ug/L		Ų		10		٦	U	10		U	U	10		υ		10	10
MW 47	1,3-Dichlorobenzene	wg/L		U		10		5	U	10		U	U	10		U		la la	10
MW 47	1.4 Dichlorobenzene	Wg/L		U		10		>	2	10		U	U	10		U		10	10
MW 47	2.2'-eraybes(1-Chloropropane)	ug/L		U		10		ح	U	10		ט	U	10		2		10	10
MW-17	2,4,5-Trachlorophenol	w/L		C		25		٥	٥	25		υ	υ	25		ิบ		25	25
MW-47	2,4,n-Trichlorophenid	wy/L		<		10		>	5	10		5	U	10		บ		10	10
MW-47	2,4-Decisionsphenia	ug/L		U		10		>	5	16)		2	IJ	10		ט		10	10
MW-47	2.4- Directly/phenol	ug/L		2		10		>	7	10		U	U	10		U		30)	to
MW 47	2,4-Dummophenot	ug/L		U		25		٦	Ū	25		υ	U	25		۳		25	25
MW 47	2.4 Duntrotolucue	ug/L		5		10		٦	U	lo lo		U	U	10		٥		10	to
MW 43	2,6-Dimerotolische	ug/L		5		10		5	5	10		٥	3	10		٥		10	10
MW-47	2-Chlorosaphthalene	ug/L		U		10		2	٧	10		2	U	10		۲		10	10
MW-47	2 Chlorophemil	ug/L		<		10		٦	2	10		2	U	10		۳	لبا	30	10
MW-47	2-Mothy inaphthalone	ug/L		c	lacksquare	30		ح	c	10		5	Ü	10	ţa .	_	$ldsymbol{\sqcup}$	NA NA	ţo.
MW 47	2- Atothy lphenol	ug/L		U	 	10		2	-	10		2	U	10		v	 	10	10
MW-47	2-Netrosame	ug/L		U	┝━┩	25		Ü	U	25		Ų	Ų	25		Ų.	נט	25	25
MW 47	2-Netrophened	we/L		Ü	┝╼┩	10		ט	=	10		=	Ü	10		נ	┝╌┥	10	10
MW 47	3,31-Dictifornihenzaduse	ug/L		U		10		Ü	U	10		ני	U	10		U	┝╌┤	10	to
MW 47	1- Netresantline	uy/L		U	┝	10		Ÿ	v	25		- :-	Ų	25		υ	 	25	25
MW 47	4.6-Dimus-2-methylphenol	ug/L		U	├	25		2	> :	25		٥.	U	25		C	├	25	25
	4-Bronn-phenyl-phenylether	up/L		U	├ ──₩	10		U	U	10		۳.	Ų.	10		U	┝╼╾┥	10	10
	4-Chloro-3-methylphenol	ug/L		U				: د	2	10		۲	<u>u</u>	10		Ų	├ —-┤	10	10
	4-Cliferoantime	ug/L	 	U		10		, c	Ü	10		: c	U	10		Ü	┝╼═┥	10	10
	4. Chhuophenyt-phenyl ether	ug/L		U		10		2	U	10		Ų.	Ų.	10		Ų	├	10	Jo_
	4 Methy lphenol	ug/L		U		10		2	υ	10		2	U	10		Ü		10	10
	4 Nitzmantline	up/L		U	\rightarrow	25		Ü	ς.	25		U	2	25		U	اجيا	25	25
	4-Nitrophenel	uy/i.		٠		25		Ų.	U.	25		U	U	25		U	U	25	25
	Accuaptatione	ug/L		U		10		U	U	10		٠	U	10		_	\vdash	10	10)
MW 13	Acenaphiliylene	ug/L		υ		10		۲	υ	10		_	U	10		U	 	10	10
NIW 47	Anthracia	ug/L		U	\vdash	10		U	U	10		٧	٧	10		u	 	Ju	10
MW 47	Benzotaranthracene	ug/1.		U		10		U	U	30		2	L V	10		<u>u</u>	لـــا	10	10

					Event I				Event				Rivers!				L'runt		Highest
Well	Analyte	L/million	Harrie .	1.0		Detect Limit	Number	10	ÞŲ	Detect Limit	Result	10	DO	Detect Limit	Kennell	140		Detect Limit	Detection
MW:47		up/l.	_==	U		10		Ü		lo		U	U	N		10	1-3-	10	10
	Henzotapyrene			Ü	-	10		ŭ		10		10	10	10		10	₩-	10	10
MW 47	Henzethitlantanthene			Ü		10		ϋ		10		۲.	10	10	[_	├ ──		
MW-J7	Henrity hasperylene			10	1	10		ŭ	ان ا	10		l ü	10	10		٠	├ ┈	10	10
MW-47	Benzith Histrandicus	- Mark		Ü		10		Ü	Ü							V	-		10
MW-47	htsq2-Chiossethuny tenethane	w/L						Ü		10		U	U	10	<u> </u>	U	{	10	10
	ton(2-Chlorocthyl) ether	w/L		U	-	10				10	ļ	U	U	10		U		10	10
MW-47	hm(2-Eths Hursyllphthalanc	ug/L		Ü		10		Ü	U	10		U	Ü	10		1	U	3.0	10
MW-47		wy/L		U		10	·	U	U	10		U	U	10	<u> </u>	U		10	10
	Carbazok	- Jup/L		U	-	10		Ü	U	18	 _	U	U	10		U	↓	10	10
MW 47	Chrysene	mp/L	L	Ü		10		U	U	10	<u> </u>	U	2	160	L	U		10	10
MW-47	(h-a-hatylphakulute	ug/L		L <u>u</u>		10		U	2	10	Ĺ	U	U	10	<u> </u>	U	<u></u>	10	10
	De-m-enty iphehalate	w/L		U	'	10		U		18		U	U	10	<u> </u>	U		10	to
MW-47	Dihenzutu hiantin acene	-ug/L		U		10		2	U	10		U	U	10		U	<u> </u>	10	io.
MW-47	Districtural	we/L		U	i	10		د	U	10		U	U	10		U		ta	10
MW-47	1 Acatoy Iphabalanc	mg/L		Ū		10		ح	U	149		U	U	14		U		10	10
MW-47	Describylphakalair	7		U				U	U	10		U	υ)0		U		10	10
MW-47	f-hastateliene	w/L		Ü		10		U	U	10		U	U	10		ŢΨ		10	10
MW-47	I-ligaretic	wg/L		U		10		U	υ	10		ט	U	10		U		10	10
MW-47	He sachhantenzene	up/L		U		la la		U	U	10		U	U	10		U		10	10
MW-47	Hean blorobatadiene	144		Ü		10		Ü	Ū	IQ		Ū	Ŭ	10		ΙŪ	UI	10	10
MW-47	Hexachinos yelspentaliene	- Jun		Ü	\Box	10		Ü	Ü	10		Ü	Ü	30		Ιŭ	T -	10	10
MW 17	Herachhovethane	w/L		Ť	1	10		ŭ	Ü	10		t ü	Ü	10	·	۲ů	Τ-	10	10
MW 17	Indent(1,2.3-od)pytene	up/L		Ü		10		7	Ü	10		tΰ	Ü	10		Ü	 - 	10	10
MW 47		ug/L		Ü	-	10		Ü	Ü			1 0	Ü	14		10	+	10	10
	I-replaners:	up/L		Ü		10		Ü	Ü	10		1 5	Ü	10		Ιŭ	₩	10	10
MW-47	N-Naras-des-propylamas			Ü		10		Ü	Ü	10		1 0	Ü	19		۱ ٽ	₽	10	
MW-47	N-MatricentophicityLanence	ug/L		Ü	┝╾┥	10		Ü	lΰ						<u> </u>	₩.			10
MW-47	Naphdiakini	up/L	ļ	U				Ü	Ü	10		U	U	16	10	 	-	NA	10
MW 47	Namehouseuc	w/L	L	1 5		10				10		U	C	16		U	—	10	HO .
MW-47	Propter folial explications	- wa			 	25		2	U	25		U	U	25		U	├	25	25
A1W-17	Phonanthrone	. wy∕L		U	 	10		U	U	10		U	U	10	<u></u>	U	!	10	10
MW 47	Phenol	we/L		υ	!	10	10	_	-		16			10	W	<u> </u>		NA	39
MW 47	Pyrem	ug/L		U		10		2		10		Ü	U	10		U		(4)	10
MW-18	1,2,4-Tru,blombenzene	well		Ü		20		<u> </u>	U	9		U	IJ	20		U	U	10	30
MM. 4M	1,2-Dichleredignocus	ug/l.		Ü	<u> </u>	20		ح	υ	10		U	U	20		U	υ	10	30
MW-48	1.1-Duddorohenzene	wg/L		U		20		2	U	10		U	υ	203		U	Ū	10	₩
MW 4K	1.4 Dichi redictione	7		Ü		an nc		2	V			U	U	2n		U	U	10	20
MW-4K	2.2"-anglest1-Chloroptopanc)	ug/L		U		20		3	Ħ	10		U	U	20		U	U	HO	20
MW-18	2.4.5-Truchkstophenol	ug/L		Ü		300		U	וט	25		U	U	\$0		v	U	25	30
PIN18	2,4,0-Ten blumphemi	up/L		U		30		U	U	10		ט	U	20		U	U	10	20
MW 4H	2.4 Dichterophemit	ug/L		U		20		U	U	30		U	U	26		Ū	Ü	10	200
MW 48	2.4-Dissoctivipliness	ug/l.		Ü		20		U	Ū	100		Ū	Ti.	20		Ť	Ü	10	30
MW 4H	2 4 Dengrophema	ug/l.		Ü		50		U	Ü	25		ΙŪ	U	50		Ü	Ü	25	50
AIW 4K	2.4-Dimeteriolismo	up/l.		Ū	1	200		Ü	Ü	10		Ü	Ü	28		Ť	t i	10	20
MW-4X	2.6-12materialmene	u/L	0,90	1		NA		Ü	Ü	JO .		Ť	ΤÜ	20		Ť	Ü	10	20
A1W-4X	2 Chianaphthalon	wg/L		Ü	$\overline{}$	20		Ü	Ü	10		t ü	Ü	20		l ű	Ü	10	30
MW-48	2-Chhanghand	ug/t.		Ü		20		Ü	Ü	10		tΰ	Ü	20		Ť	Ü	10	30
MW-48	2. Methylmophthalene	Up/L		Ŭ	1-1	20		Ü	Ü	10		Ü	Ü	20		1 📅	Ü	100	20
MW-48	2-Methylphenul	ug/L		١Ŭ	 	20		Ü	Ü	10		Ü	l ü	20		fΰ	۳	10	20
MW-48	2-National process	ug/L		Ü	 	50		ŭ	"	25		Ü	Ü	30		╁	1	25	50
MW-48		ug/L		Ü	 	20		Ü	10	10		1 5	납	20		l ü	Ü	10	20
	2-Namphenal		 	Ϊ́	 - 	20		 "	Ü	30		 " -	Ü	20			l ü		
MW-4K	1,1'-Da Mondenantine			U	┌──┤	30 30		"	w w	25						 !!		10	20
MW-IK	1-Miterianistrac	W/L	 _		┥							<u>"</u>	اد	50		Ų.	Ų	<u>ਬ</u>	50
		ug/L	L	U	 	Sn .		5	U	25		U	S.	50		Ų	5	25	50
	4-Brittinghamyl-plantylicitics	w/L		U	├ ─{	20		=	U	10		U	<u></u>	28		U	5	10	30
	4-Chieses 1-methylphems	99/		Ü		26		=	U	10		U	E	20		U	C	10	20
	4-Chiorcanilate	up/L		U		20		3	U	10		U_	U	20		U	Ü	10	20
MW-4H	4-Chhosphonyl-phonyl-othet	ug/L		Ü	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	20		2	Ü	IG		U	U	20		U	Ü	140	263
MW-48	4-Methylphenol	ug/L		U		20		٦	٦	10		U	U	20		U	Ü	10	20
MW 4X	4- Netro and true	wg/L		υ		50		٦	UJ	25		U	U	50		U	Ü	25	50
	4 Natrophytesi	ug/L		U		50		U	נט	25		U	U	50		Ü	Ū	25	50
													نستيحه						

									D				Event 3				Event 4		
Well	Analyte	Unita	Result		Event I	Detect Limit	itani	14	Event	Detect f.lenit	Kenuk	10	DQ	Detect Limit	Heavil	1.0	DQ	Detect Limit	Highest Detaction
		_	Wearth	Ü	<u> </u>	20)		7	17	10		TO T	Ü	20		Ü	Ü	10	20
NIM 18	Acetaphthene	up/L		Ü	-	20		Ü	100	10		۳	Ü	20		١ŏ	Ü	10	20
MIW 4X	Acenaphthylene	up/L		Ü	-	20		-	U U	10		10	Ü	20		15	Ü	10	20
MW 1x	Andwarec	up/t.	 -	Ü	-	20		Ü	Ü	10	 	T-Ü	Ü	201		ਚ	Ü	10	20
NIW IX	Benzistahattikacene	nk/r		Ü	-	20	<u> </u>	Ü	R	10	 	Ü	Ü	20		10	Ü	10	20
NW 48	Венгонаругене	ug/L		U	1-	20		₩	R	10		T U	Ü	20		۱ŏ	t ü	10	20
N1/4 4H	Benzenbillagranthene	ug/L_		U	1	20		۳-	1	10	 	10	Ü	20			Ü	10	20
MW 48	Henrote harperylene	ug/L		10	 	20		+	1	10		l ü	Ü	28)	 	Ü	l ŭ l	10 .	20
MW 48	Benerick Wheek analogue	ug/L.		5	-	20		١ů	10	10		10	Ü	20		Ü	Ü	10	20
	hesp2-Chilomethicsymeethiane	- Jul		Ü	-	20	10	<u> </u>	 "	10	18	+-		20		tΰ	l ŭ l	10	20
	his(2-Chlorocthyl) other his(2-Ethyllienytyphthalate	ug/l.		Ü	-	20		v	10	10	 :	+ :	U	20	 	Ιŏ	Ü	10	20
MW 4K	Butythenrylphthalate	ug/L		<u> </u>	-	20		Ü	Ü	10	 	T U	Ü	20)		Ι ΰ	ا ن	10	20
	Carbarok	ug/L		⊢" ·	1-	20		Ü	Ü	10		Ť	Ü	20)		Ü	Ŭ	10	2(1
		ug/L		-	_	20		٠	Ť	10		10	۱ů	20	 	Ü	Ť	10	20
	Dr-n-butylphthalate	ng/L		-ں−	-	20		Ü	Ü	10	 	Ü	Ü	20		Ü	Ü	10	20
	De-p-in tylphilistate	ug/L		Ü	-	20		Ü	1	10		Ū	Ü	211	 	Ŭ	Ü	10	20
	Dehenzota,hjandy acene	ug/L		Ü	 	20	 	Ü	1 R	10		+-	t ŭ	20		ΙŬ	1 0	10	20
MW-48	Other roturan	eg/L		Ü	 	20		-	100	10	 	T ü	Ť	20		Ιŭ	Ü	10	30
91M. 18	Dicitly lphthalaic	ug/L		Ü	 	20	 	اٽ	U)	10		+ 0	Ü	20	 	۱ ŏ	Ü	10	26
MW-48	Dinarity lphthalaic		 	U	-	20	 	"	Ui-	10	 	10	Ü	20	 	ان	Ü	10	20
NW-48	Flustantiene	ug/L ug/L		Ü	 	20	 	"	10	10		10	Ü	20		ᇦ	Ü	10	20
			 	Ü	1	20		Ü	Ü	10		10	Ü	20		۱ŭ	. 0	10	20
51W-48	Hexachlorobenzene	ug/L		13		20)	 	"	1 👸	10		1 5	Ť	20		Ü	Ü	10	30
MW 4X				10	-	20	 	10	10	10		10	Ü	20	 	Ü	Ü	10	20
	Hexachiorobatadiene	ug/L	 	10	-	20		Ü	iii	10	 	U	Ü	20		Ü	Ü	10	20
NIW 48	Hexachlorocyclopentadiene	ug/L		10	ļ	20	 	+	1 "	10	 	10	l ü	20		ŀΰ	1 5	10	20
	I lean blomethane	ug/L			-	20		÷	H R	10	 	10	Ü	20		Ü	_	10	
NIW 4X	Indenot 1.2,3-edipytene	ur/L	 -	U		201	- 14	_	 ^-	10	 	1 0	ü	20		1 0	U		20
VIM 1X	Isophiacone	ug/l.		U	· ·	20	10	+	10	10		10	Ü	20	 	Ü	U	ta	20
MW 4X	N-Nitroso-de-ii-propylamine	ug/L_	ļ	Ü		20		Ü	10	10	 	1 5	10	20	 	1 5	1 5	10	20
N1W 48	N-Nittee-adapticny Lassanc	ug/L ug/L		-	 -	20	 	+ +	╁╬	10	 	10	10	20	 	1 5	1 5	10	30
MW 4K	Naphthakite		 	Ü	-	20	 	Ť	₩.	10	 	10	Ü	20	 	1 0	1 5		
MW 48	Number/en/	ug/L	 	Ü		50	 	۳	۳.	25		1 5	Ü	30		1 0	1 0)0 25	20 50
MW-48	Pensa histophenal Phenantycee	ug/L		0	-	20		10	10	10		1 0	Ü	20		1 👸	Ü	10	20
MW-48		ug/L'	110	<u>- ۲</u>	-	NA NA	28		├ ~	10	100	+	 ~	20	80	15	1 5	10	110
NIW 48	Physical	ug/t.		U	-	20		Ü	10	10	100	U	Ü	2()		Ιú	Ú	10	20
MW 49	Pyrene 1,2,4-Trichlintohenzene	ug/t.		Ü	1	20	 	۳	1-5	10		+-	l ü	30		+ ۲	l ü	20	30
MW 49	1,2-Dichlorobenzene			Ü	-	20		1 8	1 0	10		+	Ü	50		-	Ü	20	50
MW 49	1,3 On thombenzene	ug/L ug/L		Ü	-	20		Ü	۱ö	10	 	+	Ü	50		├	Ü	20	50
MW 49		ug/l.	 	Ü	├	20		 	l ü	10		+	1 5	30		├	10	20)	50
MW 47	2,2'-exybro(1-Chloropropane)	ug/L		Ü	 	30	10		+~	10	25	 	- `	NA NA	28	┼		NA NA	28
NIW 49	2.4.5-Trichhamphenol	mg/l.	 	U	 	50	 	10	U	25		+	U	120		1	U	50	120
NIW 49	2,4,6-Touchlarophenol	ωμ/L.	 	10	 	20	 	10	+₩	10	 	+	l ü	30		 -	1 0	20	30
NIW 19	2,4-Dichlorophenol	ug/L	 	10	-	20	 	ᇦ	₩.	10	 	+	ü	50	 	 	1 5	20	50
MW 49	2.4 Dissethylphesol	ug/L	 	۳	 	20	 	5	10	10	 	+	Ü	50	 	+	1 0	20	30
NW 49	2.4-Dautrophenol	ug/L		Ü	1	50		V	10	25	 	+	Ü	120	 	 	1 5	50	120
NW-49	2,4-Dantrouduenc	ug/L		Ü	-	20		Ü	10	16	 	+	Ü	50		┼	Ü	20	50
NW-IV	2.6-Duntrotolucus	ug/L		Ü	+	20	·	Ü	10	10		+	Ü	30		-	 "	2()	30
MW-49	2-Chloronaphthalene	ug/L		U	+	20)		1 5	10	10	 	 	٠,	50		 	U	20	5()
MW-49	2-Chlorophenol	ug/L		Ü	—	20		"	10	10		+	Ü	50	 	-	1 0	20	56)
MW 49	2-Methy Inaphthalene	up/l.	 	Ü	1	20		Ü	+ ö	10		+	10	50		├	10	20	\$0
MW-49	2-Methy lphenul	og/L	 	Ü	+	20		Ü	+ ۲	10	 	+	1 5	50		 	1 5	20	50
MW 44	2-Nationalulius	ug/L		Ü	 	50	 	Ü	tü	25	 	+	1 0	120			 6	50	120
MW-17	2-Nitrophenol	ug/t.		Ü	+	20	 	Ü	10	10	 	+	1 5	50			1 0	20)	50
NIW 4V	1, V - Dr. tskerestrenzadine	up/L		10	 	20		l ü	1 0	10		+	Ü	50		┼~	1 0	20	50
MW-49	1-Nitricipline	up/L		Ü	 	30		+	10	25	 	+	U	120	 		10	<u>20</u>	120
MW 49	4.6-Dimiro-2-methylphenol	ug/l.		P	 	50		÷	10	25	 	+	Ü	120	 	 	 	50	120
MW 42	4-Bronuphenyl-planyletter	ug/L	 	 `		20	 	"	Ü	10	 	+	Ü	50	 	 	_		
MW 49	4-Chlore-1-methylphenol			} - -	 	20		"	10	10	 	+	 			}	<u> </u>	20	50
MW 49	4 Chlorosinine	up/L		Ü	 	20	 	+	10	10 10		+	"	50			L.	20	565
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	La Construente	ug/L	L		Ц	411			<u>. </u>	1 (0	·		٠,	50	L		U	20	50

		,																	
l			Result	T 145	Front			1 4 45	Rivent				Krest .			1	Kvent		Mighed
Well	Analyte	Units	Result	1.0	Z	Defect Limit	Result	10			N-mail.	3	8	Detect Limit	Kemak	142	20	(Arthul (Amal)	Detection
	4-Chlorophenyl-phenyl-ether	ug/L		U	-	20	ļ	U	<u>c</u>	10			3	50	<u> </u>	↓	U	20	50
	4- Micthy lphated	wg/L		υ	-	30		U	C	10			3	50			U	20	50
	4-Nationalities	up/L	L	U		50		U	C	25			2	120			U	50	120
	4- Natroplicani	w/L		U	-	50	!	U	<u> </u>	25		_	IJ	120	<u> </u>		IJ	50	130
MM: 4A	Accomphibete	ug/L		U		20	<u> </u>	υ	U	10	L		7	50	<u> </u>		U	20	50
MW-14	Accompletely lene	we/L		U	_	20	<u> </u>	U	٥	10	 _		٥	50	<u> </u>		U	20	50
MM-14	Ambracenc	legt/L		U	11	20	<u> </u>	U	E	10			3	50	- 11			NA	\$0
MW-44	Henry alasthracene	up/L		U		20	L	U	U	10			U	50			Ü	3 0	50
MW-49	Benzidapyrene	ug/L		U		20	<u> </u>	U	U	10			٥	50			U	20	30
MW-49	Benedith the mantheme	wer		U		20	L	=	=	10			5	30			U	20	50
	Benevity, halpetylene	w/L		L.U.		20	L	U	U	10	L		3	50			U	20	30
	Henry kither anthone	ug/L		2				2	=	le le	L		٦	50			U	20	50
MW-H	hese 2-C'hierenetherxytosethane	ug/L		U		20		2	C .	10			ح	50			U	20	SO
MW-14	hes(2-Chloroeshyl) other	ug/L		U		20	2.0	<u></u>		10			Ü	50	- 67			NA	569
MW-19	hos(2-Ethythexyl)phthalate	w/L		U		30		υ	0	10			2	50	16			NA	50
	Busylhensy ipinikalate	ug/L		2		20		2	=	10			C	\$0			U	20	50
MW-49	Catharole	up/L		V		20		U	C	10			U	Sa			U	20	50
MW-19	Chrysene	wg/L		U		20		Ų	U	10			U	50			U	20	50
MW-W	(to se-busy lphish-abster	ug/L		U		20		٥	U	10			U	50			V	26	50
	Dir m-octy lphthalate	ug/L.		U		20		Ü	U	10			5	50	l.	1_	U	20	50
MW-49	t when rita, blanthracene	up/L		U		30		Ü	U	lo lo			C	50		T	Ū	20	50
MW IV	l behamzesteran	wg/L		V		20		υ	U	10			5	50			U	20	50
MW 44	Decily lphthalate	ug/L		U		20		U	U	10			Ü	50		\vdash	Ū	20	50
MW 49	Literarthy ipinthalate	ug/L		U		20		2	Ü	10			6	50		1	Ū	20	30
MW-44	1 Instruments	w/L		U	1	20		Ü	Ü	lo lo			Ü	50		_	1	20	50
MW 49	I-hardene	up/L		Ü		20		Ü	Ü	10		_	Ť	50		 	Ü	20	50
MW IV	He was bloushene webs	upl		Ū		20		5	5	10			-	50		 	Ü	20	30
4.1	He say blen butadiene	up/L		Ŭ	1	20		Ü	Ü	10			Ü	30		 	Ü	20	- SO
MW-44		wg/L		Ü	-	20		1	Ü	10		-	Ü	50		-	U	20	50
MW 49	Heusehhmu yekipentadione Heusehhmu dismo	up/L		Ü	-	20		Ü	Ü	10		-	ٿ	50		-	Ü	20	50
				Ü	-	20		cle	Ŭ	10		-	Ü	50		-	Ü	20	
	Indexed 1,2,1-cd)pytone	up/L	1.0	1	-	NA NA	10	- 	⊢∸⊢	10	7.5			NA NA	4.0	-	-		50
	Isophorone		- 1.0	ΰ		20		Ü	U	10	1.3	₩	-U	50	6.0	 		NA NA	10
MW-14	N-Napono-do-to-propylation:	w/L		Ü		20		"	۳	10		-	-	50			U	20	50
MW-14	N-Noncodephony Laurence	wg/L		Ü		29		1	۳	10		⊢					2	20	30
	Naphshakese	eg/L		Ü		20		Ü	ᇦ	10		\vdash	:	50		ļ	U	20	50
	Nation/cas	W/L		Ü		50		 	7	25		\vdash	c (50			UI	20	30
MW JV	Pentachkamphemi	syg/L		Ü		20		-	۳			-		120			U	50	120
MW-W	Phonombrone	we/L						-		10		_	۳	30			U	26	šn
	Placyted	ug/L	91	U		NA 20		2	- -	30		-	Ü	39	125	-		NA	125
MW-49	Pyrenc	ug/L		_	 	10		۳.		10		₩		30		.	_	20	50
	1.2.4-Trichlandenzene	ug/L		Ü	<u> </u>			-	۳			:	-	10		U	Ь.	40	60
	1.2-Dichton-benzenc	- ug/L		Ų.	Ų	10		-	ادا	<u>!;</u>		נ	5	10		U	—	60	(4)
MW-40	1.1-13schlasschemzene	ug/L		Ų.		10			Ü	15)	: =	10	 	Ü	—	60	60 -
MW-W	1.4-Dubbenhenrene	ug/L		U	<u></u>	10	 	 -	Ų.	15		=	- C	jo	 	U	أجيا	40	40
MW-M	2.2 -maybest 1-Chloropoopunc)	<u>w/L</u>			ic	10			3	13		۳	-	10		2	3	60	60
MW-50	2.4.5-Tenchiosophenol	ug/L		U	; C	25		-	, c	38		 	2	25	<u> </u>	Ü	إ	150	150
MW-W	2.4.6-Trictionaphenol	ug/L		U	U	10		-	נו	15		2	5	ja ja		U		40	60
MW-50	2.4-Dichlorophenol	l/ge/L		U	C.	10			U	15		5	3	10		6		60	60
MW-M	2.4- Domestrylphenol	We/L		U	U	10			U	15		۳	٩	10		U		60	46
MW-10	2,4-Duntemphesiol	ug/L		U	U	25			Ü	36		2	5	25		U		150	150
MW-50	2.4-Duntestotherne	ug/L		U	5	10		<u> </u>	C	15		5	5	10		C		40	40
MW-50	2,6-Dimitronifocus	ug/L		U	2	ţn		<u> </u>	U	15		3	Ų	10		U		60	40
MW-50	2-Chhitemathshiles	wg/1.		U		10	L	<u> </u>	c	15		5	U	10		U		60	60
MW-M	2-Chheraphened	wg/L		U		10			U	15		٥	5	10		U		60	60
MW-50	2- Methy bughthulete	up/L		U	E	10		L	2	15		2	2	10		_U		40	40
MW-90	2 Methylphenol	ug/L		U	Ü	10			٥	15		ב	U	JO		V		40	60
MW-WI	2-Noteconolone	W/L		U	2	25			5	748		5	U	25		U	U	150	150
MW 50	2 Natrophenol	ww/L		U	U	10			U	15		5	U	10		U		60	60
MW-50	U.V. Die bloschenzidine	υμ/t.		U	U	10			U	15		=	U	10		υ		66)	60
MW WI	1-Nitroanstine	wg/1.		U	U	25			U	38		2	-	25		Ū		150	150
								_											

March Color Colo																				
1879 10 10 10 10 10 10 10 1			}			Event	1						1.00	Evens.				Event		Highest
This company of the colored at the				Result				Kesuk	12			Henelt				Kesuli		110		Detection
1878 17 18				L				L	ļ			<u> </u>						 -		
No. 90 Accomplement Complement Compl				l					!			ļ								
1800 No. 1 18 18 18 18 18 18 18				ļ													_			
1805 10 10 10 10 10 10 10				ļ				 	ļ											
West West Memory West									┞—								_			
Weight of Weig				Ļ					├ ─-	_		<u> </u>					_	\vdash		
Section Control Cont								ļ	├—			 -	_							
No. 10. Acceptance Opt. U U U D D D D D D D D D D D D D D D D						_			├									יט		
All Part Market												}	_							
Description Description				 _					├—			<u> </u>								
SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision SNN vis. Charlest-Vision and Charlest-Vision SNN vis. Charlest-Vision SNN vis.									<u> </u>											
SEN 101												 								
Name of Name												 	_					_		
Mary No. Mary No.									Ι									_		
MAN May Character May				ļ					-									-		
May No. May				ļ	_				<u> </u>			 					_			
MAN 9 May Company May Company May				 				<u> </u>												
May No									-	<u>. " </u>				۳		 	_	-		
Mark 90 Confured: Mpf. U U 10 U 15 U U 10 U 60 60 60 60 60 60 60				<u> </u>					<u> </u>	ا بيا		20		┝┯┥						
MAY NO									-											
All No. 10 An empty plantake; No. 1 1 1 1 1 1 1 1 1				Ļ					_											
ANN 91 Description ANN 92 ANN 94 ANN 9									_			 		_						
MN vs				L					_									_		
MN w				Ļ								<u> </u>						-		
March Destrophysical-adar wg/L U U 10 U 15 U U 10 U 60 66				 -					_			ļ						-		
NN W									<u> </u>				_	_				-		
Mile of Handward Record Street				ļ														-		
Nith or				<u> </u>				96	_	<u> </u>								-		
MN												ļ <u> </u>				ļ		L		
MW 01	197.11								_					_				_		60
MN 90 Reach Mercy Express Alexes Up				<u> </u>						_		L	_							60
MN vs 1 1 1 1 1 1 1 1 1									_			ļ						_		60
MW 90 Indexmet 1, 2 Adjopance U U 16 U 15 U U 16 U 667 668																				
MN No. Supplements												<u> </u>						US		
No. 10 N. National Conference U. U. U. U. U. U. U. U				ļ														lacksquare		
Miles Nontroduction Miles Mile				ļ														_		
NW N Naphthalen					_	_			_								_	UI.		
Nitrode National Nitrode Nit									_	_		<u> </u>								
NIW 91 Perma libercythemed ug/L U U 25 U 150													_							
Mile No. Placement Mile No.				L					_			 _					_	-		
NIW NO Place								 	 			ļ						 		
NIW 50 Pyrone													٠.	┝╩┤			۳.	 		60
NW-51 1.2-De historhemence								1(8)		اــــا		 " -	├	ابيا		140				
NW 51 1.2-Dackbarockenese					٠.			 	١								_	لببا		
NW-51 1.1 Dechlorobenees					 -				_									_		
NW-51 3-4-Director degree Ug/L U 10 U U 10 U U 10 U U 10 10					_												_			
MW 51 2.2 - (asylect Chlorophysics) agr. 6.5 1 NA U U 10 U U 10 U U 10 10																		_		
NW 51 2.4.5-Tracht-replaced ug/L U 25 U U 25 U U 25 25					 -	_								_			_			
MW-St 2.4-5r Tricht-replacitud Ug/L U 10 U U 10 U U 10 U U 10 10				- 6.5																
NW 51 2.4-Districts Spherod Ug/L U 16 U U 16 U U 16 U U 16 U U 16 16					-															
NW 51 2-Dimensishened Ug/L U 10 U U 10 U U 10 U U 10 10					ļ							 _					_			
NW 51 2-Dimitrophenol ug/L U 25 U U 25 U U 25 U U 25 25					_							ļ								
NW-S1 2-4-Dimitrotoking ug/L U 10 U U 10 U U 10 U U 10 10												ļ								10 ,
NW 51 2.6-Danitrost-bene ug/L U 10 U U 10 U U 10 U U 10 10									_								_			
NW 51 2 Chloriton of whitelets								L									_			10
MW 51 2-Chlotreplasmid ug/L U 10 U U 10 U U 10 U U 10 10				ļ	-															10
NW-31 2-Neithylin-philadene ugft. U III U U III U U III U U III U U III U U III U U III II					 -									_						
		<u> </u>															_			10
[61 W Y 1 2 Michighylas inst				<u> </u>	├					_										
	וי אוג	2 Methylpta and	11/2/1	L	L	יי	10	لــــا	U	Ų.	10	l	U	Ľ	10		U	U)0	10

Appendix C Mar....um Concentration of Semivolatile Organics Baseline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana

					Event				Kveni	3			Event	1			Event 4		Highest
Well	Analyle	Clades	Roadi	IN	BO	(Jutert f.fm.)t	Kemili	1.0	DQ	Detect Limit	Rend	FIG	T inq	Undert Limit	Manufi	1.0		Detect 1.limit	Detection
	2-Nationalism	ug/L		-	-	25		U	U	25		U	Ü	25		Ü	0	25	25
	2. Noterph. and	ug/L		\vdash	U	10		Ť	Ù	10		Ü	ΙŪ	10		Ť	ΙŬΙ	10	10
MW-SI	3, 3'-1 in hikusabenzadane	Wel.			5	10		v	Ü	10		U	T-0	10		Ū	Ü	10	10
MW-N	1 Nationalists	we/L			U	25		U	Ü	25		U	Ü	25		Ū	Ü	25	25
AIW:11	8,6-12mmm 2-methylphenol	ug/L			-	25		U	U	25		U	Ü	25		Ü	U	25	25
	4 Breun geleinyl-plainyletter	υμ/1.			U	10		U	V	10		U	U	10		Ū	U	10	10
	4 Chlero Smethylphemil	wp/L			C	10		U	Ü	10		U	U	10		U	U	10	10
MW-51	4 Chharamina	ug/L			5	10		U	U	10		U	V	10		U	U	10	36
MW-51	4-Chherophenyl-phenyl ether	wp/L			5	- 90		U	U	10		U	U	10		U	U	10	10
MW-51	4-Afecthy (phenol	wp/L			5	10		U	Ų	Įů		U	U	10		U	U	ja	10
	4-Nationalities	w/L			3	25		U	U	25		U	U	25		U	υ	25	25
	4-Natiophonal	Dept.		Ш	=	25		U	U	25		U	Ü	25		U	C	25	25
MW 51	Accompletions	wg/L			=	10		U	U	10		U	U	10		2	2	10	10
MW 51	Accomplishy later	wg/L		1	٦	10		ע ד	U	10		U	U	10		U	U	10	10
	Anthracesc	9g/L			 	10	0.70			10		U	U	10		ŭ	U	lo	10
	Bennial and acces	ug/L		├	: c	10		Ü	U	10		Ų.	U	10		U	U	10	10
MW-51	Benevitalpyrene	wg/L		 	Ÿ	10		Ü	Ÿ	10		U	Ų.	10		U	Ü	10	10
NW-51	Beneugh) Physical Report	ug/L		┝╼┥	c c	. 10		U	Ü	10		U	Ü	10		Ų	Ų	10	10
NW-1	Benevity.haspetylane	ug/L		┝─┤	- 0	10	<u> </u>	c c	۳	10		1 5	U	10		U	Ų	10	10
	Menters Wherealthere	ug/L		Н	+	10	<u> </u>	-	"	10		1 5	10	10			Ų.		10
	hes(2-Chiorocalusty)methane	well		\vdash	- 0	10		1 0	۳	10	<u> </u>	10	U	10		U	Ü	10	10
	hus(2-Chlorocubyt) other host2-lists the sylubulatate	up/L up/L		\vdash	-	10		ü	Ü	10		l ü	Ü	10		H.	10	10	10
	Buts Beneviebblake	wg/L			Ü	10		Ü	Ü	10		l ö	Ŭ	10		l ö	Ü	10	10
MW-51	Carbaride	up/L			Ü	10		Ü	١÷	10		Ť	۳	10		Ü	- 5	10	10
MW-11	(Jaywas	ug/L			Ü	10		Ü	Ü	10 10		Ü	Ü	10		۳	 	10	10
	Des hary lpinkalak	up/L			Ü	10		Ü	Ü	10 10		Ť	ΗŬ	10		l U	5	10	10
	f do m-cu ty lphabadaic	ug/l.		_	Ü	10		Ū	Ü	10		Ū	Ü	10		Ť	Ü	10	10
MW-51	Different a handbrauche	up/L			C	10		U	Ü	10		U	Ü	10		Ü	Ü	10	10
	(Inforth confluid all)	mp/L			U	10		U	υ	10		U	Ü	10		Ü	Ü	10	10
	1 Seethy lphthalate	wg/L			U	10		5	Ų	10		U	Ū	10		U	U	10	10
	Democraty to high salation	ug/L			U	10		2	υ	10		U	U	10		2	U	10	10
	Fluorantiene	ug/L			U	10		3	٦	10		U	د	IA .		5	2	10	10
MW-51	Physican.	up/L			U	10		5	5	10		U	٥	10		5	U	10	10
MW-51	Hexa blankewere	100/L			-	10		3	9	10		U	5	10		>	ט	to	10
	Hexas likerologialisms	up/L		\Box	C	10		3	5	100		U	5	10		5	כ	10	10
	Herachioropylopentaliene	wp/L			V	141		3	٥	10		<u> </u>	5	M		٥	2	ko .	10
	He him bloom thate	- 199 1			U	10		=	ح	10		٦	3	10		5	2	10	10
	Indexes 1.2.1-catipyrene	we/L			U	10 ,		>	5	10		C.	5	10		5	2	to	10
	Les degrade not.	w/L			U	10	0 60	-	<u> </u>	10		U	حا	10		٥	>	10	10
	N Numeral destriptions	wert.	0.5	\vdash	-	NA IØ		=	2	10		÷	2	10		: د	2	10	10
	N-National applicacy Lamber	wg/L			Ü	10		8	+	10		Ü	l ö	30		c c	>	10	10
	Magnitudeine Nationhearetist	egs/s. egs/L	<u> </u>		Ü	10		+	₩	10		1 5	"	30		8	2	10	10
	Personal february in the control of	wp/L		\vdash	- 1	25		 	7	25		Ť	1	25		-		25	25
	Physicantine in	up/L			Ü	10		1	۳	10		l ö	Ü	10		+	 	10	10
	Planet	ug/L			Ü	10	19		<u> </u>	10	25	<u> </u>	۴,	10	18		اٽ ا	10	25
	Pyrene	ep/L			U	10		5	U	10		U	Ü	10		Ü	U	10	10
	1,2,4-Trachhadenzene	wy∕L.		5	U	10		10	5	10		Ü	Ü	ţa		5	Ü	10	10
	1,2-Dichlorahenzene	w/L		כ	5	10		5	5	10		Ü	Ü	10		Ü	Ü	10	10
	1,3-Dichimhences	up/L		U	Ų	10		٥	1	jØ.		U	U	50		U	U	10	10
MW-52	1,4 Dichloration/cnc	ug/L		U	U	10		2	5	10		U	ប	10		5	5	lo	10
MW-52	2,2'-onytro(1-Chioreptopanc)	ž		5	U	10		٥	5	10		U	υ	10		٥	UJ	140	10
	2,4,5-Trochlorophenol	wg/L		5	٧	25		5	5	25		U	U	25		٥	U	25	25
MW-52	2,4,n-Tri, blomphend	W.		3	U	10		>	د	10		U	U	10		U	٥	lo lo	10
	2,4-13s, tile desplaction	wg/L		٦	U	10		7	5	10		ט	Ü	10		Ü	U	10	10
	2,4-Dien shylphenid	wp/L		=	U	10		5	5	10		U	5	10		-	U	10	10
MW-52	2,4-Dinitsophenol	ug/l.		2	U	25		5	2	25		<u>_</u>	U	25		5	U	25	25
	2.4-Diminishiene	up/L		Ü	U	10		5	>	10		U	Ü	10		5	٦	ta	10
A1W-12	2,6 Опшиновиеме	ug/l.		U	U	10		U	٦	10		U	٦	10		U	U	10	10

March Color Colo																				
100.000 100.0000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.000000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.000000 100.00000 100.00000 100.000000 100.00000 100.00000 100.00000 100.00000 100.00000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.0000000 100.0000000 100.0000000000						Event (A) Anna II Anna	Nb				- Branch		Event		l/le	10	Event		flighest
180 1 1 1 1 1 1 1 1 1			_	Hentel	_	_		ROUE				A. Service	_			KDOK				Detection
1879 17 18 18 18 18 19 19 19 10 10 10 10 10																				10
Dec 10 1965						_			_									_		10
18 No. 1									_	_								_		10
1879-15 Strainghouse																ļ -				25
1907 1.1 1.5									_			 	_				_			10
1800 1800												 								10
Section Sect												 					_			25
1800 1800																	_			25
Albane Stranghysholm Sept. D. U. D.																				10
1809-15 Albertourline									_	_				_						10
1.000 1.00												 								10
MASS MASS					_															10
SWEST All Properties SWEST All Propert																				10
1906-25																				25
SWEST Accordance spf. U U 10 U U					_	_						 		_						25
SWE-52 AND ADD ADD ADD ADD ADD ADD ADD ADD ADD			_									·							10	10
SWEST SAMPAGE SWEST SW																			10	10
Secure content					_								_						10	10
Section approach Section app					_							t								10
MMVS Resent histographies						_												_	10	10
Secret Polytyphes									_					_			_		10	10
Second Action of the Composition Second Action Second Acti												 					_			10
SMY 52 The Part Smy 1					_															10
Mar. Mar.																				10
SSENTERN No.2 Friedrich physiologic London Lond					_					_		 						_		10
Mark V. Despite problematic Supple Suppl					_								 -				_	_	10	19
SMW 12 Colspanies					i ii								u							10
SECTION SECT																			10	10
NW - 2					U		10		U	U	10		U	ı,	10		U		10	10
Ni N 2 Discover of Allambrace mg/L U U 10 U					U	Ü	10		υ	U	10		U	5	10		Ü	_	10	10
SIN S2 Discussion of the Basinstance Up U U U U U U U U								· · · · · · · · · · · · · · · · · · ·		_		<u> </u>							10	10
MW 92 Distribution My 12 U U U 16					υ	U	10		U	U	10		Ū	U	10		U		10	10
MW-52 Density plothalase					U	U	16		U	U	10		U	٦	10		U		10	10
MW-52 Flavorathese					U	U	10		U	U	10		U	د	10		5	U	10	10
MW-52 Flavoratione					U	V	10		U	U	10		U	٦	10		5	U	10	10
NW 52 Hence he has been been element ugfl. U U IIO U U I					U	U	10		U	Ð	10		U	5	to		5	U	10	10
MW-52 New Process Ug/L U U 10					U	U	10		U	Ü	ţa		Ü	υ	10		U	Ü	10	10
NW-52 Reach therebatations	MW-52 I	Hexactionshearene			U	U	10		U	U	10		U	حا	10		5	U	10)	10
NW-52 Rexas Inforces: population: U U 10 U U 10 U U 10 U U 10 U U U 10 U U U U U U U U U					U		ţo.		U				Ü						10	10
SIW 52 Reconstructed Upf. U U U 10 U U 16 U					U	U	_10		U	U	10		U	Ü	30		U	U	10	10
SiW-52 Indexine (_2.2-ed)pyrene ug/L U U 10 U U 16 U U U 16 U U 16 U U U U 16 U U U U U U U U U			wys/1.			υ	tu		U	U			U	UI	30		U	UJ	10	10
NW-52 Neglectoring Ug/L U U 10 U U U 10 U U U 10 U U 10 U U 10 U U U 10 U U U 10 U U U 10 U U 1	MW 12 1	Indepent (2.3-ext)pyrene			U	U	10			Ü			U	U	10		U	U	10	16)
MW-52 No Notifice adoption between control of the control of t	MW-52 F	fragelant rese			_														10	10
Nith No.		wer.																ia .	10	
Niv-52 Nivelence Ug/L U U 10 U	MW-42 N												U		10			U	10	10
MW-52 Pental therephoned ug/L U U 25 MW-53 MR-matherine ug/L U U 10 U			up/L																to	10
MW-52 Phenomenance Mg/L U U 10	MW-52 P	Nitrobenzene	ug/L							U			Ü	U	10		U	U	to	50
NW-52 Precise May NA NA NA NA NA NA NA N		Pentactiorophenol	ug/L												25		U	U	25	25
MW-52 Pyrene					_	U U			U	U			U				U		10	10
NW-51 1,2-4-Trackhorobenerics ug/L U U 10 U 15 U U 10 U U 10 NW-51 1,2-Drachhorobenerics ug/L U U 10 U 15 U U 10 U U 10 NW-51 1,3-Drachhorobenerics ug/L U U 10 U 15 U U 10 U U 10 U U 10 NW-51 1,3-Drachhorobenerics ug/L U U 10 U U 15 U U 10 U U U 10 U U U 10 U U U 10 U U U U U U U U U			up/L	30				24											33	33
AlW-51 1,2-Dictionshemence ug/L U U 10 U 15 U U 10 U U 10									LU	_									10	40
NW-51 1.5-Distribution/eme ug/L U U 10. U 15 U U 10 U U 10				<u> </u>				 	_										10	15
NW 53 L4 Dictionsharene ug/L						_				_				_					10	15
MW-51 2.2° oxybic(1Chbitispropane) ug/L U U to U 15 U U 10 U U 10 NW 51 2.4.5 Trichlorophenid ug/L U U 25 U 38 U U U 25 U U 25						_			<u> </u>				_	_			_		10	15
51W 51 2.4.5-Trechlorophenol ug/L U U 25 U 30 U U 25 U U 25									L				_						10	15
)									L_										10	15
MW-53 12.4.6-Tricklerophysiol wr/L									<u> </u>	_			_						25	38
<u> </u>		2,4,6-Trichlorophenol	wa/L				10		L	U			U	5	10		Ú	U	10	15
MW 53 2.4-Diction-upda.mod up/L U U 10 U 15 U U 10 U 16	MW 11	2.4-Dictiforophenol	uy/t,		U	U	10			U	15		U	Ū	10		U	U	10	15

		·			A)4				No		,								
357 85	i	Umbo	Henek	140	Event	Detect Limit	Koudt	Lin	Event		Hereit	1 10	Event DQ		Konsk	IA	Event	Detect Limit	Highest Detection
Well	Analyte 2.4-Dimeshylphenid	trans.	ILDRUK.	1:7	10	10		<u> '~</u>	10	15		1 7		16	-	1	10	10	15
MW-53		up/L	 -	۱ŭ	1 5	25	 	┼	Ü	38		10	Ü	25		10		25	33
AIW ST	2.4 Dantesphenol			Ť	1 5	19	 	 	Ü	13	}	1 0	Ü	10	 	Ü	l ü	10	15
MW-51	2.4 Dantestolacies 2.6 Dantestolacies	ng/L	 	ιŭ	Ιŏ	100	} -	 - 	Ü	13		ᇦ	l ü	10		l U	1 0	30	13
AIW-51		144/I		l ŭ	l ü	10		 	l ü	13		1 0	H	10		Ü	_	10	15
MW-53	2-Chlorogaphthalenc 2-Chlorophenol	ug/L		l ö	1 0	10	i	 	ΙŬ	15		1 5	1	10		۳	ΙŬ	10	15
NW-S1				l ŭ	Ü	10	f	+	lΰ	13		اٽ	۳	10		7	Ŭ	10	15
	2 Methyliophthalene 2 Methylphemil	W/L		Ιŭ	ΙŬ	10	 	+	Ŭ	15		1 5	ü	10	——·	Ü	Ü	30	15
	2-Managaran	ug/L	 	Ιΰ	Ü	25		 	ŭ	38		۱٠	Ť	25		Ü	Ü	25	38
MW-51		4/		l ü	Ü	100		1-	Ť	13		Ü	Ü	10		Ιŭ	Ü	ia	15
MW-11		ug/L		T i	Ü	19		1	Ü	13		łΰ	Ιů	10		Ü	l ŭ	10	15
MW-31	1-Nanataning	J.	<u> </u>	1 5	Ü	23		 	Ü	38	 	Ť	Ü	 2		Ü	Ü	25	34
MW-31	4.6- Dantini-2-methylphensi			10	 -	25		 	Ü	30		l ü	Ü	3		Ü	Ŭ	25	50
		- T-		۱ŏ	† J-	19	 	 	Ü	15		υ	Ť	10		ŭ	l ö	10	15
	4-Branuphenyl-phenylether	wt.		l ü	1 5	10		╁╼┈	T U	15		١ ٽ	10	10		Ü	7	10	15
	4-Chine-1-methylphonol			۱ŏ	ϋ	10	 	 	Ü	13		۳	7	10		l ü	Ü		
	4-Chhitecardine	<u> </u>		1 5	Ü	10	 	 - 	Ü	15		1 5	1	10		l ü	1 0	10	15
	4-Champtonyl-phonyl ethor	<u> </u>		1 8	Ü	10		 -	⊢∸	NA NA		+ 5	۳	10		Ü	 0		15
	4 Methylphenia	w/L	 	1 5	10	23	 ''	1-	U	38	 	1 0	_			_		10	11
	4 Nonementon:	149/1.	 	1 0		25		 	H		 		7	25		Ľ,	U	<u>x</u>	38
	4- Nagraph, and	W/L	<u> </u>		Ÿ			-		<u>¥</u>	ļ	U	5	25		Ü	Ü	25	38
MW-51	Acetaphthene	1967		Ų	U	10		-	Ų.	15		U	5	10		2	U	10	15
MW-13	Accumplishy lene	- Jup		U	U	10	 _	├ ─-	U	15	<u> </u>	U	u	10		٦	u	10	15
MW-51	Ambinistic	-ug/L		U	U	10	!	-	U	15		U	2	10		2	U	10	15
MW-53	Benedalanthacene	ug/l.		U	U	10	ļ	-	U	15	ļ	U	=	10		ט	U	10	15
MW-41	Bennstalpyrene	- ug/L		U	U	10		ļ	U	15		U	5	(4)		٦	<u>c</u>	NO	15
MW-51	Henry billion anthone	ug/L		U	U	10	<u> </u>	نـــــا	U	15		U	5	10		حا	U	10	15
MW-11	Bearing leasperylene	w/L		Ų	V	10			U	15		U	2	10		حا	c	10	15
AtW-51	the novel b (dissorantheme	, J.		U	U	10			U	15		ับ	2	10		حا	c	10	15
MW-51	bod 2-Chlorochuny)methan	- J.		U	U	36)			U	15		U	رد	10		دا	U	10	15
MW-51	hod 2-Chiomothyl) other	wg/L		U	U	10			U	15		U	U	10		V	U	10	15
	his (2-Ethy theny) splithalate	₩ 1.			U_	21			U	15	17			18			U	12	21
	ButyMcnzylphthalatc	wel.		U	U_	10			U	15		U	5	10		حا	U	10	15
	Carlarety	W/L		U	U	10			U	15		Ū	2	10		c	U	10	15
	Chrymenc	wg/1.		U	U	10			U	15		U	5	16		2	U	10	15
	(Jr. m-bury špitals alany	J¥L		U	U	10			U			U	2	10		U	U	10	15
	De-m-ex-tylendralan-	-yL		U	U	10			U	15		Ü	2	10		Ü	Ü	10	15
	Unbenzita,hiambracene	-WL		U	U	10			U-	15		Ü	U	10		Ü	Ü	10	15
	l John muretyran	wyl.		U	U	10			U	15		Ü	6	16		c	Ü	10	
	Dicthy lightholate	-w/L		Ū	Ü	10			υ	15		Ü	5	10		Ü	Ü	10	15
	I homethylpholoduse	ug/L		Ū	U	10			U	15		Ü	Ü	10	-	Ü	Ü	10	15
	1-lust attigue	ug/L		Ü	Ü	10			Ü	15		Ü	5	10		3	Ü	10	15
	Planten:	1991		Ü	Ū	90		1	Ü	15		Ü	Ů	19		2	Ū	10	15
	He tachino henzene	Jul.		U	Ū	10			2	15		Ü	Ü			Ŭ	Ü	10	15
	He has believed a place of	- Jupi		U	U	10			5	15		Ü	Ü	10		Ü	T iii	10	15
	He tachings, yelspentaliene	اليون		Ü	Ü	10			5	15		1	Ü	10		7	Ü	10	15
	He say the medium	1401.		Ť	Ü	ia		,	-	15		Ü	Ü	10		+	ŭ	10	15
	Indexe(1,2,3-ed)pyrene	- Jup		Ť	Ü	10		1	5	15		Ü	Ü	10		7	Ü	10	15
	Indianae.	1/4	() (0)	 	Ť	NA NA	2.0		-	NA NA		Ü	7	10	5.0	+	┝┷┥	10	10
	N-Minus-de-a-propylamine	ug/L		Ιΰ	Ú	10			Ü	15		5	Ü	10		Ü	UJ	10	15
	N National phasy latent	w/L		Ŭ	Ü	10		 	داد	15		-	<u>.</u>	10		-	"	10	15
	Naphthalene	w/L		Ŭ	Ü	10		1	-	15		├	ü	100		Ü	- 5-	10	15
		ug/L		Ü	Ü	10		┢═┪	7	15		"	2			Ü	Ü		
	National	ug/L		1 0	1	25		\vdash	-	36		-	2	10		-		10	15
	Pentachhamphend			Ü	Ü	10		 	"	15		-		25			Ü	25	14
	Plackattifectic	ug/L		 -	┝╩┥	NA NA	Su	₩	-	NA NA		۳	٦	10		Ü	٧	10	15
MW-53		- Wall	10	U	U	10		┥	+		90	٠		10	50		1	10	SH
MW-51		ug/1.			- ;;-		ļ	١	-	15		۳	ט	10		U	٧	10	15
	1.2.4 Trichlorobenzene	± 10 pt/1.		۳.	⊢"⊣	10		<u> </u>	= =	10		۳	v	20		Ų	Ţ,	30	30
	1.2-Dichlerobenzene	ug/L		U	┡╶┥	10			U	10		2	2	20		U	2	(a)	30
	1,3-Dichlombenzene	ug/L		U	1	10		U	=	10		U	٦	20		Ų	٧	10	30
MW-54	1.4-Dichlombenzene	ujt/L.		U	U	10		U	U	10		U	U	20		5	U	No	30

											,				,				
1					Event	 		· · · ·	Event			1 645	Event		 	1	Event		lilghest
//-11	Analyte	Units	Kesult	1/0		Detect Limit	Result	1.0	υQ	Detect Limit	Manualt	12	Ü	Detact Limit	Kenult	1.0	DQ	Detect Limit	i hetoctimo 30
MW 54	2.2'-oxybist1-Chloropropunc)	ug/l.		U	U	10		U	U	25		Ü	+ +	50	 	1 0	- 5	75	75
MW 54	2.4.5-Teichlorophicus 2.4.6-Teichlorophicus			Ü	Ü	10		10	Ü	10	 	Ü	U	20	 	Ü	Ü	73	30
MW 14	2.4 Dichlorophend	ug/t.		Ü	Ü	10		Ü	ŭ	10		l ü	Ü	20	 	l ü	-	301	10
MW 54	2.4 Dengthy (placted	ug/L	 	Ü	Ť	10		Ü	Ü	10	 	Ť	Ū	20	 	Ιŭ	Ü	30	w
MW 14	2 4-Dimitrophenol	ug/L		Ū	Ť	25		Ü	Ü	25	 	Ū	U	50	 	Ü	Ü	75	75
MW N	2.4 Union soluene	ug/l		Ū	Ü	10		Ü	Ü	10	 	Ū	U	20		U	U	30)	30
MW-54	2.6-10mmrotoluene	ug/L.		U	U	10		U	U	10		U	U	20		U	U	30	3()
MW-14	2 Chloronaphthalene	ug/L		U	U	10		U	ប	10		U	٦	20		U	U	30	10
MW 14	2 Chlerophenol	ψg/l.		U	U	10		Ü	U	10		U	٦	20		U	U	70	10
AIW 54	2 Methy highthalene	ug/l.		U	U	10		Ü	U	10		U	V	20		V.	U	30	30
MW M	2-Methylphenol	ug/L		U	U	10		U	U	10		U	Ų	20		U	U	30)	30
MW-14	2-Numanitus	ug/t.		U	U	25		U	U	25		U.	U	50		<u> </u>	Ü	75	75
MW-54	2. Matrophymos	ug/t.	<u> </u>	U	U	10		Ų	U	10		U	٦	20		U	U	10	30
MW-54	1,1'-Dichlensbenridite	<u>uµ/ì.</u>		l u	Ų.	10		Ų.	Ų.	10		Ų.	2	50		ļ.	Ų	30	36)
MW-54	3-Naroandrac	<u>⊎≱/1.</u>	 	U	U	25		U	U	25	 	U	2	30	 	U	Ü	75	75 75
MW-54	4 to Dimuse 2-methylphetiol	ug/L	 	10	5	10		1	H	10	 	1 0	U	20	 	₩.	Ü	30	30)
	4 Bronnighenyl-phenylether 4 Chlori- Uniethylphenol	ug/L		 0	"	10		Ü	Ü	100	 	Ü	1	20	 	Ü	10	30	30
	4 Chhromolyne	ug/L		٠,	Ü	10		Ü	Ü	10	 	Ŭ	۳	20		tΰ	Ü	30	30
MW SI	4-Chlorophenyl-phenyl other	wg/L		Ü	Ü	10		Ü	Ü	10	 	Ü	7	20	 	tΰ	Ü	30	30
MW 54	4 Methylphenol	wg/l.		Ü	Ü	10		Ü	Ü	10	 	Ü	U	20		Ū	ŭ	30	30
MW SI	4 Nationaline	ug/l.	 	Ü	Ü	25		Ū	Ü	25	 	Ū	U	50		ΤŪ	Ü	75	75
MW-M	4-Numph:md	ug/l.	 	Ū	Ü	25		Ü	-	25		Ü	Ü	50		υ	Ü	75	75
MW SJ	Accuaphilicue	ug/L		Ü	Ū	10		U	Ü	to		Ü	2	20		υ	Ü	30	30
MW-54	Acenaphilistene	wg/L		Ü	Ü	10		U	-	10		Ü	v	20		Ū	Ü	30	30
MW-14	Anthracene	ug/l.		ΰ	Ü	10		Ü	٦	10		Ü	Ü	20		U	Ü	30	361
MW 14	tienzola kantigacene	ug/l		Ü	U	10		U	2	10		Ü	٦	20		U	U	30	30
MW-54	Henzolaljiytene	ug/L.		U	U	10		U	2	to		υ	U	20		U	Ú	30	30
MW SI	Benzo(b)Huoranthene	ug/l.		U	U	10		U	U	10		υ	υ	20		U	U	30	30
MW-SI	Benzo(g,h.i)perylene	ug/L		U	U	10		U	٥	10		U	ט	20		U	>	30	30
MW-M	Benze(k)Huoranthene	uge/L		υ	U	10		٦	3	10		U_	۲	20		U	U	3/0	30
MW-SI	his(2-Clidoroethoxy)methane	ug/L		U	υ	10		U	5	10		U	٦	20		U	٦	30	3()
	his(2-Chloroethyf) other	ug/L.		U	U	10		U	٦	10	<u> </u>	Ü	>	20	<u> </u>	Ü	פ	30	30
	hist2-Ethythexyliphthalate	ug/L.		_	5	10		U	٦	10	!		>	39	<u> </u>	U	U	30	39
MW-14	Butythenzylphthalate	ug/l.		U	C	10		2	3	10		U.	٦	20		U	U	30	30
NW 14	Carbazoli	ug/L		C	2	10		C .	5	10		U	2	20		U	U	30	30
MW-54	Chrysene	ug/l		٥	2	10		2		10	·	U	2	20		U	2	30	30
	Dien-hatylphthalaic Dien-netylphthalaic	ug/L ug/L		Ü	٦	10	ļ 	- 5	+	10	ļ ———	Ü	Ü	20	 	U	∺		30
	Dibenzota bianthracene	ug/1.		Ü	Ü	10		U	5	10	 	l ü	Ü	20	ļ	Ü	₩.	30	30
	Tahenzolutun	up/1.		1	Ü	10		Ü	2	10	 	 U	Ü	20	 	Ü	₩	100 V	30
	Dicthy lpholistate	ug/1.		Ü	۳	10		Ü	Ü	10		Ü	Ü	20	 	Ü	Ü	30	10
	Directly leditable	1 <u>uu</u> 1.		Ü	٦	ŧa		υ	2	10		Ü	Ü	30	 	Ü	Ü	30	30
	Trisperantiscroc	ug/1.		Ü	Ü	(0		٦	2	10		Ü	U	20		Ü	Ü	30	30
	Huntere	ug/t.		Ü	5	10		٥	U	30		Ü	٦	20		Ü	٦	30	30
MW-14	He sachinohenzene	ug/1.		Ü	U	10		٦	IJ	30		U	ט	20		υ	5	.10	30
	lic sachkoobutadiene	uy/1.		U	5	(0		ΰ	U	10		U	UJ	20		υ	נט	30	¥)
	He sachbrocyclopentadiene	ug/l.		U	C	10		C	د	10		U	U	20		Ü	ט	30	30)
	Hexachherethane	ug/l,		5	5	10		2	c	10		υ υ	IJ	20		2	٦	30	30
MW 54	Indensi 1,2,1-cappytene	ug/L.		2	Ü	10		٧	U	10	<u></u>	U	U	20		U	5	30	30
	Iscaplination	up/t.		U	٥	10		>	c	in .		U	U	30	L	C	2	30	30
MW-SI	N-Nutroscods-n-propylamine	up/L.		U	U	10		U	U	10		U	U	20		U	υ	30	30
MW 14	N. Nitzoschiphenylanune	ug/L		U		10		۳	2	10	ļ	U	Ü	20		U	υ	30	X)
MW 54	Naphthalene	<u>up/1.</u>		Ų.	Ü	10		U	U	10		U	U	20		U	U	30	30
MW-54	Nutrobenzene	Uge/1		٦.	Ü	25		: <	U	10	ļ	Ü	U	20		U	Ü	30	3()
MW-54	Pentaction optional	ug/1.		Ų.	U			٧.	U	25		Ų.	U	50		U	۲	75	75
	Phenanticae Phenal	ug/t.		U	n	10	20	U		10	 -	۳	U	20		U	υ	30	30
MW 14		up/t			17	10	- 20	U	U	10	112	ابيدا	_:_	20)	(60	ا ـــا		V 0	160
NIM 14	1.216.78] up/1		U	لمكال	10			ب	<u> </u>	L	لاسا	Ü	20	ــــــ	U	U	30	30

Appendix C Maximum Concentration of Semivolatile Organic Baseline Groundwater Moultaring American Chemical Services NPL Site Griffith, Indiana

MW-55 1 MW-55 1 MW-55 2 MW-55 2 MW-55 3 MW-55 3 MW-55 3 MW-55 3 MW-55 3	Analyte (2.4 Trichlorobenesis; 1.2-Dichlorobenesis; 1.3-Dichlorobenesis; 1.4-Dichlorobenesis;	t Index up/L up/L	Heads	10	bQ	Detect 1.hmit	Result	TQ	Kvept DQ	Dutert J.imit	Burnit	14	Even'	Dutest I leak	-		Event		Highest
MW-55 1 AW-55 1 AW-55 1 AW-55 1 AW-55 2 AW-55 2 AW-55 2 AW-55 2 AW-55 2 AW-55 2	1,2-4 Trichloroheuvene 1,2-Dichloroheuvene 1,3-Dichloroheuvene	ujt/L	N	1'9		Detect 1.6mil	Rentill	140	PS	فأعطى المعقدات		1 145	· IM)						
MW-55 1 MW-55 1 MW-55 2 MW-55 2 MW-55 3 MW-55 3 MW-55 3 MW-55 3 MW-55 3	1,2-Dichlorobenzene 1,3-Dichlorobenzene							_							Kenak	1.0		Detect Limit	Delection
MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2	1,3-Dichlorobosome	we/L_		_	ט	10		U	3	149		U		J43		حا		10	10
MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2			<u> </u>	$oldsymbol{\sqcup}$	>	10		U	U	10		U	U	10		U	U	10	10
MW-55 2 MW-55 2 MW-55 2 MW-55 2 MW-55 2	1,4-Dichlorobenzene	ug/L			U	10		U	נט	140		U	U	10		٦	5	10	10
MW 55 2 NW 55 2 MW 55 2 MW 55 2 NW 55 2		ug/L			5	10		U	5	10		U	U	10		S	C	10	10
MW 55 2 NW 55 2 MW 55 2 MW 55 2 NW 55 2	2,2"-resphere 6-Chloropropunc)	wg/L			C	10		U	U	10		Ų	Ü	10		٦	Ü	10	10
MW-55 2 MW-55 2 MW-55 2	2,4,5-Tes, bloosphemid	ug/L			<u> </u>	25		Ū	UJ	25		Ü	U	25		U	U	25	25
MW-55 2 MW-55 2 MW-55 2	2,4,6-Trechlorophemid	up/L.		_	C	10		U	נט	16		Ū	U	(0		7	Ü	· in	10
MW-55 2	2,4-Dachkreipheard	ug/L			U	. (0		U	UJ	10		Ū	Ū	10		Ť	Ü	10	10
MW-55 2	2.4- Demostry informal	ug/L		-	1	10		Ū	Ü	10		Ū	Ŭ	10		Ü	H	10	to
	2,4-Dentrophend	ug/L		-	+	25		Ť	Ü	1 25		Ü	Ü	25		١÷	Ť	25	25
MW-55 2	2,4-Dansonducue	wg/L		_	Ü	10		Ü	5	10	 	Ü	Ü	10		₩	Ü	10	10
				-	1	10		Ü	101	10		Ü	fΰ	10			۱۳۰	10	
	2 n-Dantrouduene	we/L		-	-	10		1	100	10						Ľ.			10
	2-Chlorosaphthalene	we/L			_							Ü	U	10		>	Ü	10	In_
	2-Chlorophenol	ug/L		\vdash	c	10		U	3	10		U	U	10		٦	U	10	10
	2-Methy traphthalene	we/L			<	10	<u></u>	<u> </u>	5	10		Ų	U	10		-	U	10	10
MW-55 [2	2- Methy lphemi	we/L			C	10	2.0	-			<u> </u>	U	U	10		5	υ	10	10
MW-15 2	2-Pippergentanc	ug/L.			-	25		U	3	25		U	U	25		٦	U	25	25
MW-55 2	2-Nittrophenical	ug/L			U	10		C C	3	10	L	U	U	10		د	Ü	10	10
MW-55 3	1, V - Dichkenbenzidine	ug/L			U	10		Ų	5	iQ		U	U	10		υ	υ	LS)	10
MW 51 1	1. None canalanc	wg/L			Ü	25		V	3	25		Ÿ	U	25		2	U	25	25
MW-55 4	4,n-Dantin-2-methylphensi	ωμ/L.			U	25		U	Ui	25		Ü	U	25		c	Ü	25	25
	4 Brown placeyl-placeyletter	ug/L			Ü	10		Ū	Ü	ю		Ü	Ü	10		Ü	Ū	10	10
	4-Children T-marthy lpharms	wert.			Ü	10	40		7	10		Ü	U	10		-	Ū	10	10
	4. Chlorografine	ug/L		_		10		Ü	U	10	 	Ü	Ü	10		1	H	10	10
	4 Chinophenyl-phenyl ether	w/L			Ü	10		Ü	Ü	10		Ť	Ü	10		Ü	Ü	10	10
					Ü	10		۳	1 11	10		Ü	Ü	10		+	H	10	10
	4. Methy lphenol	up/L		\vdash	Ü	25		Ü	<u> </u>	25									
	4 Mittersambus:	ug/L		-				_	_			Ü	U	25		٦	2	25	25
	4-Nonephroni	ug/L		-	-	25	19	-	1	25		U	U	25		٦	Ü	25	25
MW 55 A	Accumplishence	-ug/L		\Box	=	10		U	3	10		ט	U	10		٦	U	10	to
MW-31 /	Accumplishly lene	we/L			2	10		U	3	10	[]	Ų	ַט	10		5	U	10	10
MW-15 A	Anthracene	wg/L			ح	10		U	3	29		Ü	ט	10		حا	Ü	10	10
MW-11 E	Henzota iandiracene	ug/L_			U	10		U	3	10		υ	U	10		υ	U	10	10
MW-55	Henrica pyrene	ug/L			U	10		U	U)	10		Ü	U	10		5	υ	Jn	10
	By more histogrammer	we/L			U	Ю		U	Us	10		Ü	Ü	10		U	υ	10	lo .
	Henzing, has perylene	ug/L			5	10		U	5)(0		Ü	Ū	10		Ü	Ü	10	10
	Benzett Higgstatelbene	ug/L		\vdash	U	10		Ū	Ü	10		Ť	١Ť	10		Ü	Ü	10	10
	has 2 - C'hilomorphia y jour bhanc	we/L		-	Ü	10		Ü	Vii	10		Ü	l ü	10		١ ٠	Ü	10	10
		w/L		-	Ü	10		Ť	Ü	10		ť	lΰ	10		Ü	Ü	H)	10
	hes(2-("his morethyl) other		 	┢┈┤	Ü	10	 	Ü	Ü	10	40	⊢ ~	├ ~				۳,		
	host 2-Intoplieray (sphilladate	up/L		\vdash	-	10	 	1 0	- 55-	19			 	10	32			ter .	40
	Hatylle neyiphthalate	up/L					 	"				Ų.	U	10		U	Ü	10	lo .
	Carhuride	wg/L		┉):	10	 _		2	10		U	U	10		2	U	KO KO	to
	Сътучене	we/1.		-	>	10	 -	۳	U	10		U	U	10		٦	-	10	10
	1 to ar-husy sphishalate	up/L	ļ		7	10		U	VI	10		۳		10		٦	5	10	10
	De-m-sn (y lphthalaic	ug/L.	<u> </u>		2	10	ļ <u>.</u>	U	U	10	L	<u>u</u>	U	10		2	5	10	10
MW-55 I	Enthemorie, a Johann Beracenic	up/L			3	10		U	73	10		U	U	10		U	C	10	10
MW-55 2	Difficulted areas	up/L			2	10		U	3	10		U	U	10		5	U	10	10
MW-15 1	Literally lipitalization	up/L			2	10		U	UI	10	1	U	V	10		5	υ	10	le
	1 Torrectly i phothafaic	ug/L			5	10		U	IJ	10		U	Ü	10		5	U	10	10
	Handandrene	we/L	T	\Box	5	Į0		U	IJ	10		Ü	Ū	10		Ü	Ü	IÖ	10
MW-35		w/L			2	10		T	UI	10		Ü	Ü	10		Ü	Ü	10	10
	Hearth-notement	- Juger		1	-	10		Ü	Ü	16	 	l ŏ	υ	10		Ü	Ť	10	10
	h-sachi-reducations	- PL	 	 	Ü	10		Ü	Ui		 	l ö	Ü	10		Ü	ŭ	10	10
		wel.		-	۳	10		Ü	- 55	10	 	H	l ü	10		"	"	30	10
	Herachboneyelopentalicise			-	늉			H	6	 	 								
	Henry Monograms	- WL		\vdash		60			_			Ų	Ų	10		-		10	10
	Indense 1.2,1-cultpyrene	up/L		\vdash	2	10	<u> </u>	Ų.	W	10		U	U	10		2	2	10	10
MW-55	I supplies one	up/L	<u> </u>	 	2	10	 _	U	וט	10	<u> </u>	U	U	10		٦	U	10	10
MW-55	N-Niterorden-propylamine	w/L		لــــا	2	16		U	U	10		U	U	10		د	C	10	10
	N-Nationaliphonylamine	up/L			U	10		U	UΪ	10		U	Ü	10		٥	U	10	lo .
	Naphthalene	wp/L		\Box	٦	10		U	3	10		v	U	jo		2	U	10	10
	Nambenzene	up/L			υ	10		U	יכ	10		Ü	Ü	10		Ü		lo	10

		T			£veni				Event	2			Event !	3			Event	4	Highest:
Well	Analyte	Units	Mesnik	1.0	2	Detect Limit	Result	IQ	DQ	Detect Limit	Rossell	LQ	2	Heni. I Justici	Kenult	1.0	DQ	Detect Limit	Det ction
MW 55	Pennachiorophenol	ug/t.			U	25		U	UJ	25		U	٥	25		U	U	25	25
MW-15	Phonanticone	ug/L			حا	10		U	UJ	10		U	5	10		U	U	16	10
MW-55	Phenol	eg/L			V	10	39	L	17	10		Ü	U	10	7.0	1		10	19
MW-11	Pyrene	ug/l.			U	10		U	U	10	I	U	υ	10		I U	U	10	10

Appendix C

					Event				Round 2				Event	1			Event -		Highest
Well	Analyte	Limite	Result	1.0	DO	Detect Limit	Result	IA		Detect 1.imit	Result	1.0	DQ	Detect I.imit	Remait	1.0	PO	Detect Limit	Detection
M·IS	4.4'-DDD	ue/L	NA.	+:~	1.2	0.000		7		9.10		Ü	W	0.10	} _	U	3	0.10	0.10
M IS	4.4'-DDI:		NA NA	 	-			ᄬ	w	0.10		Ü	Ü	0.10	 	Ü	Ü	0.10	0.10
MIS	4.4'-DDT	well.	NA NA	┪	 			١ ٠	ü	9.10		Ü	ü	0.10	 	ü	Ü	0.10	0.10
	Aldria		NA NA	┼			 	١ ٠	Ü	0.05		Ü	Ü	4.05		Ü	Ü	0.05	0.10
M-IS	alpha-BIK	werk	NA -	╂				Ü	ü	0.05	 	Ü	Ü	0.05	 	Ü	Ü	0.05	0.05
	alpha-Chlordan:		NA NA					Ü	ü	0.05	 	Ü	Ü	0.05	 	ü	Ü	0.05	0.05
M-15	Ansche-1016	ug/L	NA NA	+-	 			Ü	ü	1.0		1 0	۱ü	1.0	 	ü	Ü	1.0	1.0
M·IS	Anche-1221	ug/L	NA NA	+-				Ü	ü	2.0		Ü	ΙŬ	2.0	 	Ü	Ü	2.0	2.0
M-15	Anchr-1232		NA.	┼─	1-			-	<u> </u>	1.0		 	Ü	1.0		₩	H	1.0	1.0
M-15	Anwhr-1242	ug/L	NA NA	╆	-			Ü	Ti I	3.0		H	lΰ	1,0	 	"	Ü	1.0	1.0
M-15	Anche-1248	ug/L	NA NA	┼	-			Ü	Ü	1.0		Ü	1 0	1.0	 	ü	l ü	1.0	1.0
M-IS	Anutur-1254	ug/L	NA NA	┼	-		 	Ü	Ü	1.0		Ü	Ιŭ	1.0	 	Ü	Ü	1.0	1.0
M-15	Anche-1200	ug/L	NA.	+-				Ü	Ü	1.0		١Ŭ	tŏ	1,0	 	ŭ	T U	1.0	1.0
M-15	hera-BIK	ug/L	NA NA	 	-		 	Ü	Ü	0.05		Ü	Ü	0.05		ϋ	Ü	0.05	0.05
M-15	dena-BHC	ug/L	NA.	 	\vdash		 	Ü	3	0.05		Ü	Ü	0.05		ŭ	Ü	0.05	0.05
M-1S	Dicklen	w/L	NA.	┼-	1			Ü	Ü	0.10		Ť	Ü	0.10		Ŭ	Ŭ	0.10	0.10
M1-15	limbouitan l	ug/L	NA.	╀	-		ti	Ü	Ü	0.05		Ü	ΙŬ	0.05		Ü	Ŭ	0.05	0.05
M-IS	limbusilan li	ug/L	NA NA	+-	\vdash			Ü	Ü	0.10		Ť	Ü	0.10	 	Ü	H	0.10	0.10
A1 15	Embaultan sultaic	ug/L	NA NA	 	\vdash			7	Ü	0.10		Ŭ	Ι Ŭ	0.10	 	Ü	Ü	0.10	0.10
MILIS	I:mbris	ug/L	NA.	_	1		 	Ü	Ü	0.10		ĺΰ	Ü	0.10	 	Ü	Ü	0.10	0.10
MILS	Findrin aldehyde	ugA.	NA NA	┿				Ü	Ü	0.10	·	Ŭ	ü	0.10	 	Ü	Ü	0.10	0.10
M-15	lindrin keune	ug/l.	NA NA	 	-			Ü	Ü	0.10		Ť	W W	0.10	 	Ü	Ü	0.10	0.10
M-15	yanuna-BHC	ug/L	NA NA	 	1		1	Ü	ü	0.05		۱ŭ	Ü	0.05	 	Ü	Ü	0.05	0.05
M-15	gamma-Ohkedanc	wert.	NA NA	┼─	-			Ü	ü	0.05		Ŭ	Ι ΰ	0.05	 	Ü	Ü	0.05	0.05
A1-15	1 keptachker	ug/t.	NA NA	┼	-			Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
M-15	Heptachker epistok	we/1.	NA.	┼			 	Ü	Ü	0.05		Ü	Ü	0.05		10	Ü	0.05	0.05
			NA NA	┼			0.08	*	- ;- -	0.003		Ü	Ü	0.50		Ü	Ü	0.50	0.50
M-IS	Methorychler	w/L	NA.	╂	-		17,141	ΰ	ü	5.0		Ü	l ü	5,0		10	Ü	5.0	5.0
	Totaphene	ug/L	NA NA	┼	-			- ŭ	Ü	9.10		t	l w	0.10	 	۳.	Ü	0.10	0.10
M-IS M-IS	4,4'-000 4,4'-000E	ug/L	NA NA	┼					Ü	0.10		U	l ü	0.10	 	├	Ü	.0.10	0.10
	4.4°-0070		NA NA	├	 		0.01	18	ار ا	0.001		Ü	W W	0.10	 		Ü	0.10	0.10
M-35	Aldrie	ug/L ug/l.	NA NA	┼	-			-	Ü	0.05		۱ŭ	1 0	0.05	 		Ü	0.05	0.10
A1-35	alpha-RHC	ug/L	NA NA	┼	 				Ü	0.05		١Ŭ	1 0	0.65	 		Ü	0.05	0.05
M-35	alpha-Ohmian:	ug/l.	NA NA	┼-	-		1	_	Ü	- 0.05		t	10	0.05	 	-	Ü	0.05	0.05
M IS	Anche-lillo	w/L	NA NA	┼─	\vdash			_	Ü	1.0		ΙŬ	۱ ٽ	1.9	} -	 	Ü	1.0	1.0
M 15	Anichu-1221	ug/l.	NA.	 			 	_	Ü	2.0		١ ٠	Ü	2.0	 		Ü	2.0	2.0
M-35	Anche-1232	we/L	NA.	┼			 		Ü	1.0		Ü	Ü	1.0		-	Ü	1.0	1.0
M-15	Anschr-1242	ug/l.	NA	_	1		 	_	Ü	1.0		Ü	Ü	1.0			Ü	1.0	1.0
M-35	Anglar-1248	ug/t.	NA	 					-	1.0		Ü	Ť	1.0		-	Ü	1.0	1.0
M-35	Anchr-1254	ug/L	NA	 					Ü	1.0		Ť	Ť	1.0		 -	Ü	1.0	1.0
M-35	Anichir-12M)	ug/l.	NA	T					Ü	1.0		Ü	Ť	1,0	 -		Ü	1.0	1.0
M-35	new-BIK	ug/L	NA	1					U	9.05		Ŭ	Ü	0.05			Ü	0.05	0.05
M-35	sk:lta-BHC	W/L	NA	1					S	0.05		Ū	Ū	0.05		-	Ŭ	0.05	0.05
M-1S	Dicklon	ug/L	NA	T^{-}					Ü	0.10		Ü	Ū	0.10		\vdash	Ü	0.10	0.10
M-35	Embrudies (- Jul	NA	1			 		Ü	0.05		Ť	Ü	0.05			Ü	0.05	0.05
M-35	Embradian II	ug/L	NA	1					Ü	0.10		Ü	Ü	0.10			Ü	0.10	0.10
M-35	Embaultan sultate	ug/t.	NA	T					Ü	0.10		Ū	Ü	0.10		<u> </u>	Ü	0.10	0.10
M-3S	Endria	144/L	NA	1			·		Ü	0.10		Ü	T iii	0.10			Ü	0.10	0.10
M-35	Emiria akichyde	ug/L	NA NA	1			T		Ü	0.10		Ū	T W	0.10	1	\vdash	Ü	0.10	0.10
M-35	Emiria ketone	ug/L	NA NA		\vdash		1		Ü	0.10		Ū	w	0.10	 	1	Ü	0.19	0.10
M-3S	ganna-BHC	w/L	NA	T					Ü	0.05		Ü	Ü	0.65		\vdash	H	0.05	0.05
M-35	gannia-Chivdane	ug/l.	NA NA	$\overline{}$	$\vdash \vdash$				Ü	0.05		Ü	Ť	0.05	 	_	Ü	0.05	0.05
M-35	1 keptachker	ug/l.	NA.	 	-				Ü	0.05		Ü	Ŭ	0.05	 	_	Ü	0.05	0.05
M-3S	Heptachkir epiixide	ug/l.	NA NA	 					Ü	0.05		Ü	Ü	0.05		-	Ü	0.05	0.05
M 35	Methoxychlor	ug/L	NA NA	 			1	_	Ü	0.50		Ü	Ü	0.00	 	- -	- 5	0.50	0.50
NI 33	IICHIRAN TIME	I OF'L.					<u> </u>		للنب	17.374	L	<u> </u>	_ ب	U 70			ليا	V.30	11 20

Appendix C
Maximum Concentrations of Pesticides and PCBs
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Criffith, Indiana

anirated	limi, I touted	Òα	0.1	Heary	Detect Limit	Òú	9.1	Mensell	Ment. Protect	0a	0.1	Hersill	Hani. Frats()	δú	0.1	HacsM	atim()	3) (lenA	11244
0.8	0.2	n			0.2	c	n		0.8	-						٧N	,Ngu	ningdesog	SEIN
010	0.00	n	ñ		01'0	'n	n		01'0	n	0					٧N	.1\squ	ddd:.fif	at In
01.0	000	n	ñ		01'0	'n	n		010	C	n					YN	J/ylu	300-11	CIT IN
01'0	0.10	n	n		010	'n	n		0.10	C	C					٧N	7/an	4'4, DDL	VI 1D
\$0.0	\$0.0	n	n		\$0.0	1	П		90.0	n	C					٧N	.l\yu	MINAA	VI 11)
\$0.0	\$0.0	n	n		\$0.0	n	n		80.0	C	6					VN	.J\stu	गणिग प्राप्त	(11:14
\$0.0	SO:0	n	П		\$0.0	n	ñ		20.0	C	C					٧N	.Ngu	Mirlanda') tibili	(11:14
o t	0.1	n	n		0.1	ń	n		0.1	n	6					٧N	7/80	Anche 1016	(11-14
0.2	2.0	n	ń		2.0	n	n		2.0	n	-					٧N	7/:tn	Anwhw-1221	(H-M
0'1	0.1	n	n		0.1	n	n.		0'1	n	0					٧N	JAJIN	Anniba-1232	(17.1%
01	0.1	n	n		0.1	n	n		0.1	n	C			Ι		VN	7/#n	\$451-84maA	OF IN
01	0.1	ñ	n		0'1	n	n		0.1	n	G					٧N	-1/lin	RFS1-WAMAA	(JF-1V)
01	0.1	n	n		0.1	n	n		01	1	-					YN	.Nyu	4251-104maA	OFW
0.1	0.1	n	n		0.1	n	n		01	n	0					٧N	7/360	Anubir-1200	dr:I4
\$0.0	\$0.0	n	ñ		60.0	n	n		50.0	n	0				\vdash	VN	- Ville	Prin-BIIC	de IV
\$0.0	\$0.0	n	n		\$0.0	n	n	t	20.0	n	n			1	\vdash	VN	JAgu .	ALIE-BIIC	(JF-IV
010	01.0	n	'n		01.0	n	n		0),0	n	-			1		YN	-Ngu	สกโลง()	(IF IN
\$0.0	\$0.0	n	n		\$0.0	a	n		\$0.0	n	6					VN	.Ngu	Lindianilan i	dFW.
01.0	010	n	n		010	n	i		010	n	'n			1		٧N	.Ngo	ll nallugednid	(IFIN
010	01.0	7	'n		01.0	<u> </u>	i		01.0	n	i			1	\vdash	٧N	7/30	Sigilue nativecelorit	(IFIV
010	010	n	'n	 	010	in	i		01.0	n	ä			t		٧N	1/40	क्रामेश्वरी	GF:IV
01.0	010	n	U.	 	010	in	i n		0.0	'n	÷			—		VN	.Mgu	Бинга акістукі	(IF IV
01.0	010	1	n	 	010	10	n	·	0.10	'n	÷			 	$\vdash \vdash$	VN	-jylin	ринцау фармер	CIFIN
\$0.0	\$0.0	n	0	t	\$0.0	10	10		90'0	'n	-			-	$\vdash \vdash \vdash$	٧N	.Ngu	Samues Bill'	(II: IV
\$0.0	50.0	'n	l ii		\$0.0	10	n	 	\$0.0	n	-			†		٧N	7yiln	Special Community	OF IN
\$0.0	\$0.0	n	i i	 	\$0.0	 	i		\$0.0	ii	-			1		٧N	J/3/n	anjipendaja	dr iv
\$0.0	20.0	n	n		\$0.0	'n	n		0.05	n	-			†		٧N	.Ngu	Нергастья сроянае	(It IV
05.0	us.o	'n	7		05.0	i ii	n		08.0	'n	ä			 		VN	Van	Бельняустви	CIT IN
0.2	0.8	n	n	 	0.2	'n	i ii		0.2	'n	'n			t		VN	-Vila	outquesto	dr-IV
010	0.10	i	1	<u> </u>	01.0	m	1 1		010	'n	7			t	$\vdash \vdash$	YN	-1/iln	ddd-rt	SEIV
010	010	l ii	10	 	01.0	in	i		0.10	n	-			 	$\vdash \vdash \vdash$	٧N	-Ngu	300-11	SEIV
01.0	010	n	0		01.0	in	1 10		010	n	1			 	$\vdash \dashv$	VN	-DIEAL	£GG:.FF	SEIN
\$0,0	50.0	in	ñ	 	20.0	'	 		50.0	n	-			 	$\vdash \vdash \vdash$	VN	7/3/0	Aking	SF IN
50.0	50.0	'n	'n		\$0.0	i ii	i		50,05	n	ď			+	\vdash	VN	1/3/0	,भास नक्षान	St IN
\$0.0	50.0	'n	1 1	 	\$0.0	 	 " -		90'0	'n	-			├──	$\vdash \vdash \vdash$	VN	1/3/u	Surport Seriche	SEIN
1.0	0.1	1	<u> </u>	 	0.1	"	 " -		0.1	7	1			 	\vdash	VN	1/3/0	Ans lot-1010	St IN
07	30	<u>n</u>	n		0.2	0	7		0.5	C	5			 	┝╌┤	VN VN	-J/sju	Ansibr-1221	SEIN
0.1	0.1	0	0	 	0.1	-	<u>n</u>		0.1	c	2			- -	\vdash	VN	Nau	2621-8d-205	SF IN
0.1	0.1	n	ņ	}	0.1	<u> </u>	n		0.1	c (5		<u> </u>	-		VN	.1/spu	Ansthe 1248	SEIN
01	0.1	n	n	 	0.1	=	1		0.1	Ċ	5			-		VN	-1/s/u	FSS1-MARINAY	SF 14
0.1	0.1	T.	Ū		0.1	n	n		0.1	2	5			1	\Box	VN	- I/3lin	Anvita-1200	VI 12
\$0.0	\$670	n	l c		\$0.0	<u> </u>	n		0.05	۲,	-					VN	.J\sju	Peta BIRC	SF-14
£0.0	20.0	n	n		\$0.0	۲	n		80.0	c	۲					YN	-1/an	अभिन-विभित्	St-14
01.0	01.0	0	n		010	=	n		01'0	5	5					٧N	Aqu	Dickling	SHW
\$0.0	50.05	n	n		\$0.0	n	n		60.05	5	5					YN	-Nyu) natineramil	St-IN
01'0	01.0	n	n		01.0	c	n		010	-	9					YN	-1√ilu	li nalinecheld	S1-14
or b	01.0	C	n		010	c	2		01.0	-	5					٧N	.Nyu	Contraulian sullate	St-14
01/0	01.0	1	1		01.0	m	a		01.0	=	e					٧N	J\yu	anted	SF-14
01.0	01.0	n	U		010	3	n		010	c	0					٧N	J/Nu	अंदर्ग अंत्रह कारोकारी	St-BV
01.0	0110	Û	n		010	IJ	2		01'0	C	2					٧N	Jypu	Produk ambarl	SF-14
\$0.0	\$0.0	n	n		\$0.0	<u> </u>	n		\$0.0	c	0					¥	.Nyu	Value BHC	SEIN
\$0.0	\$0.0	n	n		\$0.0	n	n		0.02	n	-					YN	Ngu	эверэгрију-тинита	SEW
\$0.0	\$0.0	n	n		\$0 '0	ß	n		\$0.0	Û	C					ΥN	- Ngu	ыуцэтилүү	SEIN
Cario.									\$0.0	n	n	_		1.		VN			SEIV

1745047.75 171725704778s 163 2mmlpink RolffikhtQetects xf8hbCB VIRONIS

West Analyse West May 10 10 10 10 10 10 10 1			, 	r		Event	,			Event		,		Event	7			Event		Highest
1.4.5 Michaeyshee Myf. MA	Well	Amilyte	tinits	Result	11.0			Remak	10			Result	Lio			Result	1.0			Detection
1. 1. 1. 1. 1. 1. 1. 1.					1							 				 				0.50
No. No.					1-											 				50
SWY 60 Ackground SWY 60					U	U	0.10		Ū							 				0.10
N. W. G. A. C. (1977) wgh. wg							0.10													0.10
Wilson Abbar Wilson Wi				 	Ü	U	0.10		U							1				0.10
Service Serv						U	0.05		U							 				0.05
SWY 05 Archive 1124 SWY 05 SWY					U	U	0.05		U	Ü	0.05		Ü	_		 				0.05
Section Sect									_			1				 				0.05
ANSWER ANSWER 2007 10 10 10 10 10 10 10					Ū	Ū			Ü	Ü						 		_		1.0
March Marc							2.0		U											2.0
NW No. Ascher 124												 				 				1.0
All Color All								 				 				 				1.0
Service 1544 1545								 				 				 				1.0
SWY-06 Anscher 1261						_		 								 				1.0
Service Serv												 				 				1.0
ASY OF A				 				0.05				 				 				0.05
Week				 				17.413						_		 				
System Factorities stp.								 				 				 				0.05
1987-10 1988-10 1987				 				 								 				0.10
Mary 10 Designation colories UPC U U U 0.10 U				ļ. 				 								 				0.05
MW-18 Entire My-18 Entire My-18 My-18 My-18 My-18 Entire shekhynt. My-18 My-18 Entire shekhynt. My-18 My-1				ļ				 				 	_							0.10
Martin Forders albehypic 1967. U U 0.10 U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U 0.055 U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U U 0.055 U U 0.055 U U U 0								 				 								0.10
MW-68 Selecte Across												 				 				0.10
MW 08 Parties BHC SpiP.				ļ		_										}				0.10
NW 10 Regional-Chordon				<u> </u>	_			 								 				0.10
NW-46				ļ						_		ļ								0.05
NW-17h Hybachhar cpixtde 1967. U U 0.025 U U								0.02								 				0.05
MW-15 Michanychhar mg/L									_											0.05
MV-rin Triangheme				 _				 -								<u> </u>				0.05
NW-07 4,3 10D 10P 10P NA	MW-06	Methagehhr		<u> </u>		_		 -		_		}				<u> </u>				0.50
NW-07 4,2-1372 ugfl. NA					1 "	U	5.0	}				ļ	_			L				5.0
NW 07 3,4 101T 10gL NA	MW-07	4.4° DDD	w/L						***					U	0.10		U	U	0.10	0.10
MW-017 Altern My7. NA	MW-07	4.4° DINE	ug/L		<u> </u>			<u> </u>											0.10	_0.10
MW-07 Apple BHC Mg/L NA	MW-07	1,4" (HOT	ug/1.	NA.	<u> </u>							<u> </u>	_	U	0.10		٦	U	0.10	0.10
NW 07 April Chhodane Ug/L NA	MW-07	Aktron	ug/l.		<u> </u>			<u> </u>				L					٦	U	0.05	0.05
MW-417 Anschr-1212 ugfl. NA	MW-07	alpha-BIK	ug/L	NA				L						U	0.05		U	U	0.05	0.05
MW-07 Anschor-1221 ug/l. NA U U 2.0 U U 2.0 U U 2.0 U U 2.0 MW-07 Anschor-1242 ug/l. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Anschor-1248 ug/l. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Anschor-1248 ug/l. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Anschor-1248 ug/l. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Anschor-1248 ug/l. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Anschor-1260 ug/l. NA U U U 1.0 U U 1.0	MW-07	alpha Chkndane	ug/l.		1			<u> </u>								1	υ	U	0.05	0.05
MW-07 Ann. for 12-12 Ugft. NA U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 Ugft. NA U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 Ugft. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 Ugft. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 Ugft. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 Ugft. NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 U U 1.0 MW-07 Ann. for 12-12 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-07 Ann. for 12-12 U U 1.0 MW-07 Ann. for 12-12 U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 MW-07 Ann. for 12-12 U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 MW-07 Ann. for 12-12 U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.10 MW-07 Endrin wild are ugft. NA U U U 0.10 U U 0.10 U U 0.10 MW-07 Endrin skichyde ugft. NA U U U 0.10 U U 0.10 U U 0.10 MW-07 Endrin kichyde ugft. NA U U U 0.05 U U U 0.10 U U 0.10 MW-07 Endrin kichyde ugft. NA U U U 0.05 U U U 0.05 U U U 0.05 MW-07 Endrin kichyde ugft. NA U U U 0.05 U U U 0.05 U U U 0.05 MW-07 Endrin kichyde ugft. NA U U U 0.05 U U U 0.05 U U U 0.05 U U U 0.05 MW-07 Endrin kichyde ugft. NA U U U 0.05 U U	MW-07	Annihe-1016	ug/l.	NA		$ldsymbol{L}$								U	1.0		5	U	1.0	1.0
MW-07 Anschr-17-12 Mg/L NA	MW 07	Appelor-1221	ug/L					! _										U	2.0	2 ()
MW-07 Ann. Shr-1-248	MW-07	Ann. hr-1212	ug/l.					l						U	1.0		U	U	1.0	10
MW-07 Anscher-1264 Mg/L NA U U U 1.0 U U 1.0 U U 1.0 U U 1.0	MW-07	Aniche-1242	ug/l.		1		<u> </u>							U	1.0		2	Ü	1.0	1.0
MW-07 Ans.har-12ed ug/L NA U U 1.0 U U 1.0 U U 1.0 U U 1.0 NW-07 NA NA U U U 0.05 U U 0.05	MW-07	Anche-1248	Ug/L	NA			L							U	1.0		Ü	U	1.0	1.0
MW-17 Inch Bil C Ug/L NA U U 0.05 U U 0.05 U U 0.05 U U 0.05 MW-17 Inch Bil C Ug/L NA U U U 0.05 U U 0.05 U U 0.05 U U 0.05 MW-17 Inch Bil C Ug/L NA U U U 0.05 U U	MW-07	Aniche-1254	ug/l.											_					1.0	1.0
MW-177 Incharin My-1. NA	MW 07	Anniber-12ml	אישע .							_				U	1,0		U	U	1.0	1.0
MW-477 Dischrim Mg/L NA	MW-07	heta-BHC	ug/L	NA	1				υ	U	0.05		U	U	0.05		U	_U	0,05	0.05
MW-477 Dicklarin Ug/L NA U U U 0,160 U U 0,100 U U 0,100 MW-477 Enchandron I Ug/L NA U U U 0,055 U U U	MW-07	deha-BHC	ug/t.	NA							0.05		Ü	U	0.05		Ų	_v	0.05	0.05
MW-07 Endoughten 1 Ug/L NA U U U 0.05 U U 0.05 U U 0.05 U U 0.05 MW-07 Endoughten 11 Ug/L NA U U 0.10 U U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15	MW-07	Dicklin	ug/L	NA					Ü	U	0.10		U	U	0.10		Ü	U		0.10
MW-07 Enchrosoffan II ug/L NA U U 0,10 U U 0,10 U U 0,10 U U 0,10 MW-07 Enchrosoffan sept. NA U U 0,10 U U 0	MW-07	Embruitan I	ug/L	NA					U	U	0.05		U	U	0.05		U	U		0.05
MW-07 Embras solitate ug/L NA U U 0.10 U U 0.10 U U 0.10 NW-07 Embras solitate ug/L NA U U 0.10 U U U U U U U U U				NA.					U	U	0.10		U	U			v			0.10
MW-07 Endrin wg/L NA U U 0,10 U U 0,10 U U 0,10 U U 0,10 MW-07 Endrin aldchyda: wg/L NA U U U 0,10 U U 0,10 U U 0,10 U U 0,10 U U 0,10 MW-07 Endrin latchine: ug/L NA U U U 0,10 U U 0,10 U U 0,10 U U 0,10 MW-07 garuna-SIIC ug/L NA U U U 0,05 U U U 0,05 U U U 0,05 MW-07 garuna-Chlwdanc ug/L NA U U U 0,05 U U U 0,05 U U U 0,05			_	NA					U	U	0.10	T	U	U		1	Ü			0.10
MW-07 Entrin ablethyde: up/L NA U U 0.10 U U 0.10 U U 0.10 U 0.10 NW-07 Entrin betone: up/L NA U U U 0.10 U U 0.10 U U 0.10 U U 0.10 U U 0.10 MW-07 gartinia-BHC up/L NA U U U 0.05 U U U 0.05 U U U 0.05 MW-07 gartinia-Chloridane: up/L NA U U U 0.05 U U U 0.05 U U U 0.05				NA	1			1	U	U	0.10	1				1				0.10
MW-47 Entrin Lettone Ug/L NA U U 0,30 U U 0,10 U U 0,10 U U 0,10 MW-47 garinna-BHC Ug/L NA U U 0,05 U U U 0,05 U U 0,05 U U 0,05 MW-47 garinna-Chlundane Ug/L NA U U 0,05 U U U 0,05 U					1			1	U	U						 	_	_		0.10
MW-(77 cannus-Bi)C ug/L NA U U 0.05 U U 0.05 U U 0.05 MW-(77 cannus-Chiardanc ug/L NA U U U 0.05 U U 0.05 U U U 0.05												 		_		1				0.10
MW-(77 gattima-Chlandanc ug/). NA U U U 0,05 U U 0,05 U U U 0,05					1-			 				 				 	_			0.10
					+	-		 				 				 	_			
MW-07 (Represented ug/). NA U U U 0.05 U U 0.05 U U 0.05					 	-		 	Ü	Ü		 	U			 	_			0.05

MW-07 K1 MW-07 T MW-08 4 MW-08 4 MW-08 4 MW-08 A	Analyte Topraction operate Methoxycistor	Units ug/L	Kesult	1.0	Event				Event				Event .				Event 4		Highest
NIW-07 II NIW-07 K NIW-07 T AIW 08 4 NIW-08 4 AIW 08 4 NIW-08 4 NIW-08 4	teprachlor epoxide		*******			Detect Limit	Result	1.0	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	DO	Detect Limit	Detection
MW-07 K1 MW-07 To MW-08 4 MW-08 4 MW-08 4 MW-08 A			NA		-			U	U	0.05		Ü		0.05		Ü	10	0.05	0.05
NIW-07 To AIW 0K 4 NIW-08 4 NIW-0K 4 NIW-0K A		og/L	NA.	 				Ŭ	Ü	0.50		Ü	Ü	0.50	 	Ιũ	Ü	0.50	0.50
MW 08 4. MW 08 4. MW 08 4. MW 08 A	Foxaphene	ug/L	NA					Ū	U	5.0	1	U	Ü	5.0	 	U	U	5.0	50
MW-08 4. MW-08 4. MW-08 A	1.4"-000	ug/L		U	U	0.10		U	U	0.10		U	U	0.10		U	U	0.10	0.10
MW OR A	(4'-DDL	ug/L.		U	U	0.10		υ	U	0.10		U	υ	0.10	L	U	U	0.10	0.10
	1.4"-DDT	υ <u>κ</u> /1.	1	U	U	610		U	U	0.10		U	U	0,10		U	U	0.10	0.10
1 1111	Aldein	ug/L		U	U	0.05		υ	U	0.05		U	υ	0.05		U	U	0.05	0.05
MW OIL Jal	ilpha-BIK'	ug/L		U	U	0.05		U	٥	0.05		Ų	٦	0.05		U	U	0.05	0.05
MW (IR at	alpha-C'hlordane	u _k /L		Ų	U	0.05		υ	כ	0.05		U	υ	0.05		U	U	0.05	0.05
MW DR A	Amelor-1016	ug/t.		U	U	1.0		U	U	1.0		U	U	1.0		U	U	1.0	1.0
MW-IN A	Anucker-1221	υ <u>γ</u> /1.		U	υ	2.0		U	Ü	2.0		υ	υ	2.0		U	υ	2.0	2.0
NW-OK A	Anicke-1232	ug/L.		U	U	1.0		U	U_	1.0		U	U	1.0		U	U	1.0	1.0
MW-IR A	Anichir-1242	nk/r		U	υ	1.0		U	ט	1.0		U	U	1.0		U	U	1.0	1.0
NW-ON A	Ameter-1248	υμ/L.		U	U	1.0		U	5	1.0		U	U	1.0	l	U	U	1.0	1.0
MW-IR A	Anichir-1254	ug/t.		υ	υ	1.0		U	ح	1.0		U	U	1.0		U	U	1.0	1.0
MW-IK A	Aniche-1260	ug/L		U	(1	1.0		U	5	0.1		C	5	1.0		U	U	1.0	1.0
MW-OB h	reta-BHC	ug/L		U	บ	0.05		U	5	0.05		C	2	0.05		Ü	U	0.05	0.05
MW-DK A	letta-BHC	ug/L		U	U	0.05		Ü	ح	0.05		C	٦	0.05		U	U	0.05	0.05
MW-0K D	Seldrin	ug/L		Ų	U	0.10		υ	ح	. 0.10		U	υ	0.10		U	υ	0.10	0.10
MW OR E	indepultan l	ug/L		U	U	0.05		U	٥	0.05		U	Ū	0.05		Lu	U	0.05	0.05
MW-(W E	ndesultan li	ng/L		U	บ	0.10		U	ح	0.10		υ	٦	0.10		U	υ	0.10	0.10
MW-ON E	indissultan sultate	ug/L.		U	U	0.10		U	٦	0.10		U	٦	0,10		U	U	0.10	0.10
MW-dK E	indria	ug/L.		U	υ	0.10		Ū	حا	0.10		U	U	0.10		U	U	0.10	0.10
MW-ON E	indrin aklehyde	υ <u>κ</u> /L		U	U	0.10		U	5	0.10		U	U	0.10		U	Ü	0.10	0.10
MW OH E	indem ketone	ug∕1.		U	υ	0.10		U	U	0.10		U	Ü	0.10		U	U	0.10	0.10
MW OR ga	ramnia-BHC	ug/L		U	U	0.05		υ	Ū	0.05		υ	Ü	0.05		Ü	U	0.05	0.05
MW-ON PA	anuna-Chlordane	ug/L		U	U	0.05		U	U	0.05		5	U	0.05		U	U	0.05	0.05
	teptachlor	υκ/L.		U	U	0.05		U	C	0.05		υ	٧	0.05		U	U	0.05	0.03
MW (IK IL	teptachtor eposide	ug/L		U	U	0.05		U	U	0.05	}	U	2	0.05		U	10	0.05	0.05
MW-08 M	Methoxychlor	nk/r		υ	υ	0.50		U	٦	0.50	!	U	2	0.50	<u> </u>	υ	U	0.50	0.50
MW OR TO	Foxaphene	ug/L		U	U	5.0		U	ح	5.0		U	U	5.0	<u> </u>	U	U	5.0	50
	1.4°-DDD	uy/L		U	U	0.10		U.	٦	0.10			U	0.10		U	1 4	0.10	0.10
	1.4DOE	טעור.		U	U	0.10		U	U	0.10	 	-	3	0.10	<u> </u>	U	U	0.10	0.10
	.4'-DDT	ug/L		U	U	0.10		U	٦	0.10		_	5	0.10	1	U	U	0.10	0.10
	\ klrin	uy/L		U	U	0.05		U	2	0.05		-	2	0.05		U	U	0.05	0.05
	ljilia-BHC	ug/t.		U	Ų.	0.05		U	υ	0.05			۳	0.05	 	U	U	0.05	0.05
	lpha-Chlordane	ug/L		U	<u> </u>	0.05		U	2	0.05		-	۳	0.05		l y	1 4	0.05	0.05
	los kw-1016	ug/L		U	步	2.0		1 0	U	2.0			۳	1.0 2.0		U	10	2.0	2.0
	Amelor-1221 Anochur-1232	ug/L		l ü	5	1.0		 0	υ	1,0	 	-	1	1.0	 	1 🖰	1 5	1.0	1.0
	Anickir-1242	ug/L	 	Ü	7	1.0		1 0	+	1.0	 	 	Ü	1.0	 	10	┪╬┪	1.0	1.0
	Annelw-1248	ug/L		U	l ü	1.0		U	ü	1.0	 	_	Ü	1.0	 	l ü	10	1.0	1.0
	Anichr-1254	ug/L		Ü	Ü	1.0		Ť	Ü	1.0	 	 	Ŭ	1.0	 	Ü	T U	1.0	1.0
	Auckur-1260	ug/L		Ü	Ü	1.0		Ü	Ü	1.0	 	_	Ŭ	1.0	 	U	Ü	1.0	1.0
	eta-BHC	ug/L		Ü	Ü	0.05		Ü	Ü	0.05	 		Ü	0.05	 	tΰ	Ü	0.05	0.05
	kita-BIIC	ug/t.		Ü	Ü	0.05		Ü	Ü	0.05			Ü	0.05	 	ΤÜ	U	0.05	0.05
	Dicklina	ug/L		U	Ü	0.10		Ü	ΰ	0.10			Ü	0,10		ŭ	Ü	0.10	0.10
	nikisultan l	ug/L		U	U	0.05		Ü	U	0.05			Ū	0.05		Ŭ	Ü	0.05	0.05
	ndesultan II	ug/L		υ	Ü	0.10		Ü	2	0.10	T		Ü	0,10	 	Ť	Ü	0.10	0,10
	ndissultan sultate	ug/l.		U	U	0.10		U	U	0.10	I _		5	0.10		Ü	Ü	0.10	0.10
	inden	ug/L		υ	Ü	0.10		U	υ	0.10			Ü	0.10		Ü	Ü	0.10	0.10
	indrin aklehyde	ug/1.		U	U	0.10		U	U	0.50			Ü	0.10		Ť	1 0	0.10	0.10
	indrin ketone	ug/l.		U	U	0.10		Ü	Ū_	0.10	<u> </u>		Ü	0.10		Ü	Ü	0.10	0.10
	anuna-BHC	ug/t.		U	U	0.05		U	U	0.05			Ü	0.05		Ü	l ŭ l	0.05	0.05
	anuna Chlordane	ug/l.		U	U	0.05		U	۲	0.05	· · · · · ·		Ü	0.05		Ü	Ü	0.05	0.05

Appendix C Maximum Concentrations of Pesticides and PCBs Baseline Groundwater Monitoring

American Chemical Services NPL Site
Griffith, Indiana

					Kreat		T		Event	2			Kreat	3	γ		Kvent (Highest
Well	Analyte	Ünits	Result	I IQ	DQ	Detect Limit	Result	IQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	IQ		Detect Limit	Detection
MW 09	Heptachku	ug/L		U	U	0.05		U	U	0.05			U	0.05	1	٦	U	0.05	0.05
MW-W	Heptachhu cpunide	wg/L		Ü	U	0.05		U	Ü	0.05			U	0.05		دا	U	0.05	0.05
MW-IW	Medicayethia	wg/L		U	U	0.50		U	Ų	0,50			U	0.50		ح	U	0.50	0,50
MW-U)	Totaphene	w/L	1	U	U	5.0		U	U	5.0			U	5.0		U	U	5,0	5.0
MW-HIC	4'4, 4000	ug/L		U	U	0.10		U	Ü	0.16			W	0.10		ម	Ü	0.10	0.10
MW-IOC	4.4"-DDE	ug/L		U	U	0.10		U	U	6.10			UJ	0.10		2	U	0.10	0.10
MW-10C	4.4° DOT	wg/L		U	U	0.10	<u> </u>	U	Ü	0,10	L		w	0.10		5	Ü	0.10	0.10
MW-IOC	Africa	w/L		U	U	0.05	<u> </u>	υ	U	0.05			U	0.05		٥	U	0.05	0.05
	alpha-BIK	w/L		U	U	0.05	L	U	U	0.05	<u> </u>		U	0.15		٥	U	0.05	0.05
	alpha ('hhmlane	<u> </u>	L	U	U	(1.05	<u> </u>	Ü	U	4.05			U	0.05	<u> </u>	2	U	0.05	0.05
	Anche-1016	w/L	} _	U	U	1.0	<u> </u>	U	U	1.0			U	1.0		٦	V	1.0	1.0
	Aniche-1221	wg/L		U	U	2.0	<u> </u>	C	U	2.0			U	2.0	<u> </u>	٦	U	2.0	2.0
	Aniche-1232	- Jug/L		U	U	1.0	ļ	U	U	1.0		_	U	1.0	L	۳	141	1.9	1.0
	Anishr-1242	- Juge		U	U	1,0		U	U	1.0			V	1.0	<u> </u>	기	<u>"</u>	1.0	1.0
MW-IDC		- Juge	<u> </u>	U	U	1.0	ļ <u>.</u>	U	U	1.0		L	U	1.0	ļ	اد	U	1.0	1.0
		- Jupil		U	C	1.0		U	٧	1,0		\vdash	U	1.0		دا	U	1.0	1.0
	Aniche-12m)	ug/L		U	Ų.	1.0	<u> </u>	Ų.	U	1,0	<u> </u>		U	1.0		٦	U	1.0	1.0
		w/L		Ų.	U	0.05		l u	U	0.05			U	0,05		۲	U	0.05	0.05
MM-10C.	deha-BIIC	uy/L		U	U	0.05		Ų.	U	0.05		-	U	0.05		U	U	0.05	0.05
		ug/L		U	U	0.10		<u> </u>	U	0.10			U	0.10		ב	بيا	0.10	0.10
MM-luc.	Entimellar I	W/L	ļ	U	: =	(1,05		U.	2	0.05			U	0.05		U	Ų.	0.05	0.05
MW-HK.	Fahrulija (i	ug/L	ļ	U	U	0.10		U	۲	0.10		_	Ü	0.10		Ų.	U	0.10	0.10
MW-10C	End-nullan sultate	ue/L		<u>u</u>	Ų.	0.10		U	, u	0.10	ļ	_	U	0.10	 	Ü	Į Ų	0.10	0.10
MW-10C	Emiria	well		U	Ų	0.10	 	Ų.	U	0.10		_	E	0.10		U	U	0.10	0.10
MW-10C	Findria aldehyde	w/L		U	U	0.10		U	2	0.10		_	UJ	0,10	ļ	٦	Ų,	0.10	0.10
	Endrin ketene	we/L			_				l	0,10		-	U	0.10	<u> </u>	U	Ų.	0.10	0.10
MM-10C.		ug/l.		U	U	0.05		Ü	=	0.05		-	U	0.05		Ü	U	0.05	0.05
		w/L		U	2	0.95	 -	U	ככ	0.05		\vdash	CC	0.05		Ü	Ü	0.05	0.05
	Heptachlor	ug/L		l ö	-	0.05		Ü	0	0.05						U	Ų.	0.05	0.05
	Heptachhor eponiste	w/L		Ü	Ü	0.50		 "	2	0.50			2	0.05		_	Ų.	0.03	0.05
	Alchantha	w/L		Ü	Ü	3.9		Ü	3	5.0		-	i i		 	Ų	l u	0.50	0.50
	Totaphene 4,4°-DDD	w/L		Ü	Ü	0.10		1 5	"	0.10		-	"	0.10		Ü	U	9.10	3.0
MW-11	4.4'-DDE	wert.		Ü	Ü	0.10		Ü	5	- 0.10		-	5	0.10		U	 " 	0.10	0.10
MW-II	4.4 - DDT	<u>₩</u> 1.		Ü	Ü	0.16		l öll	-	0.10		5	Ü	0.10		Ü	101	0.10	0.10
MW-11	Akirm	ug/L		Ü	Ü	0.05		1 5	Ü	0.05		5	5	0.05		Ü	1 0 1	0.05	0.05
MW-11	alotto-B1K,	ug/L		Ü	Ü	0.05		Ü	C.	0.05		-	Ü	0.05		ᇦ	101	0.05	0.05
MW-II	siphs-Chimistic	ug/L		Ü	Ü	0.05		Ü	6	0.05		Ü	H	0.05		Ü	ü	0.03	0.05
MW-11	Anahy-10to	ug/L		Ü	ŭ	1.0		۱ŭ	3	1,0		-	Ü	1.0		Ü	ιŭΙ	1.0	1.0
MW-II	Ancher-1221	w/L		Ü	Ü	2.0		T in	Ü	2.6		-	Ü	2.8		Ü	Ü	2.0	2.0
MW-II	Annan-1232	w/L		Ü	Ü	1.0		Ü	U	1,0		Ü	Ü	1,0		Ť	l ű l	1.0	1.0
MW-11	Anushu-1242	ugh		Ü	Ü	1.0		Ü	5	1,0		Ū	Ü	1.0		Ü	Ü	1,0	1.0
MW-II	Anniber 1244	wel		Ť	Ü	1.0		Ü	-	1,0		Ü	<u> </u>	1.0		Ŭ	u l	1.0	1.0
MW-II	Anche-1254	w/L		Ü	Ü	1.0		Ü	2	1.0		Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW-II	Annhu-1200	w/L		υ	U	1.0		Ü	C	1.0		Ü	Ü	1.0		Ť	Ü	1.0	1.0
NW-11	heta-BHC	w/L		U	Ü	0.05		Ū	υ	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-11	deka-BHC	Jug A.		U	Ü	0.05		Ū	Ü	0.05		1	Ü	0.06		Ť	Ü	0.05	0.05
MW-II	Dicidna	w/L		U	U_	0.10		Ü	5	0.10		Ü	Ü	0.10		Ū	Ü	0.10	0.10
MW-11	lindrastias (Ü	U	0.05		U.	5	0.05		V	U	0.45		Ü	Ü	0.05	0.05
MW-11	Endquilles II	w/L		U	U	0.10		U	5	0.10		Ü	Ü	0,10		Ü	101	0.10	0,10
MW-II	End-nultan sultate	wg/L_		U	U	0.10		U	U	0.10		Ü	Ü	0.10		U	Ü	0.10	0,10
MW-II	Endon	ugΛ.		U	U	0.10		U	U	0.10		Ü	Ü	0,10		Ü	Ü	0.10	0.10
MW-II	Endres aldebyde	ug/L		U	U	0.10		Ü	U	0.10		-	Ü	0.10		Ŭ	101	0.10	0.10
	Endrin ketone	ug/L		U	Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10		Ü	1 0 1	0.10	0.10
	ganana-8HC	ug/L		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05		Ü	l ŭ l	0.05	0.05
*******	19											Į		\$7,774				17.17.3	

AHSUMS
JA1252042/Sept 97 Sampling RpAHighDetects.xls/PPCB
1252042-221601

					Event (Event.				Event	1			Event -		flighest
Well	Analyte	Linits	Result	1.0	DO	Detect Limit	Result	I.Q	DQ	Detect (.imit	Result	1.0	DQ	Detect Limit	Kesult	1.0	DQ	Detect Limit	l election
	gamma-Chlordane	ug/L		U	Ü	0.05		Ü	U	0.05		ΰ	U	0.05	-	υ	U	0.05	0.05
NIW II	Heptachlor	og/L		Ü	Ü	0.05	 	Ü	Ü	0.05		T ü	ΙŪ	0.05	 	Ü	Ü	0.05	0.05
MW II	Heptachku epiinike	ug/L		Ü	Ü	0.05	 	Ü	Ü	0.05		ΙŪ	Ü	0.05	 	Ü	Ü	0.05	0.05
MW-II	Methoaychlor	ug/l.		U	ŭ	0,50		Ü	Ü	0.50	 	Ü	Ū	0.50	 	Ü	Ü	0.50	0.50
MW 11	Toxaphene	ug/l.		U	Ü	5.0	 	Ü	Ü	5.0		Ü	Ū	5.0		Ü	Ü	5.0	5.0
MW-12	4.4 -DDD	ug/l.		<u> </u>	Ü	0.10		Ū	Ü	0.10		Ü	Ü	0.10		Ū	Ü	0.10	0.10
	4.4DDE	ug/l.			Ü	0.10		Ü	Ü	0.10		Ü	U	0.10		Ü	Ū	0.10	0.10
	4.4°-DDT	ug/L			Ü	0.10		Ü	Ü	0.10		ū	Ü	0.10		Ü	Ü	0.10	0.10
MW-12	Akkin	ug/1.		1	Ū	0.05		Ü	U	0.05		υ	U	0.05		Ü	U	0.05	0.05
MW 12	alpha-BIK'	ug/l.			Ü	0.05		U	C	0.05		U	U	(05		U	U	0.05	0.05
	alpha-Chkwdane	ug/L			U	0.05		U	C	0.05		U	U	0.05		U	U	0.05	0.05
	Angler-1016	ug/L			U	1.0		U	Ų	1.0		Ü	U	1.0		υ	U	1.0	0.5
MW-12	Anichir-1221	ug/l.			U	2.0		U	ีบ	2.0		U	U	2.0		U	U	2.0	2.0
MW-12	Anicke-1232	ug/1.			U	1.0		U	U	1.0		U	Ų	1.0		U	U	1.0	1.0
MW-12	Aniche-1242	uy/L			U	1.0		U	U	1.0		υ	U	1.0		U	U	1.0	1.0
MW-12	Anglor-1248	ug/l.			U	1.0		U	U	1.0		U	U	1.0		U	U	1.0	10
MW-12	Anichie-1254	ug/L			U	1.0		C	C	1.0		U	U	1.0		บ	Ü	1.0	1.0
MW-12	Anwhir-(2nd)	ו/עט_	_		U	1.0		U	U	1.0		U	U	1.0		U	U	1.0	1,0
MW-12	hera-BHC	ug/L			U	0.05		U	U	0.05		U	U	0,05		Ų	U	0.05	0.05
MW-12	delta-BHC	ug/L			U	0.05		U	υ	0.05		U	U	0.05		U	U	0.05	0.05
MW-12	Dieldon	Ug/L			U	0.10		U	U	0.10	1	U	U	0.10		U	U	0.10	0.10
MW-12	Endosultan 1	ug/l.			U	0.05		U	U	0.05		U	U	0.05		υ	U	0.05	0.05
MW-12	I:mknultan II	ug/l.			U	0.10		U	U	0.10		U	U	0,10		υ	U	0.10	0.10
MW-12	Enchaptian sultate	ug/1.		1	U	0.10		U	υ	0.10		U	U	0.10		Ū	U	0.10	0.10
MW-12	Linden	ug/l.			U	0.10		U	U	0.10		U	U	0.10		U	U	6 10	0 10
MW 12	Findrin akk hyde	ug/L			U	0.10		U	U	0.10		υ	U	0.10		U	U	0.10	0.10
	Endrin ketone	ug/1.			υ	0.10		U	U	0.10		Ü	U	0.10		U	Ū	0.10	0,10
MW-12	gamma-BHC	ug/L			U	0.05		U	U	0.05		Ü	U	0.05		U	U	0.05	0.05
MW 12	gamma-Chlordane	υμ/I.			U	0.05		U	υ	0.05		U	U	0.05		U	U	0.05	0.05
MW-12	Heptachkor	ug/L			U	0.05		C	Ü	0.05		U	U	0.05		U	U	0.05	0.05
MW-12	Heptachlor epoxiste	ug/l.			U	0.05	ī	U	Ü	0.05		U	U	0.05		U	U	0.03	0.05
	Methoxychlor	ug/L			U	0.50		U	د	0.50		Ü	U	0.50		υ	Ü	0.50	0.50
MW-12	Toxaphene	ug/t.			υ	5.0		U	U	5,0		U	U	5.0		υ	U	5.0	5.0
	4,4°-DDD	υμ/1.		U	U	0.10		U	٦	0.10		U	Ü	0.10		U	U	0.10	0.10
MW-13	4.4'-DDE	ug/L		Ü	U	0.10		U	د	0.10		U	UI	0,10		U	U	0.10	0.10
MW 13	4.4"-15051"	ug/l.		U	IJ	0.10		υ	υ	0.10		U	UJ	0.10		U	Ü	0.10	0.10
MW-13	Airin	ug/L		U	U	0.05	<u> </u>	U	5	0.05		U	U	0.05		U	U	0.05	0.05
MW-11	alpha-BHC	ug/l.		U	U	0.05	L	U	U	0.05		U	U	0.05		υ	U	0.05	0.05
	alpha-Chlendanc	ug/L		LU L	Ξ	0.05	L	U	=	0.05	L	U	U	0.05		υ	U	0.05	0.05
	Anicke-1016	ug/l.	L	U	-	1.0		U	U	1.0		U	U.	1.0		U	U	1.0	1,0
MW-13	Anickir-1221	ug/I.	ļ <u>-</u>	U	2	2.0		U	2	2.0		U	U	2.0		U	C	2,0	2.0
	Anschr-1232	Ug/1.		<u>"</u>	0	1.0		U	U	1.0		U	U	1.0		U	Ü	1.0	1.0
		Ug/1.		U	U	1.0		U	U	1.0		U	U	1.0		U	U	1.0	1.0
MW-13	Anichir-1248	ug/L		U	υ	1.0	ļ	U	U	1.0	 	L.	U	1.0	!	υ	U	1.0	1.0
MW-13	Arocker-1254	ug/L		U	U	1.0	 	U	5	1.0		U	U	1.0		υ	U	1.0	1.0
	Anicke-12nd	U#/1.		U	U	1.0	!	U	υ	1.0		U	U	1.0		U	U	1.0	1.0
	heta-BHC	ug/L		U	U	0.05		U	U	0.05		U	U	0,05		U	٧	0.05	0.05
MW-13	deha-Blitt'	Uk/L		U	Ų.	0.05	 	U	٦	0.05		υ	U	0.05	 	U	ט	0.05	0.05
MW-13	Dicking	ug/L		Ü	U	0.10	 	U	2	0.10	 	U	U	0.10		U	U	0.10	0.10
MW-13	Imposition f	ug/l.	<u> </u>	υ	2	0.05	ļ	U	U	0.05	 	U	U	0,05		U	U	0.05	0.05
MW-13	findosultan fl	we/L		U	٥	0.10	 	U	U	0.10	 	LU.	U	0.10		U	U	0.10	0.10
MW-13	Endosultan sultate	ug/1.		U	U	0.10		U	υ	0.10		U	U	0.10		U	U	0.10	0.10
MW-13	Linden	ug/l.		<u>"</u>	۲	0.10		U	U	0.10		U	נט	0.10		U	U	0.10	0.10
MW-11	Endrin aklehyde	UE/L		<u> </u>	Ü	0.10		U	U	0.10		U	lu I	0,10		υ	U	0.10	0.10
MW-11	Endrin ketone	ug/L	l	U	Į į	0.10	l	U	U	0.10	1	U	UI	0.10	. 7	υ	ÜΠ	0.10	9,10

Griffith, Indiana

MW-13 gamma MW-13 Heptace MW-13 Heptace MW-13 Heptace MW-14 4-4*-138 MW-14 4-4*-138 MW-14 4-4*-134 MW-14 Alvino MW-14 Alvino MW-14 Alvino MW-14 Arocko MW-14 Enchou MW-14 Toxaph MW-14 Toxaph MW-14 Toxaph MW-14 Toxaph MW-15 4,4*-DH	tachlor cpoands hoayshlor aphene 1300 1300 1300 1300 1300 1300 1300 130	timits ug/l.	Result			Detect Limit 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.10 0.1	Result	200000000000000000000000000000000000000		Detect Limit 0.05 0.05 0.05 0.05 0.05 0.50 5.0 0.10 0.1	Result	1.Q 0 0 0 0 0 0 0 0 0	Remail PQ U U U U U U U U U U U U U U U U U U	Detect Limit 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Remote			Detact Limit 0.05 0.05 0.05 0.05 0.05 0.05 0.50 0.10 0.1	Highest Detection Detection 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10
MW-13 gamma MW-13 gamma MW-13 lleptac MW-13 lleptac MW-13 lleptac MW-14 d-4°-13 lleptac MW-14 lleptac MW-1	ana-BHC ma-Chhwlane sachlaw sachlaw sachlaw sachlaw sachlaw sachlaw saphane 1HDD 1DDE 1HDD 1DDE 1HDD 1DDE 1HDT 1BB 1HDT 1BB 1HDT 1BB 1HDT 1BB 1HDT 1BB 1HDT 1BB 1HC 1BB 1BB 1BB 1BB 1BB 1BB	교환기.				0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.00 0.00 1.0 2.0 1.0			כככככככככ	0.05 0.05 0.05 0.05 0.50 5.0 0.10 0.10 0		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0.05 0.05 0.30 5.0 0.10 0.10 0.10		ט ט ט ט ט ט ט ט ט ט	 	0.05 0.05 0.05 0.05 0.05 0.50 5.0 0.10 0.1	0.05 0.05 0.05 0.05 0.50 5.0 0.10 0.10
MW-13 gamma MW-13 Heptac MW-13 Heptac MW-13 Heptac MW-14 A-4-13 MW-14 A-4-13 MW-14 A-4-13 MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Alphac MW-14 Enclose MW-14 Enclos	and-Ohly dane darblaw authly captaine hatychlor applene 1000	다 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나				0.05 0.05 0.05 0.05 0.50 0.10 0.10 0.10				0.05 0.05 0.05 0.50 5.0 0.10 0.10 0.10 0		0 0 0 0 0 0 0	U U U U U U U U U	0.05 0.05 0.05 0.50 5.0 0.10 0.10 0.10 0		ט ט ט ט ט ט ט ט ט		0.05 0.05 0.05 0.50 3.0 0.10 0.10 0.10	0.05 0.05 0.05 0.50 5.0 0.10 0.10 0.10
MW-13 Reptac MW-13 Reptac MW-13 Reptac MW-14 4-4-131 MW-14 4-4-131 MW-14 4-4-131 MW-14 alpha-1 MW-14 alpha-1 MW-14 alpha-1 MW-14 Arocke MW-14 Arocke MW-14 Arocke MW-14 Arocke MW-14 Arocke MW-14 Arocke MW-14 Arocke MW-14 Endon MW-14 Endon	sachlar Aachlar cpaanle hasychlar aphone 1910E 1910E 1910E 1910T 1910 1910E 1910T 1910 1910E 1910T 1910 1910E 1910T 1910 1910E 1910T 1910E 1910T 1910E 1910T 1910E 1910T 1910E 1910T 1910E 1910E 1910T 1910E 1910T 1910E 1910T 1910E 1910T 1910E 1910T 1910	내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내		ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט		0.05 0.05 0.05 5.0 0.10 0.10 0.10 0.05 0.05				0.05 0.05 0.50 5.0 0.10 0.10 0.10 0.05 0.05		U U U U U U U U	U U U U U U U U	0.05 0.05 0.30 5.8 0.10 0.10 0.10 0.05		ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	ב ב ב ב ב ב ב	0.05 0.05 0.50 5.0 0.10 0.10 0.10	0.05 0.05 0.50 5.0 0.10 0.10 0.10
MW-13 Heptas MW-13 Notabu MW-14 4,4°-131 MW-14 4,4°-131 MW-14 4,4°-131 MW-14 4,4°-131 MW-14 Alpha-B MW-14 Alpha-B MW-14 Arocko MW-14 Arocko MW-14 Arocko MW-14 Arocko MW-14 Arocko MW-14 Arocko MW-14 Arocko MW-14 Beta-B MW-14 Deckiri MW-14 Erickou MW-14 Erickou MW-16 Erickou MW-16 Erickou MW-16 Erickou MW-16 Erickou MW-16 Ericko	sachhw cpuanle huaychhw aphene 11910	내용시. 내용시.		ב ב כ כ כ כ כ כ כ כ כ		0.05 0.50 5.0 0.10 0.10 0.10 0.05 0.05 1.0 2.0 1.0			c c c c c c c c c	0.05 0.50 5.0 0.10 0.10 0.10 0.05 0.05		U U U U U U U	υ υ υ υ υ υ	0.05 0.50 5.8 0.10 0.10 0.10 0.05		ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	כככככ	0.05 0.50 5.0 0.10 0.10 0.10	0.05 0.50 5.0 0.10 0.10 0.10 0.05
MW-13 Nechot MW-13 Lozaph MW-14 4-4"-10 MW-14 4-2"-10 MW-14 alpha-B MW-14 alpha-B MW-14 alpha-B MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 Arockot MW-14 B-ta-BB MW-1	hitaychlur aphanic 1100D 1100E 1100E 1100T 1100 mallic a-Chlutchane (au-1010 (au-1221 (au-1232 (au-1232 (au-1232 (au-1242 (au-1248 (chu-1248 (chu-1260) 110C a-BHC	upt. upt. upt. upt. upt. upt. upt. upt.		בעכככככככ		5.0 0.10 0.10 0.10 0.05 0.05 1.0 2.0 1.0 1.0			22222	3.0 0.10 0.10 0.10 0.05 0.05 0.05		0 0 0 0 0 0	υ υ υ υ υ	0.50 5.0 0.10 0.10 0.10 0.05		ככככככ	ט ט ט ט ט	0,50 5,0 0,10 0,10 0,10 0,05	0,50 5.0 0.10 0.10 0.10 0.05
MW-13 Toxaph MW-14 4,4°-130 MW-14 4,4°-131 MW-14 Abiran MW-14 Abiran MW-14 Abiran MW-14 Abiran MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Area, bir MW-14 Berkin MW-14 Erickin MW	aphene 1110 1100 1100 1100 1100 1100 1100 1	UPA. UPA.			c c c c c c c c c	0.10 0.10 0.10 0.05 0.05 0.05 1.0 2.0 1.0			20000	0,10 0,10 0,10 0,05 0,05 0,05		0 0 0 0	U3 U3 U3 U3 U	0.10 0.10 0.10 0.05 0.05		ככככ	ט ט ט ט	0,10 0,10 0,10 0,05	0.10 0.10 0.10 0.05
MW-14 4.4° DI MW-14 4.4° DI MW-14 4.6° DI MW-14 48pha-8 MW-14 48pha-8 MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Aro, In MW-14 Enclass MW	1910D 1910E 1910E 1910T 1910 1910 1910 1910 1910 1910 191	op/L op/L op/L op/L op/L op/L op/L op/L			c	0.10 0.10 0.05 0.05 0.05 1.0 2.0 1.0		0 0 0 0 0	2222	0.10 0.10 0.05 0.05 0.05 1.0		0 0 0	US US U	0.10 0.10 0.05 0.05		כככ	כככ	0.10 0.10 0.05	0.10 0.10 0.05
MW-14 4-2-19 MW-14 Alpha-I MW-14 Alpha-I MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Aroche MW-14 Beta-III MW-14 Beta-III MW-14 Beta-III MW-14 Beta-III MW-14 Beta-III MW-14 Beta-III MW-14 Beta-III MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 III MW-14	- PDDE - 3-DDT - 19-DT	9월 / 9월 / 94 / 95 / 96 / 97 /				0.10 0.05 0.05 0.05 1.0 2.0 1.9		 	2222	0.10 0.05 0.05 0.05 1.0		ט ט ט	US U U	0.10 0.05 0.05		כככ	ט	0.10 0.05	0,10 0.05
MW-14 Albran- MW-14 Albran- MW-14 Alpha-E MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Annchi MW-14 Enchi MW-	- 1917 T. 18	upfl. upfl.				0.03 0.05 0.05 1.0 2.0 1.0 1.0		υ υ υ	ט ט ט	0.05 0.05 0.05		U U	U U	0.05 0.05		U	υ U	0.05	0.05
MW-14 alpha-I MW-14 Aro, lot MW-14 Ista BI MW-14 Ista BI MW-14 Enclose MW-14 Enclose MW-15 Enclose	a-BHC a-Chloridane chw-1016 chw-1221 chw-1232 chw-1232 chw-1248 chw-1248 chw-1264 chw-1	wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert.			2000	0.05 0.05 1.0 2.0 1.0 1.0		ט ט ט	ט ט	0.05 0.65 1.0		U	υ	0.05		υ	Ų		
MW-14 alpha-C MW-14 Arockin MW-14 Arockin MW-14 Arockin MW-14 Arockin MW-14 Arockin MW-14 Arockin MW-14 Arockin MW-14 Beta-BI MW-14 Beta-BI MW-14 Beta-BI MW-14 Beta-BI MW-14 Enclose MW	u-Chbutlane (bur-1010 (bur-1221 (bur-1232 (bur-1232 (bur-1234 (bur-1234 (bur-1234 (bur-1234 (bur-1234 (bur-124) (bur-124) (bur-124) (bur-124) (bur-124) (bur-124) (bur-124) (bur-124) (bur-124) (bur-1254 (bur-124) (bur-1254 (bur-1254) (bur-1254	wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert.			2 2 2 2 2 2 2 2	0.05 1.0 2.0 1.0 1.0		ט ט	U	0.05 1.0		Ü				_		0,05	0.05
MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Broken MW-14 Endose	chir-1016 chir-1221 chir-1232 chir-1242 chir-1243 chir-1254 chir-1260 BHC - BHC - BH	ሚ/L ሚ/L ሚ/L ሚ/L ሚ/L ሚ/L ሚ/L ሚ/L		222222	ט ט ט ט ט	1.0 2.0 1.0 1.0		υ	U	1.0			- 11						
MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Arockit MW-14 Deckit MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Itenson	hw-1221 hw-1232 hw-1232 hw-1248 chw-1248 chw-1261 BHC BHC a BHC hwitan I	wert. wert. wert. wert. wert. wert. wert. wert. wert. wert. wert.		222222	2 2 2	2.0 1.0 1.0 1.0		υ	_		i			U. 05	1	U	ับ	0.05	0.05
MW 14 Area hi MW-14 heta Hi MW-14 heta Hi MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Erekina MW-14 Iganima MW-14 Itapina	har-1232 har-1242 har-1248 har-1248 har-1248 har-1264	보다. 보다. 보다. 보다. 보다. 보다. 보다. 보다. 보다. 보다.		בבבככ	c c c	1 <u>.0</u> 1.0 1.0		_				U	٦	1.0		U	U	1.0	1.0
MW-14 Arachi MW-14 Arachi MW-14 Arachi MW-14 heta-BI MW-14 heta-BI MW-14 beta-BI MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Endou MW-14 Indian MW-14 Indian MW-14 Indian MW-14 Indian MW-14 Indian MW-14 Indian MW-14 Indian MW-14 Toxaph MW-14 Toxaph MW-14 Toxaph MW-14 Toxaph MW-14 Ad-1DI MW-15 4,4° DI	chir-1242 chir-1248 chir-1254 chir-1260 BHC abitC aktin anultan I	wert. wert. wert. wert. wert. wert. wert. wert. wert.		2222	2 2	1.0			_	2.0		U	U	2.0		U	U	2.0	2.0
MW-14 Anachi MW-14 Anachi MW-14 Anachi MW-14 Incha III MW-14 Incha III MW-14 Incha III MW-14 Incha MW-15 Incha MW-15 Inch MW-15 Incha MW-15 Incha MW-15 Incha MW-15 Incha MW-15 Incha MW-1	che-1248 che-1254 che-1200 -BHC a-BHC drin multan I	well. well. well. well. well. well. well. well. well. well.		2222	2	1.0	1		U	1.0	L	U	υ	1.0		U	U	1.0	1.0
MW-14 Anschu MW-14 Anschu MW-14 deba-B MW-14 deba-B MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Iganusa MW-14 Iganusa MW-14 Iganusa MW-14 Isolan MW-14 Isolan MW-15 Isolan MW-15 Isolan MW-16 Isolan	chir-1254 chir-1260 BHC a BHC abrin assiltan 1 assiltan 1	ug/L ug/L ug/L ug/L ug/L ug/L		222	Ü			U	U	1.0	<u> </u>	U	٧	1.0		U	U	1.0	1,0
MW-14 Anschi MW-14 beta-Bl MW-14 Decklir MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Iganosa MW-14 Iganosa MW-14 Iganosa MW-14 Ikepaal MW-14 Ikepaal MW-14 Ikepaal MW-14 Toxaph MW-14 Toxaph MW-14 Toxaph MW-14 Ad-1D MW-14 Ad-1D	che-(26) -BHC -BHC -BHC -bitin -bultan I	ug/L ug/L ug/L ug/L ug/L		دد				L U	U	1.0	L	U	2	1.0		2	U	1.0	1.0
MW-14 hcta-H MW-14 dcba-B MW-14 Dechin MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 gamma MW-14 gamma MW-14 Jamma MW-14 Hcptacl MW-14 Hcptacl MW-14 Toxaph MW-14 Toxaph MW-14 Ad-1Dl MW-14 Ad-1Dl	BHC a-BHC shirin shiften I shiften II	ug/L ug/L ug/L ug/L		U		1.0		U	U	1.0		U	٧	1.0		٦	U	1.0	1.0
MW-14 deba-B MW-14 Deckin MW-14 Enclose MW-14 Bequact MW-14 Heptact MW-14 Heptact MW-14 Methon MW-14 Texase MW-14 4,4° DI	a BIIC Minn multan I multan II	ug/l. ug/l. up/l.				1.0		U	U	1.0		U	U	1.0	<u> </u>	υ	U	1,0	1.0
MW-14 Declar MW-14 Enclose MW-14 Heptacl MW-14 Methon MW-14 Methon MW-14 T-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	klein multan 1 multan 11	ug/l.		U	υ	0.05	<u> </u>	U	U	(),05		U	U	0.05		U	- 4	0.05	0.05
MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 Enchose MW-14 gamma MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inchose MW-14 Inch	multan l	up/L			U	0.05		U	U	0.05		U	>	0.05		U	U	0.05	0.05
MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 Enchos MW-14 gamma MW-14 gamma MW-14 Heptacl MW-14 Heptacl MW-14 Ms-thos MW-14 Toxaph MW-14 Toxaph MW-14 A4* DI MW-15 4,4* DI	multan II			٧	U	0.10		U.	U	0.10		U	U	0.10		U	U	0.10	0.10
MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 Enclose MW-14 garonta MW-14 Beptace MW-14 Heptace MW-14 Heptace MW-14 Toxagh MW-14 Toxagh MW-15 4,4° DI MW-15 4,4° DI		ug/L		U	U	0.05		U	υ	0.05		U	U	0.05		٦	U	0.05	0,05
MW-14 Enclin MW-14 Enclin MW-14 Enclin MW-14 gamma MW-14 gamma MW-14 Heptacl MW-14 Heptacl MW-14 Toxaph MW-14 Toxaph MW-15 4,4° DI	and the same and the same			٧	٧	0.10		U	U	().10		U	ע	0.10		U	U	0.10	0.10
MW 14 Endin MW-14 Endin MW-14 gamma MW-14 gamma MW-14 Bepack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack MW-14 Repack	MOHAR MUHAK	ug/t.		U	U	Q 10	ļ	U	U	0.10	<u> </u>	U	2	0.10		٧	U	0.10	0,10
MW-14 Endin MW-14 gamma MW-14 gamma MW-14 Bepack MW-14 Hepack MW-14 Nethon MW-14 Texagh MW-15 4,4° DI MW-15 4,4° DI	ii6	ug/L		U	2	0.10	<u> </u>	U	U	0.10	L	U	וט	U.10		U	U	Q.10	0,10
MW-14 gamma MW-14 gamma MW-14 Heptac MW-14 Heptac MW-14 Toxanh MW-15 4,4 DI MW-15 4,4 DI	rın aldehyde	ug/L		U	U	0.10		U	U	0.10	L	U	IJ	0.10		U	U	0.10	0.10
MW-14 gamma NW-14 Hepac NW-14 Hepac NW-14 Foxaph MW-14 Toxaph NW-15 4.4'-DI NW-15 4.4'-DI	ia ketane	uy/L.		υ	U	0.10		U	U	0.10	L	<u>"</u>	3	0.10		U	U	0.10	0,10
NIW-14 Heptacl NIW-14 Heptacl NIW-14 Niction MW-14 Toxaph NIW-15 4.4' DI NIW-15 4.4' DI	nu-BHC	ug/L		υ	U	0.05		L U	U	0.05		U	5	0.05		U	U	0.05	0.05
MW-14 Repeat MW-14 Methos MW-14 Texaph MW-15 4,4° DI MW-15 4,4° DI	nu-Chhedane	uk/L		U	U	0.05		U	U	0.05		U	ט	0.05	L	U	U	0.05	0.05
MW-14 Methos MW-14 Toxaph MW-15 4.4'-DI MW-15 4.4'-DI		wg/1.		U	U	0.05		U	U	0.05		U	2	0.05	1	U	٥	0.05	0.05
MW-14 Toxaph MW-15 4.4'-DI MW-15 4.4'-DI	achter countre	ug/L		ح	U	0.08	ļ	Ü	U	0.05		U	U	0.05		U		0.05	0.05
MW-15 4.4'-DI MW-15 4.4'-DI	hisychlin	ug/L		U	Ü	0.50		Ų.	U	0.50		U	٧	0.50	<u> </u>	U	٧	0,50	0.50
MW-15 4,4"-DI		nk/r		υ	U	5.0	ļ	Ų		5.0	ļ	U	5	5.0		U	U	5,0	5.0
		uy/L		Ų.	Ü	0.10		L.Y.	Ų	0.10		U	3	0.10		U	U	0,10	0.10
		ug/L		2	U	0.10		U .	Ų	0.10		<u></u>	3	0.10		U	U	0,10	0.10
		ug/L		<u> </u>	<u> </u>	0.05		1 5	U	0.10		ļ Ų	UI	0.10	 	U	U	0,10	0.10
MW-15 Akhin		ug/L		11	-	005		U	+	0.05		U	==	0.05	 	U	Ÿ	0,05	0.05
MW-15 Jalpha H		ug/L.		Ü	비	0.05		1 5 1	ᇦ	0.05		ᇦ	-	0.05	 	U	2	0.05	0.05
	a-Chloritane	ug/l.		9	١٣١	1.0		l ö l	Ü	1.0		Ü	"	0.05	 	U	2	0.05	0.05
	he-join	ug/L		-	l i	2.0		 " 	Ü	2.0		Ü	Ü	2.0	 	U	ᄞ	1.0	1.0
	the-1221 the-1232	ug/L		Ü	l iii	1.0		1 5 1	Ü	1.0		Ü	+	1.0	 	+	 	2.0	2.0
		ug/L		Ü	۳	1.0		 	Ü	1.0		Ü	7	1.0	 	Ü	U	1.0	1.0
	hr-1242 hr-1248	ug/t.		Ü	Hů	1.0		ŭ l	Ü	3,0		Ü	0	1.0	 	Ü	 	1.0	1.0
	hw-1254	wert.		Ü	ᇦ	1.0	 	 	Ü	1.0		Ü	U	1.0	 	Ü	-		1.0
		ug/L		บ	١٠	1.0	 	 	Ü	1.0		Ü	U	1.0	 	- U	"	1.0	
	hr-1260	ug/L		Ü	- 5	0.05		ᇦ	Ü	0.05		Ü	Ü	0.05	┝╾╌╌┪	U	_	1.0	1.0
MW-15 heta-81				Ü	Hüll	0.05		انا	Ü	0.05		Ü	5	0.05	 		Ų	0.05	0.05
	BNC	ug/t.		Ü	ان ا	0.10		ᡰ᠊ᡥ᠇	Ü	0.10		Ü	ü		 	<u></u>	U	0.05	0.05
MW-15 Dicklein	BHC	ug/L		Ü	H	0.05		 	兴	0.05		Ü		0.10	[<u>v</u>	U	0.10	0.10
	drin			Ü	ü	0.10		1	÷	0.10		Ü	Ų	0.05	 	Ų	ų.	0.05	0.05
	drin wulfan i	ug/L			ü	0.10		 ; 	ᄬ	0.10		U	Ü	0.10	ii	U	U	0.10	0.10
	drin wultan l wultan li	ug/l.		Ų	-	v.1 v			· •										
MW-15 Endin	drin wulfan f wulfan fl wulfan sulfate			U		040		ו ט ו	U	0,10		Ü	5	0.10		U	U	0.10	0.10

Company Comp	Event 4 Highest
No. 15 Indian Know; Qrf.	
No. 15 Principal Princ	
No. 15	
Sept. 15 Sept. Sept. Col. Col	
SWY-15 S	
SW-15 Schenymer SW-15 Schenymer SW-15 SW-1	
SWY 17 SASPEC SQFL U U SD U U	
No. 12 A-1930	
NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A NW 10 A A A A A A A A A	
No. 1	
No. 10 March March Mgf. U U 0.05 U	U 0,10 0.10
SNN-11 Appe-Bit GPL	U 0.05 0.05
MW 11 Appen Chantage ag/L U U 0.05 U	U 0.05 0.05
MM-18 Anader 121 sqrt	U 0.05 0.05
MM-19 Ancher 121	U 1.0 1.0
MMY-18 Answer 124	U 2.0 2.0
MW-18 Ansker 1281	U 1.0 1.0
MW-14 Arcskw-1294 Ugft. U U 1 10 U U 10 U 10 U U 10 U 10 U U 10 U 10 U U 10 U 10 U U 10 U	
MNY-18	U 1.0 1.0
MW-18 N-8-BIC Spft. U U 0.05 U U 0	
MeV-18 Octobra Octob	
MW-18 Tecknown T	
MW-18 End-soulfan	
MW-IR Emboulian II	
MW-18 Endote Mg/L U U 0.10 Endote Mg/L U U 0.10 U U 0.15 U U 0.05 U U 0	
NW-18 Endrin Og/L U U 0.10 O U U 0.05 O U	
NW-18 Endrin Alchhysk	U 0.10 0.10
MW-18 Endrin Accord Ug/L	
MW-1R	
MW-18 Emitta-Chividanc Ug/L U U 0.05	
MW-18 Hypachkw Upf.	
MW-18 Ispachbur quants Ug/L	
MW-18 McHeaychler	
MW-18 Totaphene	
NW-19 4.4-DDD	
MW-19 4.4-DDE	
MW-19 4,4-DDT	
MW 19 Alaira	
MW-19 Alpha-BHC Ug/L U U 0.05 MW-19 Alpha-Chlordane Ug/L U U 0.05 U	
MW-19 Ans.kn-1221 ug/L U U U 1.0 U U	
MW-19 Anschr-1016 ug/L U U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-19 Anschr-1221 ug/L U U U 2.0 U U U 1.0 U U 0.05 U U 0	
MW-19 Anckor-1221 ug/L U U U 1.0 U 1.0 U U 1.0 U U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	
MW-19 Anckor-1232 ug/L U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-19 Anckor-1242 ug/L U U 1.0 MW-19 Anckor-1248 ug/L U U 1.0 MW-19 Anckor-1254 ug/L U U 1.0 MW-19 Anckor-1260 ug/L U U 1.0 MW-19 Neta-BHC ug/L U U 0.05 U	
MW-19 Ans.kar-1-242 ug/L U U 1.0 MW-19 Ans.kar-1-248 ug/L U U 1.0 U 1.0	
MW-19 Anckor-1248 ug/L U U 1.0 MW-19 Anckor-1254 ug/L U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U	
NIW-19 Anschw-1254 ug/L U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0	
MW-19 Anocher-12nl ug/L U U 1.0 U 1.0	
MW-19 Refa-BHC ug/L U U 0.05 U 0	
MW-19 deBa-BHC ug/L U U 0.05 U U 0.05 U U 0.05 U U 0.05 U U 0.05 MW-19 Dicklin ug/L U U 0.10 U U 0.10 U U 0.10 U U 0.10 U U 0.10 U U 0.10 MW-19 Endwalfan I ug/L U U 0.10 U U 0.10 U U 0.05 U U 0.05 U U 0.05 MW-19 Endwalfan II ug/L U U 0.10 U U 0.10 U U 0.10 U U 0.10 U U 0.10	
MW-19 Dichtrin ug/L U U 0.10 U U 0.05 U U 0.10 U U U 0.10 U U U 0.10 U U U 0.10 U U U	
MW-19 Endonolfan II ug/L U U 0.05 MW-19 Endonolfan II ug/L U U 0.10 U	
MW-19 Endoudfan II ug/L U U 0.10 U U 0.10 U U 0.10 U U 0.10	
┝────────────────────────────────────	
MW-19 Endrin ug/L U U 0.10 U U 0.10 U U 0.10 U U 0.10 U U 0.10	

			,		Event		r		Event	<u> </u>			Event	3			Event		Highest
Well	Analyte -	Units	Rout	1.0	DQ	Detect Limit	Result		PQ	Detect Just	Republ	1.0	DQ	Detect Limit	Result	1.0		Detect Limit	Petection
	Limbin shkibyski	wet.		U	U	0,10		2	U	0.10		Ü	W	0.10	 	U	U	0.10	0.10
MW-19		ug/L		T u	Ü	0.10		Ŭ	Ü	0.10		Ü	Už	0.10	 	ΙŬ	Ü	0.10	0.10
MW-19	samma-BIK	we/L	 	TŪ	Ü	0,05		Ü	Ü	0.05	 	Ü	Ü	0.05		ΙŬ	Ü	0.05	0.05
MW-19		Ug/L	 	ΤŪ	Ü	0.05		Ü	5	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-IV	Heptachbu	ug/l.	 	10	Ü	0.05		-	Ū	0.05	 	Ü	Ū	0.05		l u	ü	0.05	0.05
MW-19		ug/l.	 	T i	Ù	0.05		5	Ü	0.05	 	Ü	Ū	0.05	 	۱ ũ	Ü	0.05	0.05
MW-19		wg/L		ΙŪ	Ü	0,50		Ü	Ü	0.50	 	Ü	Ť	0.50	 	۱ŏ	Ü	0.50	0.50
MW-19		ug/L		T ü	Ü	5.0		j	Ü	5.0	 	Ü	Ü	5.0	 	1 0	Ü	3.0	5.0
MW-22	4.4°-DDD	we/L	 	U	Ü	0.10		Ü	Ü	0.10	 	Ů	Ŭ	0.16	 	Ιŭ	Ü	0.10	0.10
MW-22		Ug/L		Ü	Ü	0.10	·	5	Ü	0.10	 	Ü	Ü	0.10	 	10	Ū	0.10	0.10
	11 DDL	ug/L	 	ΙŤ	Ü	0.10		6	Ü	0,10	 	Ū	Ü	0.10	 	Ü	Ü	0.10	0.10
MW-22	Aldrin	Jug/L		Ü	Ü	0.05		5	Ü	0.05	 	Ü	Ü	0.05	 	Ť	Ü	8.05	0.05
MW-22	alpha-BHC	we/L		ΙŪ	Ü	0.05	·	Ü	Ü	0.05	 	Ŭ	Ŭ	0.05		۱ ŏ	ΙŬ	0.05	8.05
MW-22	Alpha Chhedan:	ug/L		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	 	Ť	10	U.05	0.05
MW-22	Anathr-1016	ug/L	 	10	Ť	1.8		Ü	Ü	1.0	 	Ü	Ü	1.0	 	Ü	1 5	1.0	1.0
MW-22	Anche-1221	ug/L		10	Ŭ	2.0		Ť	Ü	2.0	·	Ü	Ü	2.0	 	Ü	10	2.0	2.0
MW-22	Anachy-1232	wg/L	 	Ü	ΰ	1.0		Ť	Ü	1.0	 	Ü	Ü	1.0	 	Ü	10	1.0	1.0
MW-22	Anabr-1232	ug/L		1 0	Ü	1.0		Ü	"	1.0	 	ü	10	1.0	 	Ü	1 5	1.0	1.0
MW-22	Aniche-1248	wert.	 	10	Ü	1.0	 	Ü	Ü	1.6	 	Ü	Ü	1.0	 	10	1 5	1.0	1.0
MW-22		ug/L	 	Ü	Ü	1.0		3	Ü	1.0		Ü	Ü	1.0		Tö	Ü	1.0	1.0
MW-22	Anuar-1254	well.	 	10	Ü	1.0		Ü	Ü	1.9		Ü	U	1.0	 	U	1 0	1.0	1.0
	Annike-12MI	ug/L		Ü	Ü	0.05		7	Ü	0.05	 	۳	10	0.05		10	10	0.05	0.05
MW-22	hela BHC			1 0	1	0.05		Ü	Ü	0.05		Ü	-	0.05	 	—			
MW-22	deha-BHC	ugh.	 	1 5	+	0.10		Ü	"	0,10	 	Ü	ü			1 <u>u</u>	Ų.	0.05	0.05
MW-22	L'achten	ug/L	ļ	l ü	7	0.05		+	8			U	ᇦ	0.10		ļ <u>ų</u>	U	0.10	0.10
MW-22	Embnellas I	ug/L	ļ <u> </u>	_			 -	-		0.05	 			0.05	ļ	U	U	0.05	0.05
MW-22	Embrautian II	ug/AL	 	U	Ų.	0.10		8	۳	0.10		Ų.	Ų.	0.10		U	U	0.10	0.10
MW-22		up/L		U	C				7	0.10		U	U	0.10	ļ	U	U	0.10	0.10
MW-22	Lindrag	wyn.	<u> </u>			0.10	 	٧	>	0.10		U	U	0.10		U	C	0.10	0.10
MW-22	Endrin abbityde	ung/L		U	U	0.10		2	2	0.10		U	U	0.10	ļ	U	U	0.10	0.10
MW-22	findrin behine	uyeA.	}	U	U	0.10		Ü	5	0.10		U	U	0.10	 	U	υ	610	0.10
MW-22	Kannin-BIK.	ug/l.		U	c	0.05		Ü	زد	0.05	ļ	U	U	0.05	 -	U	E	0.05	0.05
MW-22		ug/l.		U .	Ų	0.05		Ų	: اد	0.05		V	U	0.05		V	٧	0.05	0.05
	l leptachker	ug/l.	 	U	U	6.05		2	2	0.05	ļ	V	U	0.05		U	U	0,05	0.05
	threather country.	ug/L.		Ų.	U	0.05		2	כ	0.05		U	U	0.05		L U	U	U.05	0.05
MW-22	Methnaychhu	ug/L.	ļ	Ü	U	0.50 5.0	 	2	2	0.90	 	V	U	0.50	 	U	U	0.50	0.50
MW-22	Tonaphene	ug/L.	 	U	U			>:	2	5.0		U	U	5.0		U	C	5.0	5.0
MW-23	4,4°-(MM)	ug/L	ļ	Ų.	U	0.10	 	2	زد	0.10			<u>u</u>	0.10		Ų	U	0.10	0.10
MW-23		wg/L	 -	U	2	0.10	 	8	5	0.10		├	Ų.	0.10	 	U	U	0.10	0.10
MW-23	4.4'-OOT	ste/L	 	U	U	6.05		8	2	0.10 0.05	 	-	U	0.10	ļ	U	Ų	0.10	0,10
MW-23		ug/L		1 0	10	0.05		5	3	0.05	 	 	Ü	0.05		 "	U U	0.05	0.05
MW-23	alpha BIK		 	Ü	Ü	0.05		ď	داد	0.05	 		l ö	0.05	 	1 5		0.05	0.05
	alpha Chloidate	Ug/L		1 0	"	1.0		Ü	U	1.0	[5				2	0.05	0.05
MW-23	Anniu-Itio	up/L		1 0	l u	2.0	 	Ü	"	2.0	 	├	"	1.0	 	U	1 2	1.0	1.0
MW-23		w/L		10	U	1.0	 	"	 0		 	 		2.0	}	Ų.	<u></u>	2.0	2.0
	Auchs-1232	Jug/L				1.0			U	1.0	 	 	U	1.0	 	Ų	۳	1.0	1.0
MW-23		wy/L.	 	 !!	Ų		 	2		1.0	 	 	l n	1.0	 	U	U	1.0	1.0
MW-23		Uy/L	 	U	Ų.	1.0		U	U	1.0	 	├	U	1.0	ļ	U	2	1.0	1.0
MW-23	Anche-1254	<u> ""/L</u>		Ų.	U	1.0	 	U	Ü	1.0		 	U	1.0	 	U	U	1.0	1.0
MW-23		w/L		U	Ų	1.0	 	Ų.	U	1.0			U	1.0		U	U	1.0	1.0
MW-23	heta-BHC	- we/L		10	U	0.05		Ų.	Ų.	0.05		-	U	0.05		U	U	0.05	0.05
MW-23		ug/L.		1	U	0.05		Ų.	Ų.	0.05	 	-	U	0.95	<u></u>	U	U	0.05	0.05
MW-23	Dicklein	ug/l.		U	U	0.10		U	U	0.10	<u> </u>		U	0.10		U	<u>u</u>	0.10	0.10
MW-23	Emboulian f	ug/L.		U	U	0.05		U	V	0.05	<u></u>	.	U	0.05		U	6	0.05	0.05
MW-23	Emboultan II	ug/t.		U	U	0.10		U	U	0.10	L		U	0.10		U	U	0.10	0.10
MW-23	Embruitan sulfate	ug/L	1	Lu.	U	0.10	1	υ	υ	0.10	L	i	U	0.10		U	U	0.10	0.10

	,				Event		, 		Evuet	}			Event				Event		Highest
Well	Analyte	Units	Result	1.0	100	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Detection
MW-23	timbro	UK/L		U	Ü	0.10		U	U	0.10		_	U	0.10		v	V	0.10	0,10
MW 21	Ludrin aklehyde	ug/I.		Ū	U	0.10	·	Ü	U	0.10			Ū	0.10		Ü	U	0 10	0.10
MW 23	Ladria ketone	UE/1.		U	C	0.10		U	U	0.10			U	0.10		U.	U	0.10	0.10
MW 23	gamma BHC	up/I.		U	5	0.05		Ū	U	0.05			U	0.05		U	U	0.05	0.05
MW-21	gattima Chlomlane	ug/L		U	U	0.05		U	U	0.05			U	0.05		U	U_	0.05	0.05
MW-23	Heptachlor	ug/1.		U	٦	0.05		C	U	0.05			U	0.05		ح	U	(3 (15	0.05
MW 23	Heptachhai epoxide	ug/l.		U	٦	0.05		Ü	U	0.05			U	0.05		כו	U	0.05	0.05
MW 21	Methoxychlor	ug/L		U	٥	0.50		υ	Ü	0.50			U	0.50		د	U	0.50	0.50
MW-21	Toxaphene	ug/L		U	Ü	5.1)	<u> </u>	U	2	5.0			U	5.0		٧	υ	5.0	5.0
	4.4' -DDD	ug/L		U	2	0.10		U	2	0.10	L	٧	U	0.10		C	Ü	6.10	0.10
	4.1,-DDE	ug/1.		U	٥	0.10	L	U	U	0.10		٧	U	0.10		۲	U	0.10	0.10
	4.4°-DDT	uk/L		U	2	0.10	ļ	U	2	0.10		٧	U	0.10		2	U	0.10	0.10
MW-24		uy/L		U	٦	0.05		U	U	0.05	ļ	U	<u>u</u>	0.05		U	U	0.03	0.05
	alpha-BHC	ug/t.		V	-	0.05		U	ט	0.05		U	Ų	0.05	ļ	U	U	0.05	0.05
	alpha-Chkwdane	ug/l.		Ü	U	0.05	ļ	Ų	U	0.05		2	U	0.03		U	υ	0.05	0.05
	Anicker-1016	ug/L		U	U	1.0		U	Ü	1.0		٥:		1.0		>	U	1.0	1.0
	Annke-1221	nk/r		Ų.	2	1.0		U	<u>''</u>	2.0 1.0		U	U	1.0		- C	U	2.0	1.0
MW-24	Ancher-1232	ug/1.		U	٦	1.0	ļ	퓻	-	1.0		0	Ü	1.0		U	U	1.0	
MW-24	Anicke-1242	ug/t.		U	U	1.0		Ü	"	1.0		U	5	1.0		0	.0	1.0	1.0
MW-24 MW-24	Anichr-1248 Anichr-1254	ug/L		10	0	1.0		-	U	1.0		Ü	U	1.0		-	Ü	1.0	1.0
MW-24	Aniche-1260	ug/l.		10	- 0	1.0	 	Ü	Ü	1.0		- U	Ü	1.0	 	5	Ü	1.0	1.0
	heta-BHC	ug/L		1-5	5	0.05		Ü	÷	0.05		10	l ü	0.05	 	Ü	Ü	0.05	0.05
	delta-BHC	ug/L		Ü	"	0.05	 	Ü	U	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
	Dicklesn	og/L		Ü	Ü	0.10	 	Ü	Ü	0,10		Ü	Ü	0.10		Ü	T U	0.10	0.10
MW-24	Lindengitan I	ug/L.		Ü	Ü	0.05		ũ	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-24	Encksoultan II	u ₁ 2/1.		Ü	Ü	0.10	 	Ū	Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW: 24	Enclosultan sulfate	UK/L		Ü	c	0.10		U	υ	0.10		5	U	0.10		٥	U	0.10	0,10
MW 24		ug/1.		U	U	0.10	i ———	U	U	0.10		٦	U	0.10		U	U	0.10	0.10
MW 24	1:ndrin aklehyde	ug/L		U	5	0.10		U	U	9.10		U	U	0.10		U	U	0.10	0.10
AIW 24	Endern ketone	ug/1.		U	U	0.10		U	U	0,10		U	U	0.10		U	U	0 (0	0.10
MW-24	gammus HIIC	ug/L		U	U	0.05		υ	Ü	0.05		υ	U	0.05		U	U	0.05	0.05
MW-21	gamma Chlordane	ug/l.		U	Ų	0.05		U	Ü	0.05		د	ע	0.05		U	U	0.05	0.05
MW-24	Heptachlor	ug/L		U	U	0.05		υ	U	0.05		υ	٦	0.05		U	U	0.05	0.05
MW 24	Heptachior episade	ug/l.		Ų	J	0.05		U	U	0.05		٦	5	0.05		U	U	70,0	0.05
MW-24	Methoxychlor	ug/1.		U	5	0.50		υ	U	0.50		U	U	0.50		U	2	0.50	0.50
MW-24	Toxaphene	ug/1.		U	٦	5.0	<u> </u>	Ü	U	5.0		>	U	5.0		U	U	5.0	5.0
	4 4'-DDD	ug/I	NA					υ	ט	0,10		٦	U	0.10		Į,	U	0.10	0.10
	4,4%-DDE	ug/l.	NA NA	 				U	U	0.10		Ų.	U	0.10		U	U	0.10	0.10
	4.4"-DD1	ug/L	NA	-	_		 	U	Ü	0.10		ט	U	0.10		υ	U	0.10	0.10
MW 28	Aklein	ug/l.	NA NA	 	-		 	U	<u> </u>	0.05		<u></u>	U	0.05	 	U	U	0.05	0.05
MW-28 MW-28	alpha-BHC	lug/I	NA NA	1				Ü	Ü	0,05		2	+ +	7.05	 		Ü	0.05	0.05
MW-28	alpha-Chlordane Accelor-1016	ug/L	- NA	10	U	1.0	 	"	Ü	0.1		7	U	1.05	 	U	U	0.05	1.0
MW-28	Aniche-1221	ug/L		U	٥	2.0	 	Ü	Ü	2.0		"	U	2.0	 	Ü	U	2.0	2.0
MW-28	Anacher-1232	uk/I.		U	2	1.0	 	Ü	U	1.0	 	-	Ü	1.0	 	-0	Ü	1.0	1.0
MW-28	Anschor-1242	ug/1.		10	Ü	1.0		Ü	Ü	1.0		+	l ö	1.0		Ü	Ü	1.0	1.0
MW-28	Ancior-1248	ug/l.		10	"	1.0	 	Ü	บ	1.0	 	5	U	1.0	 	Ü	Ü	1.0	1.0
MW-28	Ann. hr: 1254	ug/1.		U	5	1.0	 	Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW-28	Atoclor-1200	uk/L		T U	7	1.0	 	T U	v	1.0		5	Ü	1.0	 	Ü	Ü	10	1.0
MW-2K	heta-BHC	ug/l.	NA	† <u> </u>	<u> </u>		 	Ü	Ü	0.05		l ü	Ü	0.05	 	Ü	Ü	0.05	0.05
MW-28	delta-BHC	ug/L	NA.	1			1	Ü	υ	0.05		7	Ü	0.05	 	Ü	Ü	0.05	0.05
MW-28	Dieldrin	ug/L	NA	1	_		1	Ü	Ü	0.10		 	Ü	0.10		Ü	Ü	0.03	0.10
MW-28	Indosultan I	ug/t.	NA					υ	Ü	0.05		Ιř	Ü	0.05		Ü	Ü	0.05	0.05
MW 28	Endosultan II	ug/l.	NA				 	Ü	Ü	0,10		Ü	U	0.10		U	Ü	0.03	0.00
		1				L————						ٽ	٠,٠	L		<u> </u>	لــــــــــــــــــــــــــــــــــــــ	17.10	- VI 10

nd PCBs

Appendix C Maximum Concentrations of Pesticides and PCBs Baseline Groundwater Monitoring American Chemical Services NPL Site Griffith, Indiana

MW-28 MW-28 MW-28 MW-28	Analyte Endosultan sultate	t Inits	Result	1.0	Event				Frant .				Event	-	1		Event -	T	Highest
MW-28 MW-28 MW-28 MW-28 MW-28	Endouttan sultate	7.0000				Detect f.imit	Retuit	10	8	Detect Limit	Result	10	DO	Detect Limit	Result	10	DO	Detect Limit	Detection
MW-28 MW-28 MW-28 MW-28		ug/L	NA	 	-			Ü	Ü	0.10	-	U	U	0.10		Ü	Ü	0.10	0.10
MW-28 MW-28 MW-28	ft:mbm	ug/l.	NA NA	1	1			U	Ü	0.10		Ť	Ť	0.10	1	Ü	Ü	0.10	0.10
MW-28 MW-28	Endrin akkeliyek	ug/l.	NA	1				Ü	U	0.10		Ū	ΙŪ	0.10	 	Ü	Ü	0.10	0.10
MW-28	Endon Letone	ug/L	NA					U	ט	0,10		Ū	U	0.10	1	Ü	Ü	0.10	0.10
MW 24	gangua BHC	ug/L	NA _					·V	٧	0.05		U	U	0.05	11	U	U	0.05	0.05
IAD AA . Tab	gamma Chlordane	ug/L	NA					Ü	כו	0.05		Ü	U	0.05		U	U	0.05	0.05
MW-2H	Heptachhu	ug/L	NA					Ü	Ų	0,05		U	U	0.05		υ	C	0.05	0.05
MW-2H	Heprachby eposite	ug/L	NA					5	د	0.05		U	U	0.05		U	U	0,05	0.05
MW-2h	Methiayether	ug/L	NA					U	Ų	0.50		U	U	0.50		U	U	0.50	0.50
MW-2K	Toxaphene	W/L	NA.	-	-			U	U	5.0		U	U	5.0	<u> </u>	U	U	5.0	5.0
	4.4" DDD	<u>ug/1.</u>	NA	!	L			2	٦	0.10		U.	U	0.1)		υ	U	0.10	0.10
	4.4"-DDE	ug/L	NA .		-			U	V	0.10	 _	U	UJ	0.10		U	U	0.10	0.10
	4,4"-DDT	ug/L	NA NA	↓	Н		<u> </u>	U	U	0.10	}	U	U	0.10	 	U	U	0.10	0.10
	Akkım	ug/L	NA_	├	\vdash			Ų.	Ü	0.05	 	U	U	0.05	 	U	U	0.05	0.05
	alpha-BIIC	ug/1.	NA	-	\vdash			U	Ų	0.05		Ų.	U	0.05	├───	U	U	0.05	0.05
	alpha-Chkinlanc	ug/L	NA	-	-			U	۲	0.05	 	U	U	0.05	 	U	U	0.05	0.05
	Ankley-1016	ug/L		U	<u>"</u>	2.0		Ü	U	2.0	[-	U	U	1,0	 	Ų	U	1.0	1.0
	Assubst-1221	ug/L	<u> </u>	U	ט	1.0		1	U	1.0		U	Ų.	2.0	 	U	ų.	2.0	2.6
	Aroclor-1232	uge/L.		U	+	1.0		H	Ü	1.0	} _	Ü	U	1.0	 	Ü	<u> </u>	1.0	1.0
	Anche-1242	ug/L		10	U	1.0		1	Ü	1.0	 	Ü	Ü	1.0	 	Ü	Y	1.0	1.0
	Anuchir-1248 Anuchir-1254	ug/L		Ü	Ü	1.9		Ü	Ü	1.0	 	U	Ü	1.0	 	∺	ᇦ	1.0	1.0
	Aniche-1260	wert		U	Ü	1.0		Ü	Ü	1.0	 	U	U	1.0	}	ᆢ	끕	1.0	1.0
	Party-BHC	we/L	NA	-	Н			Ü	Ť	0.05		U	U	0.05	 	Ü	1 5 1	0.05	0.05
	ik-Ha-BHC	ug/L	NA NA		\vdash			0	Ü	0.05		 	Ü	0.05	 	Ü	Ü	0.05	0.05
	Orchin	ug/L	NA NA	_				Ü	ŭ	0.10	 	Ü	Ü	0.10	 	Ü	7	0.10	0.10
	Endoultan (ug/L	NA NA					Ü	ŭ	0.05		Ü	Ü	0.05	 	Ü	Ü	0.05	0.05
	Findemulian II	ug/L	NA					Ü	Ü	0.10		Ü	Ü	0.10	tt	Ü	Ü	0.10	0.10
	Embisultan sultate	ug/L	NA					Ü	Ü	0.10		Ü	Ü	0.10	 	Ū	Ü	0.10	0.10
	Entre	ug/L	NA					Ü	c	0.10		Ū	UJ	0.10	 	Ū	Ü	0.10	0.10
	limbon shichyde	ug/L	NA					U	C	0.10		Ü	UJ	0.10		U	Ū	0.10	0.10
	Fadra kenne	ug/l.	NA					U	U	0.10		U	IJ	0.10		U	U	0.10	0.10
MW-29	ganus-BIK'	ug/L	NA					U	Ü	0.05		U	V	0.05		U	Ü	0.05	0.05
	gamma-Chhwdane	ug/L	NA					U	U	- 0.05		U	U	0.05		U	U	0.05	0.05
MW-29	l keptachbu	ug/t.	NA					U	Ü	0.05		U	٦	0.05		U	U	0.05	0.05
	Heptachka epoxide	ug/L	NA					2	C	0.05		U	U	0.05		U	ט	0.05	0,05
MW 24	Alcohogychlar	ug/L	NA					2	C	0.50		υ	U	(1,\$0)		C	٥	6,50	0.50
MW-29	Teraphone	ug/i.	NA_					Ü	υ	5.0		U	U	5.0		IJ	د	\$.0	5.0
	4,4°-DIND	ug/l.	NA		_			٧	c	0.10		<u>_</u>	UJ	0.10		υ		0.10	0.10
	4.4° DAME	ug/l.	NA		_			U	U	0.10		U	S	0.10		U	 	0.10	0.10
	4.4'-DDT	ug/L_	NA .	-				Ü	U	0.10		U	UJ	0.10		υ		0.10	0.10
	Akkin	ug/L	NA					Ų	U	0.05	<u> </u>	U	U	0.0\$		_	-	0.05	0.05
	alpha-BiK'	ma/r	NA					Ų	U	0.05		U	٦	0.05		-	\vdash	0.95	0.05
	algitia Chikindane	ug/t.	NA	 -i				2	U	0.05		2	U	0.05	 	c		0.05	0.05
	Anular-1016	ug/L		ט	U	1.0 2.0		2 2	U	1.0 2.0		Ü	U	1.0	 	=	┝╾┦	1.0	1.0
	Aniche-1221	ug/L		U	- 0	1.0		Ü	Ü	1,0	 	CC	U	1.0	├	c c		2.0	2.0
	Anichir-1232	ug/L		"	Ü	1.0		١	Ü	1.0		U	10	1.0	├───	"	 	1.0	1.0
	Anwhy-1242 Anwhy-1248	w/L		 0	"	1.0		 	Ü	1.0		U	Ü	1.0	┝───┼	Ü	┝╼╼┩	1.0	1.0
	Anichy-1248 Anichy-1254	w/L	-	10	Ü	1.0		l öll	Ü	1.0		"	10	1.0	├─── ── 	Ü		0.1	1.0
	Anglet-1200	up/L		Ü	Ü	1.0		Ť	Ü	1.0		1	H U	1.0	 	"			1.0
	Petr BIR,	ur/L	NA.	 	┝┷┥			۳	Ü	0.05		1	Ü	0.05	├─── ┼	"		0.05	0.05
	delta BHC	ug/L	NA NA	 - 				Ü	Ü	0.05		Ü	Ü	0.05	 	Ü	-	0.05	
	Dickins	ug/l.	NA NA					Ü	Ü	0.10	<u> </u>	Ü	Ü	0.10	 	Ü		0.05	0.05
	Facosulian I	ug/l.	NA NA	1	-			Ü	Ŭ	0.05		۳	Ü	0.05	 	뷥		0.10	0.10

1000

*

	,				Event 1				Event				Event.	3			Event	4	Highest
Well	Analyte	Units	Kenult	1.0	DO	Detect Limit	Result	1.0	DO	Detect Limit	Result	LQ	PQ	Detect Limit	Hesult	1.0	INQ	Detect Limit	Detection
MW-W	Enskoultan II	ug/L	NA NA	+···×				Ü	U	0.10	 	U	Ū	0.10		Ü	 	0.10	0.10
MW-30	Endosullan sultate	ug/l.	NA.	_				Ū	Ū	0.10		Ü	Ū	0.10	 	Ū		0.10	0.10
MW-W	Linkin	ug/L	NA	1				U	U	0.10		U	U	0,10		٧		0.10	0.10
MW-W	Endrin aldehyde	υ <u>μ</u> /Τ.	NA				· · · · · · · · · · · · · · · · · · ·	U_	U	0.10		U	נט	0.10		ΰ		0.10	0.10
MW HI	Ludrin ketone	Ug/L.	NA					U	υ	0.10		U	UJ	0.10		υ		0.10	0.10
MW 30	gamma-HHC	ug/L	NA					Ü	υ	0.05		U	U	0.05		U		0.05	0.05
MW-10	gamma-Chlordane	ug/L	NA					U	U	0.05		U	υ	0.05		U		0.05	0.05
MW-30	Heptachlor	ug/L	NA					U	U	0.05		Ü	IJ	0.05		U		0.05	0.05
MW-30	Heptachlor epoxide	ug/L.	NA					Ü	U	0.05	<u> </u>	U	U	0.05		U		0.05	0.05
MW-30	Methorychlor	ug/L	NA NA	┸—			L	U	U	0.50	<u> </u>	U	U	0.50		U	<u> </u>	0.50	0.50
MW-30	Toxaphene	ug/L	NA .	↓	_			U	υ	5.0		U	U	5.0	 -	U	├	5.0	5.0
MW-31	4,4'-DDD	ug/L	NA NA	<u> </u>	-		<u> </u>	U	U	0.10	 	U	U	0.10		U	U	0,10	0.10
MW-11	4.4. DDE	ug/L	NA NA	↓	_			U	U	0.10	 	U	Ü	0.10		U	U	0.10	0.10
	4.4"-DDT	ug/L	NA NA	├	1			U	U	0.10	{	Ų.	U	0.10	 	U	υ	0.10	0.10
	Aktria	ug/L	NA .	├ ─-	├ ─┤		ļ	U	U	0.05	ļ	U	U	0.05	 	U	l v	0.05	0.05
	alpha-BIK	ug/L	NA NA					Ü	U	0.05	 	U	U	0.05	 	U	U	0.05	0.05
MW-31	alpha-Chlordane	ug/L	NA NA	+	U	1.0	 	U	U	0.05		U	U	1.0	 	Ü	10	0.05	0.05
MW-31	Anicke-1016	uy/L		U	U	2.0	 	U	U	2.0	 	U	"	2.0	 	"	10	2.0	2.0
MW 31	Arocker-1221	. Ng/l.		10	U	1.0		U	U	1.0		l ü	Ü	1.0	 	Ü	۱ü	1.0	1.0
MW-31	Anichir-1232 Anichir-1242	ug/L ug/L		1 0	l ü	1.0	 	1 0	Ü	1.0		lΰ	Ü	1.0	 	Ü	 "	1.0	1.0
MW 31	Aniche-1248	ug/L		1-5	Ü	1.0	 	Ü	Ü	1.0	 	U	Ü	1.0	 	Ü	l ŭ	1.0	1.0
MW-31	Aniche-1254	ug/L		l ü	Ü	1.0	 	Ü	Ü	1.0	 -	Ü	Ü	1.0	 	Ü	Ť	1.0	1.0
MW-31	Anichor-1260	ug/L		10	Ü	1.0	 	Ü	Ü	1.0	 	Ü	Ü	1.0	 	Ŭ	Ť	1.0	1.0
MW-31	hera-BHC	ug/L	NA NA	† -	├ ~			Ü	Ü	0.05	 	Ŭ	Ü	0.05	!	ŭ	Ü	0.05	0.05
MW-31	delta-BHC	ug/L	NA NA	1	\vdash		 	Ü	Ū	0.05	 	Ü	Ū	0.05		Ü	Ū	0.05	0.05
	Dickirin	υμ/L.	NA	 				Ü	Ū	0.10	 	Ü	Ü	0.10		Ü	U	0.10	0.10
MW-31	Embisultan I	ug/L	NA				· · · · ·	U	U	0.05	1	Ü	Ü	0.05	1	U	U	0.05	0.05
MW 11	Emkrattan II	uµ/L	NA				ļ ——	Ū	U	0.10	1	Ü	U	0.10		v	U	0.10	0.10
MW-31	Enchwultan sultate	ug/L	NA					U	U	0.10		U	U	0.10		U	U	0.10	0.10
MW-31	Findern	ug/L	NA					υ	٥	0.10		U	υ	0.10		٦	U	0.10	0.10
MW-31	tindrin akkehyde	nk/r	NA					U	٥	0.10		U	ีบ	0.10		U	U	0.10	0.10
MW-31	Endrin ketone	ug/L.	NA				 _	U	U	0.10		U	U	0.10		2	υ	0.10	0.10
MW-31	gannia BHC	ug/l.	NA	L_			<u> </u>	Ü	U	0.05	L	U	U	0.05		2	υ	0.05	0.05
MW-II	ganutta Chlordane	ug/1.	NA ·	 				U	د	0.05	<u> </u>	U	~	0.05		٦	U	0.05	0.05
	Heptachkii	ug/L	NA .	ļ			ļ	U	٥	0.05	ļ	U_	0	0.05	_	٦	U	0.05	0.05
	Heptachlor epoxide	nk/r	NA	_				U	٦	0.05	 	U	C	0.05		٦	U	0.05	0.05
	Methoxychlor	ug/1.	NA	-				Ų.	: ح	0.50		U	Ų.	0.50		Ü	U	0.50	0.50
	foxaphene	ug/l.	NA NA	 	\vdash		 -	U	C C	5.0 0.10	 	V U	c c	5.0 0.10		= =	U	5.0	5.0
	4,4'-DDD 4,4'-DDE	ug/L	NA NA					Ü	늉	0.10	ļ	1 0	U	0.10	 	+ +	U	0.10	0.10
	4.4 DDE	ug/L ug/L	NA NA	 -	-		 	1 5	+	0.10	 	10	Ü	0.10		8	l v	0.10	0.10
	Aktrin	ug/L	NA NA	-				Ü	۳	0.05	 	l U	U	0.05		5	 	0.05	0.05
	alpha-BHC	ug/L	NA.	 	-1	· · · · · · · · · · · ·		T	Ť	0.05	 	Ü	Ü	0.05	· · · · · ·	Ü	Ü	0.05	0.05
	alpha-Chlordane	ug/L	NA.	 				Ü	Ü	0.05	 	ᇦ	Ü	0.05	 	U	Ü	0.05	0.05
	Anyler-1016	ug/1.			U	1.0		Ü	Ü	1.0	 	1 5	Ü	1.0	 	U	Ü	1.0	1.0
	Ann.hv-1221	ug/L			١٠	2.0		Ü	Ü	2.0	 	l u	ŭ	2.0	 	Ü	Ü	2.0	2.0
	Aniche-1232	ug/L			ŭ	1.0		Ü	Ü	1.0	 	Ü	Ü	1.0	 	Ü	Ü	1.0	,1.0
	Anichir-1242	ug/L			Ū	1.0		Ü	Ü	1.0	1	ΙŬ	υ	1.0		Ü	Ü	1.0	1.0
MW-12	Annihr-1248	ug/L			U	1.0		Ü	U	1.0		U	Ü	1.0		Ü	Ü	1.0	1.0
MW-32	Anichir-1254	ug/L			٦	1.0		U	υ	1.0		Ü	U	1.0		Ü	Ü	1.0	1.0
MW-12	Arciclos-1200	ug/L			5	1.0		U	U	1.0		Ü	บ	1.0		U	Ü	1.0	1.0
MW-32	beta BHC	ug/L	NA					U	U	0.05		U	U	0.05		υ	U	0.05	0.05
	detta-BHC	ug/t.	NA					U	U	0.05		U	U	0.05		υ	U	0.05	0.05
	Dickfrin	ug/l.	NA	,	1			U	U	0.10		Ū.	5	0 10		Ü	Ü	0.10	0.16

Appendix C
Maximum Concentrations of Pesticides and PCBs
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

		, 			Event				Event				Event				Event 4		Mighest
Well	Analyte	Units	Result	14	DU	Detect Limit	Republ	10	DQ	Dotect Limit	1	10	100	Detroit Limit	Result	1.0		Detect Limit	Detection
	land outtan I	w/l.	NA	1.3				17	7	0.05		10	7	9.05		1	10	0.05	0.05
	tinch-notion if	ug/L	NA NA	┼	-			Ü	Ü	0.10	 	Ü	Ü	0.10	 	Ü	10	0.10	0.10
MW-32	Endraulian soliak	ug/L	NA NA	 	-			Ü	Ü	0.10	 	Ü	Ü	0.10	-	Ü	Ü	0.10	0.10
MW-12	f:mdrsa	ug/L	NA.	1-	1			Ü	Ü	0.10		Ü	ΙŪ	0.10	 	Ŭ	T	010	0.10
MW-32	limban aldehyde	ugh.	NA NA	+				ü	Ü	0.10		Ιŭ	Ιΰ	0.10	 	Ü	Ť	0.10	0.10
MW-32	Coultry Leaves	ug/L	NA.	1-				Ü	Ü	0.10		Ť	Ū	0.10		Ŭ	Ü	0.10	0.10
MW-32	r.mannBHC	ug/t.	NA	 				U	Ü	6.05		Ü	Ū	0.05		Ť	Ť	0.05	0.05
MW-32	gamma (Thurstan:	ug/L	NA	1				U	U	0.05		U	Ū	0.06		Ü	Ü	0.05	0.05
MW-32	Heptachhu	ug/L	NA					U	U	0.05		Ü.	Ū	0,05	T	U	U	0.05	0.05
	Heptachky episaide	ug/L	NA					U	U	0.05		Ü	U	0.05		v	U	0.05	0.05
MW-32	A Scalman ye hikar	ug/L	NA					Ü	>	0.90		Ü	U	0.50		U	Ü	0.50	0.50
MW-32	Toraphene	ug/L	NA					U	U	5.0		U	V	5.0		U	U	5.0	5.0
MW-33	4.4'-DDD	ug/L	NA	L_{-}				V	٦	0.10		U	UI	0.10		U	U	0.10	0,10
MW-33	4.4"-DDE	ug/L	NA	L_				=	2	0.10		U	w	0,10		U	U	0.10	0.10
MW-33	4.4"-DDT	ugh	NA_	<u> </u>				6	>	0.10	<u> </u>	U	UI	0.10		U	U	0.10	0.10
MW-33	Aldria	ug/L	NA .	1				U	ב	0.05		U	U	0.05		U	U	0.05	0.65
MW-33	alpha-BHC	Ug/L	NA.	↓	L		0.03			NA NA		U	U	0.05		U.	U	0.05	0.05
MW-33	alpha-Chimiatic	ug/L	NA NA	L-	1			U	U	0.05	<u> </u>	U	U	0.05	<u></u>	U	C C	0.05	0.05
MW-33	Annhr-1016	W/L		U	U	1.0		U	٧	1.0		Ų.	V.	1.0		U	U	1.0	1.0
MW-33	Anache-1221	W/L		L.	U	2.0		U	2	2.0		U	U	2.0	 	U	N A	2.0	2.0
MW-33	Auchy-1232	Hg/L		14	U	1.0		10	U	1.0		V.	<u>u</u>	1.0		Ų.	U	1.0	1.0
MW-33	Ann.hw-1242	ug/L		Į v	U	1.0		6	2	1.0		U	U	1.0		U	U	1.0	1.0
MW-33	Annin-1248	ug/L_		1 "	Ų.	1,0		<u></u>	Ü	1.0		Ų.	Ľ	1.0		U	Y	1.0	1.0
MW-33	Ann.hu-1234	W/L	ļ	<u>ب</u>	Ų.	1.0		Ų.	9	1.0	 	Ų.	U	1.0		U	U	1.0	1.0
MW-33	Anncher-1260	ug/L		10	٧	1,0		Ų.	U	1.0	 	V	U	1.0		U	Ü	1.0	1.0
	hris-BIK'	uy/L	NA NA	┼				2	2	0.05	ļ	Ų	U	0.05		Ų.	Ü	0.03	0.05
MW 13	d:na-BiK'	w/L	NA_	 	-			U	2	0.05		Ų.	V	0.06	 	U	Ų.	0.05	0.05
MW-33	Dickless	·w/L	NA NA	├ ──	 			10	8	0.10	 	U	Ų.	0,10		v	U	0.10	0.10
MW-33	find-maken t	- w/L	NA NA	┼				Ü	\	0.10	 	10	U	0.05	ļ	U	1 :: 1	0.05	0.05
MW-33 MW-33	tenhaultan 11 Linhaultan sullak:	- w/L	NA NA	┼	 			Ü	Ü	0.10	 	tö	ü	0.10		Ü	U	9,10	0.10
MW-33	Endrin	W/L	NA NA	+-	 			Ü	Ü	0.10		1 0	ü	0.10	 	U	1 0	0.10	0.10
MW-33	Endon aldelopik	W/L	NA NA	 				Ü	Ť	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW-33	Ladrin Leven	ug/t.	NA NA	 				Ü	Ü	- 0.10	 	Ť	Ü	0.10	 	Ü	Ť	0.10	0.10
MW-33	gamma-BHC	W/L	NA NA	1				U	U	0.05		Ť	Ü	0.05		Ť	Ü	0.05	0.05
MW-33	Thursday Chy telane.	Mg/L	NA					Ų	5	0.05		Ü	Ū	0.05		Ü	Ü	0.05	0.05
MW-13	I kytachky	ug/L	NA					U	Ü	0.65		U	U	0.05	1	v	U	0.05	0.05
MW-33	throughte country	w/L	NA					U	5	0.65		U	Ü	0.05		Ū	U	0.05	9.05
MW-13	Michay, had	ug/l.	NA					V	5	0,50		U	Ü	0.50		U	Ü	0.50	0.50
MW-33	Toxaphetic	ug/L	NA					U	٥	3.0		U	U	5.0		U	2	5.0	5,0
MW-34	4,4'-DDD	ug/l.	NA	L				U	5	0.10		U	W	0.10		ט	U	9.10	0.10
MW-34	1.1DDF	ug/L	NA	<u> </u>				C	7	0.10	L	U	3	0.10		U	U	0.10	0,10
MW-J4	4.4°-DDT	ug/L	NA		1			U	7	0.10		U	UJ	0.10		U	2	0.10	0.10
MW-34	Aldria	ug/L	NA	↓	-			U	>	0.05		U	U	0.05		Ü	C	0.06	0.05
MW-34	alpha-BIIC	mg/L	NA.				<u> </u>	U	7	0.05	 _	U	U	0.05		Ü	6	0.05	0.05
MW-34	alpha-Chludane	wel	NA	1	 			U	U	0.05		U	U	0.05		2	E	0.05	0.05
MW-34	Annhe-1016	ug/L	L	U	U.	1.0		U	2	1.0		U	U	1.0		Ü	U	1.0	1.0
MW-34	Anniev-1221	W/L		U	U	2.0		U	7	2.0		U	U	2.0		2	2	2.0	,20
MW-M	Anwhy-1232	W/L	 	1 4	Ų.	1.0		l u	2	LO	<u> </u>	Ü	Ų	(,0		٧	U	1.0	1.0
MW-34	Annihu-1242	<u> </u>		l u	U	1.0		U	2	1.0		Ų.	U	1.0		>	U	1.0	1.0
MW-34	Auchy-1248	ug/L.	ļ	U	l v	1,0	<u> </u>	2	U	1.0		U.	Ų.	1.0		2	U	1.0	1.0
MW-34	Aux.hr-1254	ug/L	 	U	Ų.	1.0	 	u u	U	1.0		U	Ü	1.0	 	>	2	1.0	1.0
MW-34	Anichir-1260	ug/l.	 	1"	U	1.0		U	U	1.0		U	L U	1.0		٧	U	1.0	1.0
MW-34	heta-BHC	ug/L	NA NA	├			<u> </u>	U	7	0.05	<u> </u>	U	U	0.05	 	ح	U	0.05	0.05
MW 34	delta-BHC	ug/L	NA.	<u></u>	لسبط		L	l v	U	0.03	l	U	U	0.05	L	٦	U	0.05	0.05

										 			No.	1			Event -		116-16
		1		1.0	Event		Result	1.0	Event.	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	! lighest Detection
Well	Analyte	Units	Result	1.0	DQ.	Detect 1.imit	Result	U	U	0.10	NO CONTRACT	U	7	0.10	Keapii	12	U	0.10	0.10
MW-14	Dieldun Endosultau l	ug/L.	NA NA	}	 		 	1 8	Ü	0.05		U	l ü	0.05	 	U	Ü	0.05	0.05
MW 14	Endouble B	ug/l.	NA NA		1			Ü	Ü	0.10	· · · · · · · · · · · · · · · · · · ·	Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW 14	Undosultan sultate	ug/L	NA NA	┼──	-		 	Ü	Ū	0.10		Ü	Ū	0.10	 	Ü	Ü	0.10	0.10
MW H	I ndem	ug/l.	NA NA	 	 		 	U	U	0.10		Ü	UI	0.10	 	Ü	1 0	0.10	0.10
MW-34	Endrin akkehyde	ug/L	NA NA	1-	1		 	Ü	Ü	0.10	 	Ü	Ü	0.10	 	Ü	Ü	0.10	0,10
MW-34	findren ketone	ug/L	NA.	┼	1		 	l ü	U	0.10		tů	Ü	0.10		Ü	Ü	0.10	0.10
MW-34	gamma-BHC	ug/L.	NA	 	-		 	Ū	Ü	0.05		Ù	Ü	0.05		Ü	Ū	0.05	0.05
MW-34	gannia-Chlordanc	ug/L	NA NA	┼~~	-		·	Ū	Ü	0.05		Ù	Ť	0.05		Ü	Ü	0.05	0.05
	Heptachker	ug/L	NA NA	 	-			Ū	Ü	0.05		Ü	Ü	0.05		Ü	Ū	0.05	0.05
	Heptachlor epoxide	ug/L	NA NA	 				Ū	U	0.05		Ū	U	0.05		Ū	U	0.05	0.05
	Mathemychke	ug/L	NA	 	1			Ū	U	0.50		Ü	U	0.50		Ü	U	0.50	0.50
MW 14	Toxaphene	ug/L	NA	1-				Ū	-	5.0		Ü	Ū	5.0		Ü	U	5.0	5.0
MW-16	4.4°-DDD	ug/L	NA	 				Ü	Ü	0.10		Ü	U	0.10		Ü	U	0.10	0.10
MW In	1.1' DDE	ug/L	NA	 	1			Ü	Ü	0.10		U	U	0.10		Ū	U	0.10	0,10
MW-M	1.1°-DDT	ug/L	NA	 				U	υ	0.10		U	U	0.10		U	U	0.10	0.10
MW-36	Akkın	ug/L	NA					U	2	0.05		U	Ū	0.05		Ū	U	0.05	0.05
MW-in	alpha-BIK'	ug/L	NA					U	2	0.05		U	U	0.05		U	U	0.05	0.05
MW-36	alpha-Chlordane	ug/L	NA					U	5	0.05		U	U	0.05		Ū	U	0.05	0.05
MW-36	Anxlor-1016	ug/L		Ū	U	1.0		v	د	1.0		U	υ	1.0		U	U	1.0	1.0
MW-36	Anocher-1221	ug/L		U	U	2.0		U	U	2.0		U	U	2.0		U	Ü	2.0	2.0
MW 36	Aroclor-1232	ug/L		U	U	1.0		U	5	1.0		U	V	1.0		U	U	1.0	1.0
MW-3h	Arockir-1242	ug/L		U	U	1.0		U	5	1.0		U	U	1.0		U	U	1.0	10
MW-36	Ametor-1248	υ <u>μ</u> /1.		U	U	1.0		Ū	5	1.0		U	U	1.0		U	U	1.0	10
MW-3n	Anichie-1254	ug/L.		U	U	1.0		Ū	V	1.0		U	U	1.0		Ü	U	1.0	1.0
MW-In	Anoclor-1260	ug/L		U	U	1.0		U	U	1.0		Ü	U	1.0		U	U	1.0	1.0
MW 16	heta-BHC	ugA.	NA	Г				U	٦	0.05		U	U	0.05		V	U	0.05	0.05
MW 36	delta-BHC	ug/L	NA.					U	U	0.05		U	U	0.05		U	U	0.05	0.05
MW-36	Dicklin	ug∕I.	NA					U	U	0.10		U	U	0.10		v	U	0.10	0.10
MW 36	Endosultan I	ug/L	NA _					0	=	0.05		U	U	0.05		Ü	U	0.05	0.05
MW 16	i ndosultan li	ug/t.	NA					U	U	0.10		U	U	0.10		U	U	0.10	0.10
MW-In	Endosultan sullate	ug∕l.	NA					U	5	9.10		U	U	0.10		U	U	0.10	0.10
MW-36	Endron	ug/l.	NA					U	U	0.10		U	U	0.10		٦	U	0.10	0.10
MW-10	Endrin aldeliyde	ug/t	NA					U	٦	0.10		U	U	0.10		٦	U	0.10	0.10
MW-10	Endon kejone	ug/t.	NA					U	υ	0.10		U	U	0,10		٦	υ	0.10	0.10
MW to	gannna BHC	ug/L	NA					U	U	0.05		U	U	0.05		5	U	0.05	0.05
MW-16	gamma Chlordane	ug/L	NA	L_			L	U	٦	0.05		U	U	0.05	L	۲	υ	0.05	0.05
	Heptachkor	ug/L	NA	<u> </u>	-			U	٧	0.05		U	U	0.05		Ü	U	0.05	0.05
MW to	Перистин сроине	ug/L	NA					U	٦	0.05		·U	U	0.05		U	U	0.05	0.05
	Methoxychlor	ug/L	NA	├				U	٦	0.50		Ų.	<u>u</u>	0.50		V	U	0.50	0.50
MW 36	Toxaphene	ug/l.	NA	├	├ ─┤			U	2	5.0		U	U	5.0	ļ	ט	U	5.0	5.0
	4,4°-DDD	ug/1.	NA NA	₩-	├	L		Ų.	۲	0.10	 	<u> </u>	Ų.	0.10	 	 -	Ų.	0.10	0.10
	4.4°-DDE	ug/L	NA NA	├	\vdash		}	U	Ų,	0.10	 	Ų.	Ų.	0.10	 		U	0.10	0.10
MW-37	4.4°-DDT	ug/L	NA.	├	┝╌┥			U	U	0.10	 	Ų.	Ų.	0.10		├	1 2	0.10	0.10
MW-37	Aldrin	ug/L	NA NA	├	┝╌┤		 	10	_	0.05		<u></u>	U	0.05		-	<u>"</u>	0.05	0.05
MW 37	alpha-BHC) ug/1.	NA NA		├ ─┤		 	0	ט	0.05	 -	U	V	0.05		├	Ų.	0.05	0.05
MW-37	alpha-Chlordane	ug/t.	NA .	 	 	1.0	 	10	U	0.05		10	1 0	nas	 	 -	Ų.	0.05	0.05
MW-17	Anschr-1016 Anschr-1221	ug/L		U	├ ─┤	2.9		U	U	20	 	10	1 11	1.0	 	├	<u> </u>	1.0	1.0
MW-17		ugn.		10	├ ─┤	1.0	 	U	U		 	1 0		2.0	 		Ų.	2.0	2.0
MW-17	Ann. for 1232	ug/l.		1 0	├ ──┤	1.0		10	7	1.0	 		L U	1.0	 	<u> </u>	U	1.0	1.0
MW-17	Anocker-1242	ug/L		5		1.0	 	10	U	1.0		Ų.	Ų.	1.0	 		L.	1.0	1.0
MW-37	Arrichie 1248	ug/L			┝╼┥	1.0		0	7			U	U	1.0		 -	U.	1.0	1.0
MW-17	Aniclor 1254	ug/l.		U	┝╌┥	1.0	}	U	Ü	1.0		Ų.	Ų.	1.0			<u> </u>	1.0	1.0
MW-17	Anachar (200)	ug/L		├- └-	╁┷╌┤	1.0	 	U	U	1.0		U	U	1.0		├	U	1.0	1.0
M1W-37	hcia-BHC	ug/l.	NA_	Щ	لبيا	<u> </u>		1_4_		0.05		U	Lv	0.05	L	L	ــــــــــا	0.05	0.05

Appendix C Maximum Concentrations of Pesticides and PCBs Baseline Groundwater Monitoring

American Chemical Services NPL Site Griffith, Indiana

		т			Event				Kvent	2			Event	1	1		Event 4		Highest
Well	Analyte	(Imigs	Result	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DO	Detect Limit	Detection
	dr.ka-BHC	ug/L	NA.	1				Ü	Ü	0.05		Ü	U	0.05			10	0.05	0.05
	Dicklim	ug/L	NA NA	┼─~	1			T U	Ť	0.10	 	Ü	Ü	0.10			Ü	0.10	0.10
MW-37	End-nultan I	ug/L	NA.	 	1			Ü	Ť	0.05		Ū	Ü	0.05		_	1 0 1	0.05	0.05
MW-37	End-nultan II	ug/L	NA NA	_				ΙŪ	Ŭ	0.10	 	Ü	Ü	0.10	 		1 0 1	0.10	0,10
MW-17	End-sultan sultate	ug/l.	NA.	 				Ť	Ū	0.10	 	Ü	Ü	0.10		_	 + + +	0.10	0.10
MW-17	l-ndrin	ug/l.	NA		_			ΙŪ	Ü	0.10		Ü	Ū	0.10		_	1 0	0.10	0.10
MW-17	Enden akk-hyde	ug/L	NA	 				Ū	Ü	0.10		Ū	Ū	0.10		_	Ü	0.10	0.10
MW-37	Endrin kelone	ug/L	NA			-		Ü	Ū	0.10		Ü	Ŭ	0,10			1 0 1	0.10	0.10
MW-37	Rainma-BHC,	W/L	NA	1				Ū	Ū	0.05		Ū	Ū	0.05		_	Ü	0.05	0.05
MW-17	ganuna-Chkedane	ug/L.	NA					U	Ū	0.05		Ū	Ū	0.05			υ	0.05	0.05
	the practice	uμ/L.	NA					U	Ü	0.05		Ü	Ū	0.05			Ü	0.05	0.05
	Heptachkir epiinide	ug/L	NA					U	U	0.05		U	Ū	0.05		_	Ū	0.05	0.05
	Abritantycither	UEL	NA					U	U	0.50	 	Ü	Ū	0.50			U	0.50	0.50
MW-37	Toxaphene	ug/L	NA					U	U	5.0		U	U	5.0			Ü	5.0	5.0
	4.4°-DDD	ug/L	NA		1			U	U	0.10		Ū	Ü	0.10		Ü	ΰ	0.10	0.10
MW-3K	4.4'-DDE	wel.	NA					U	υ	0.10	·	Ū	W	0.10		Ü	Ü	0.10	0.10
	4,4° DIT	ug/l.	NA					Ū	Ü	0.10		Ū	w	0.10	 	Ū	Ŭ	0.10	0.10
MW-38	Akiria	ug/L	NA NA		\vdash			Ū	Ü	0.05	<u> </u>	Ü	Ü	0.05		Ü	Ü	0.05	0.05
	alpha-BIK*	un/L	NA					U	Ü	0.05	·	Ū	Ů	0.05		Ü	Ü	0.05	0.05
	alpha-Chlordane	ug/L	NA		\vdash			U	Ü	0.05		Ü	Ü	8.05	 	Ü	Ü	0.05	0.05
	Ann. hw-1010	ug/L		U		1.0	*	U	Ü	1.0		Ū	Ü	. 1.0		U	Ü	1.0	1.0
	Atocher-1221	ug/L		U		2.0		U	Ü	2.0	<u> </u>	Ū	Ü	2.0		Ü	Ü	2.0	2.0
MW-M	Anicke-1232	ug/L.		U	1	1.0		V	Ü	1.0		U	Ü	1.0		Ü	Ü	1.0	1.0
	Ann. her-1242	ug/L		U		1.0		U	5	1.0		Ū	Ü	1.0		Ū	Ŭ	1.0	1.0
MW-W	Ann hr-1248	ug/L		U		1.0		Ü	۲	1.0		U	Ü	1.0		Ü	T U	1.0	1.0
	Aniche-1254	ug/l.		U		1.0		U	V	1.0		U	Ü	1.0		Ü	Ü	1.0	1.0
	Anathr-12no	w/L		U		1.0		U	Ü	1,0		U	Ü	1.0		Ü	Ü	1.0	1.0
	hera BIK*	ug/L	NA					U	ď	0.05		v	Ü	0.05		Ü	Ü	0.05	0.05
	delta BIIC	ug/L	NA					U	د	0.05		U	Ü	0.05		Ü	Ü	0.05	0.05
	Dackfron	ug/L	NA					U	5	0.10		U	Ū	0.10		Ù	Ü	0.10	0.10
	lindrallan l	up/l.	NA					U	5	0.05		U	Ü	0.05		ū	Ü	0.05	0.05
MW-W	lindrattan II	ug/l.	NA					U	>	0.10		U	Ü	0.10		U	Ū	010	0.10
	End-sultan sultate	uy/L.	NA		\Box			U	5	0.10		U	Ü	0.10		Ü	Ü	0.10	0.10
	Endus	ug/L	NA				_	U	U	0.10		U	3	0.10		Ü	υl	0.10	0.10
	timitin ahkityiki	up∕t.	NA					U	U	0.10		U	Ü	0.10		U	Ü	0.10	0.10
	Emiron hetome	ug/l.	NA					V	٥	a. 10		U	Ġ	0.10		Ü	Ü	0.10	0.10
	gamma-MHK"	ug∕1.	NA					U	٦	0.05		U	U	0.05		Û	Ü	0.05	0.05
MW-W	gammes (leh melane	uy/l.	NA					U	ح	0.05		U	V	0.05		Ü	U	0.05	0.05
	Hejmachhai	ug/l.	NA					U	U	0.05		U	U	0.05		U	ŭ	0.05	0.05
	Heptachlor epositic	ug/L	NA					2	حا	0.05		U	٥	0.05		Ü	Ü	0.05	0.05
MW-tk	Methoxychka	up/L	NA					5	5	0.50		U	دا	0.50		Ü	U	0.50	0.50
MW-3H	Toyaphene	ug/L	NA		\Box			U	5	5.0		U	U	5.0		U	U	5.0	5.0
MW-39	4,41-DDD	uy/1.	NA					<u> </u>	5	0.10		U	Ü	0.10		υ	U	0.10	0.10
MW-39	4,4°-DDE	ug/L	NA .	L]	لتط			2	>	0.10		ט	UJ	0.10		Ü	U	0.10	0.10
MW-W	4,4°-00T	ug/l.	NA		▃▋			C	٥	0.10		U	UJ	0.10		U	٥	0.10	0.10
MW-39	Aldein	w/L	NA					C	٥	0.95		U	U	e as		U	U	0.05	0.05
MW-19	alpha-BHC	ug/L	NA		╙┈			U	>	0.05		U	U	0.05		U	υ	0.05	0.05
MW-39	alpha-Chhulane	ug∕t.	NA		LI			U	>	0.45		U	U	0.05		Ü	U	0.05	4.05
MW-,19	Anche-tille	m/L		٥		1.0		U	حا	1.0		U	٦	1.0		υ	U	1.0	1.0
MW-,19	Anche-1221	ug/L		٦	لــــا	2.0		V	حا	2.0		U	U	2.0		U	U	2.0	2.0
MW-,19	Aniche-1232	ug/l.		٦		1.0		5	5	1.0		U	U	0,0		Ü	U	1.0	1.0
MW-39	Ann. hw-1242	ug/L		٦	\Box	1.0		U	2	1.0		U	U	1.0		U	U	1.0	1.0
MW-39	Anicher-1248	ug/1.		υ		1.0		U	٦	1.0		U	U	1.0		Ü	Ü	1.0	1.0
MW-14	Auctor-1254	ug/L		U		10		U	دا	1.0		U	U	1,0		Ü	Ü	1,0	1.0
MW W	Amelor-1260	υς/1.		٦	1	1.0		U	υ	1.0		υ	Ü	1.0		Ū	U	1.0	1.0

		T			Event !				Event:	1			Event	3			Event	1	Highest
Well	Analyte	tinits	Result	LQ	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	PQ	Detect Limit	Detection
	beta BHC	ug/L	NA	 	-			Ū	٦	0.05		Ū	U	0.05		U	U	0.05	0.05
MW-19	delta-BHC	uy/L	NA	 				Ü	U	0.05		U	U	0.05		U	υ	0.05	0.05
MW-19	Dighton	ug/L	NA	T				U	U	0.10		U	Ü	0.10		U	υ	0.10	0.10
MW-39	Endosultan 1	υμ/1.	NA	†				υ	Ü	0.05		U	U	0.05		U	U	0.05	0.05
MW 19	Endosultan II	ug/l.	NA				1	U	U	0.10		U	U	0,10		U	U	0.10	0.10
	Endosultan sulfate	uj:/1.	NA	1				Ü	c	0.10		υ	U	0.10		U	U	0.10	0.10
MW 19	Endrin	UK/L	NA	 				U	v	0.10		U	UJ	0.10		U	U	0.10	0.10
MW 39	Findrin akkehyde	ug/L	NA					Ū	2	0.10		U	UJ	0.10		U	U	0,10	0.10
MW-19	Endrin ketone	ug/L	NA					v	Ü	0.10		Ū	UJ	0.10		Ü	υ	0.10	0.10
MW-19	gamma-BHC	ug/L	NA	1				Ū	U	0.05		U	U	0.05		U	Ū	0.05	0.05
	gamma-Chlordane	ug/L	NA	_			t	Ü	Ü	0.05		U.	U	1).05		U	U	0.03	0.05
	Hertachku	ug/L	NA	1	1			U	U	0.05		υ	U	0.05		U	U	0.05	0.05
	Heptachhor episaide	ug/L	NA	 				U	U	0.05		U	U	0.05		U	Ū	0,05	0.05
	Medicineychice	υμΛ.	NA.	_	1			Ū	Ü	0,50	·	U	U	0.50		Ü	U	0.50	0.50
	Тохарьевс	ug/L	NA NA	_	1			Ū	Ü	5.0		Ü	U	5.0		Ü	Ū	5.0	5.0
	1.1' DDD	ug/L	NA.	 				ΙŪ	Ü	0.10		Ū	UI	0.10		<u> </u>	Ū	0.10	0.10
	4.4' DDE	ug/L	NA NA	 	-			Ū	Ü	0.10		Ū	U	0.10		_	Ü	0.10	0.10
	4.4'-ODT	ug/L	NA NA	 	1		 	Ü	Ü	0.10		Ü	Ü	0.10		 	Ü	0,10	0.10
	Aktrin	υμ/t.	NA NA	+-	 		 	ΙŬ	Ü	0.05	 	Ü	Ü	0.05	 	1	Ť	0.05	0.05
MW-40	alpha-BHC	ug/1.	NA NA	┼	-			Ť	Ü	0.05	 	υ	υ	0.05	 	 	Ť	0.05	0.05
MW 40	alpha-Chivniane	Ug/1.	NA NA	┼	1-			Ü	Ü	0.05	 	tΰ	Ü	0.05	 	-	Ť	0.05	0.05
MW-40	Anche-1016	Ug/L.		U	┥	1.0		Ü	Ü	1.0	 	Ü	Ŭ	1.0	 	├─	Ü	1.0	1.0
				Ü		2.0	 	Ü	Ü	2.0	 	l u	U	2,0			Ŭ	2.0	2.0
MW 40	Anickir-1221 Anickir-1232	ug/t.		U	1	1.0	 	Ü	Ü	1.0		υ	Ü	1.0	+	├	T U	1.0	1.0
MW 40	Anicker-1242			U	}	1.0	 	U	Ü	1.0		l ü	T U	1.0	 	┰	l ö	1.0	1.0
	Anictor-1248	ug/L	ļ	l U		10	 	Ιΰ	Ü	1.0		บ	Ü	1.0	 	├	Ü	1.0	1.0
MW-40				T U	┡╾┥	1.0		Ü	Ü	1.0		Ü	T U	1.0		-	Ü	1,0	1.0
MW 40	Ann.hw-1254	UE/L	} -	U		1.0	 	l ü	Ü	1.0	 	10	1 5	1.0	 	├──	1-5-		1.0
MW 40	Ann.hr-1200	ug/L		+-	{	1.0		Ü	Ü	0.05	 	1 8	1 0	0.05	 	├		1.0	0.05
MW-40	heu-BIKC	ug/L	NA NA		-	·		Ü	U	0.05		Ü	ι	0.05		├	l u	0.05	
	delta-BHC	ug/L.	NA	 	1			10	U	0.10		10	_		 	}	Hü	0.05	0.05
MW-40	Dieldrin	ug/1.	NA NA	├	├ ──		 	l ü	"	0.05	 	 U	U	0.10	ļ .		-	0.10	0.10
	Endosultan I	ug/l.	NA	├	├ ──┤			Ü	-	0.10	 	1 %	ᡰᡥ			-	Ü	0.05	0.05
MW-40	Endosultan II	up/1.	NA NA	├	 						 			0.10		├—	U	0.10	0.10
	findesultan sultate	ug/l.	NA	├	1		<u> </u>	Ų.	Ų.	0.10	 	U.	U	0.10		├		0.10	0.10
	Findern	ug/L	NA .		┢╌┩			U	U	0.10		Ų.	UJ	0.10	 	├	U	0.10	0.10
MW-40	Endun akkehyde	ug/t.	NA .		1		ļ	ļ Ų	Ü	0.10	 	Ų.	UI	0.10		├	υ	0.10	0.10
MW-40	Endrin ketone	ug/L	NA .	├			<u> </u>	Ų.	υ	0.10		U	UJ	0.10		١	Ü	0,10	0,10
MW-40	ganuna-BHC	ug/1.	NA .	├	╀╌┤			U	U	0.05	 	Ų.	U	0.05		├	U	0.05	0.05
	gamma Chlordane	ug/t.	NA .	⊢-	 			Ų.	V	0.05	 	U	U	0.05	 	┞	U	0.05	0.05
	Heptachlor	ug/L	NA	├	Į			Ü	Ų.	0.05	 -	U	U.	0.05	 	├—	<u>u</u>	0.05	0.05
	Heptachkir epintide	υμΛ.	NA.	├				l u	Ü	0.05		U	U	0.05	 	↓	U	0.05	0.05
	Methoxychlor	ug/L	NA .	-			L	Ų.	U	0.50	 	U	U	0.50		.	υ	0.50	0.50
	Гохарћеве	ug/t.	NA	-				U	υ	5.0		<u>. u</u>	U	5.0	-	<u> </u>	υ	5.0	5.0
	4,4'-DDD	ug/L	NA.				 	l v	υ	0.10		├ ─	נט	0,10	<u></u>	U	U	0.10	0.10
	4.4"-DDE	ug/1.	NA	├				U	U	0.10	-		UJ	0.10	i	U	U	0.10	0.10
	4.4'-DDT	ug/L	NA .	₩-	├ ──┤			U	U	0.10		├	U	0.10		L U	U	0.10	0.10
	Akkın	ug/L	NA.		\vdash			Ų.	U	0.05		-	U	0.05		U	U	0.05	0.05
MW-41	alpha-BHC	ug/L	NA		1			Į Ü	U	0.05		-	U	0.05		U	U	0.05	0.05
MW-41	alpha-Chlordane	ug/t.	NA	├	1			U	U	0.05	<u> </u>	!	U	0,05	1	U	C	0.05	0.05
MW-41	Anicke-1016	ug/L		U		1.0		U	٧	1.0			U	1.0		U	c	1.0	1.0
MW-41	Arockir-1221	ug/L		U	\sqcup	2.0		U	د	2.0			U	2.0		U	c	2.0	2.0
MW-41	Arockir-1232	ug/l.		U		1.0		U	>	1.0			U	1.0		U	2	1.0	1.0
MW-41	Aniche-1242	ug/L		U		1.0	L	Ü	ح	1.0			U	1.0		U	Ü	1.0	1.0
MW-41	Anicky-124X	ug/L		U		1.0		U	حا	1.0			U	1.0		U	ט	1.0	1.0
MW-41	Anklor-1254	ug/L		U		10	1	U	U	1.0			U	1.0		Ū	U	1.0	1.0

					Event		1		Event	1			Event .				Event		Highest
Well	Anulyte	Units	Result	1.0		Detect Limit	Result	1.0		Detect Limit	Reset	1.0	DO	Detect Limit	Result	1.0	DO	Detect Limit	Detection
	Amaker-1200	ug/L		U		1.0		Ü	_	1.0		13	1	1.0		17	U	1.0	1.0
	heta-BHC	ug/L	NA	†Ť			 	Ü	Ū	0.05	 	_	Ü	0.05	 	١ů	Ü	0.05	0.05
	P.NT. BIK.	w/L	NA	 	1			Ū	Ü	0.05	 		Ť	0.65	 	T Ü.	ΙŬ	0.05	0.05
	Dicking	ug/L	NA					Ū	Ū	0.10			T i	0.10	 	Ť	Ū	0.10	0.10
	Embaultan I	ug/L	NA	_			1	Ü	Ū	0.05			Ü	0.05	 	Ü	Ū	0.05	0.05
MW-41		ug/L	NA	1				Ü	U	0.10		_	Ü	0.10		Ť	Ü	0.10	0.10
MW-41	Embaultas sultate	ug/L	NA	1				Ū	v	0.10		_	U	0.10	1	Ū	Ū	0.10	0.10
MW-41		ug/L	NA					Ü	U	0.10			Ü	Ø 10	T	Ū	Ū	0.10	0.16
MW-41	Endon aldehyde	ug/L	NA	1				ע	U	0.10			W	0.10		U	Ū	0,10	0.10
MW-41	Emban kewae	ug/L	NA					U	U	0.10			IJ	0.10		U	U	0.10	0.10
MW-II	gamma-BIK*	uk/L	NA					U	٦	0,05			U	0.05		U	Ü	0.05	0.05
MW-41	gamma-Chlordane	up/L	NA					U	ح	0.05			U	0.86		U	U	0.05	0.05
MW-41) k-peachba	ug/L	NA					U	U	0.05			U	0.05		U	บ	0.06	0.05
MW-41	Heptachkor epozute	ug/L	NA					U	U	0.05			2	0.05		U	U	0.05	0.05
	Methodychlor	ug/L.	NA_					U	U	0.50			5	0.50		Ü	U	0.50	0.50
MW-41	Toxaphene	ug/L	NA		┸		<u> </u>	U	٦	5.0			U	5.0		U	C	5.0	5.0
	4.4.4000	ug/L	NA		-		<u> </u>	U	U	0.10			W	0.10		U	C	0.10	0.10
	44, DDE	ug/L	NA	↓	$ldsymbol{\sqcup}$		ļ <u>.</u>	υ	٦	0.10			U	0.10		U	C	0.10	0.10
	4.4° DOT	ug/L.	NA NA	<u> </u>	┸		<u> </u>	U	2	0.10	L		W	0.10	<u> </u>	U	U	0.10	0.10
MW-42		ug/L	NA	ــــــــــــــــــــــــــــــــــــــ	$ldsymbol{\sqcup}$			U	>	0.05			U	0.05	<u> </u>	V	٧	0.05	0.05
	alpha-BHK*	ug/l.	NA				<u> </u>	U	>	0.05			2	0,05	<u> </u>	U	U	0.05	0.05
	alpha Ohimbanc	ug/L	NA_	├	\vdash			U	2	0.05			U	0.05	ļ	U	U	0.05	0.05
	Anichir-1016	ug/L	<u> </u>	U		1.0		U	>	1,0			٧	1.6	<u> </u>	U	<u>د</u>	1.0	1.0
	Aniche-1221	ug/L		U	├ ─┤	2.0	 	U	U	2.0	ļ		Ü	2.0	 	U	U	2.0	2.0
	Aniche-1232	ug/l.		U		1.0	 -	U	יי	1.0		<u> </u>	U	1.0	 	U	V	1.0	1.0
	Ani, hir-1242	ug/L	} _	U		1.0		U	۳	1.0		<u> </u>	Ü	1.0	 -	U	U	1.0	1.0
	Anythr-1248	ug/L	 	U	-	1,0		U	2	1.0		<u> </u>	U	1.0	 	U	U	1,0	1.0
	Amelor-1254	ug/L	 	U		1.0	-	Ü	1	1.0		Ь-	υ	1.0	 	U	2	1.0	1.0
	Archive-1260	ugA.	NA NA	+-	╌┤	1.9		Ü	۳	0.05	ļ	 	Ÿ	1.0	 	U	Ų.	1.0	1.0
	heta BHK	ug/L	NA NA	┼─	\vdash		 	Ü	"	0.05			"	0.05	 	U	CC	0.05	0.05
MW-42		ug/L	NA NA	 				ŭ	-	0.10	-	-	Ü	0.10	 	H	H U	0.10	0.03
	Enkoultan I	ug/L	NA NA	┼	 		ļ	Ü	Ü	0.05		┝	Ü	0.66	 	Ü	Ü	0.85	0.05
	Endrollan II	ug/t.	NA.	+	 		 	Ü	Ü	• 0.10		-	۱ ٽ ۱	0.10	 	ΙÜ	T U	0.10	0.10
	Endowhan sufface	ug/t.	NA	┼──				Ü	Ü	0.10			Ü	0.10		Ü	Ü	0.10	0.10
MW-42		ug/l.	NA.	1	1			Ü	Ü	0.10			ŭ	4.10	 	Ü	Ü	0.10	0.10
	Embro aldehyde	ug/l.	NA.	1				Ū	5	(1,16)			Ü	0.10	†	Ü	Ü	0.10	0.10
	Endou become	ug/L	NA.	_				v	5	0.30			Ü	0.10		ΙŪ	Ü	0.10	0.10
	gammu-BHC	ug/l.	NA					U	5	0.05			Ü	0.05		Ū	Ť	0.05	0.03
	gammu-Chlurdan:	ug/L	NA					Ü	U	0.03			U	0.45		Ü	2	0.05	0.05
	Hertachter	ug/L	NA					U	C	0.05			U	0.46		Ü	c	0.05	0.05
MW-42	Heptachhor epistide	uy/L	NA					U	U	0.05			U	0.65		U	5	0.05	0.05
	Abribanychka	ug/l.	NA					U	U	0.50			U	0.99		U	U	0.50	0.50
MW-42	Toxaphene	ωg/l.	NA					U	U	5.0			U	5,0		U	C	5.0	5.0
	4.4" (NDD	ug/L	NA					U	5	0.10		حا	Ü	0.10		U	U	010	0.10
	4,4°-DDE	ug/L	NA					U	٥	0.10		IJ	W	0.10		v	5	0.10	0.10
MW-43	4.4" OUT	ug/L	NA					U	٥	0.10		5	IJ	0.10		U	2	0.10	0.10
MW-43		w/L	NA	\Box				U	٦	(1.05		٥	U	0.05		5	2	0.05	0.05
MW-43	alpha-BIK'	ug/L	NA					υ	U	0.05		5	٦	0.05		5	U	0.05	0.05
MW-43	alphu-Chhwlanc	ug/L	NA					U	U	0.05		5	υ	0,65		حا	U	0.05	0.05
MW-43	Anchr-1016	ug/L		U		1.0		U	υ	1.0		5	٥	1.0		٥	U	1.0	1.0
MW-43	Ann. hr-1221	ug/L		U		2.0		U	υ	2.0		5	5	2.0		U	Ü	2.0	2.0
MW 43	Annike-1232	uy/L		U		1.0		บ	V	1.0		Ü	5	1.0		ح	U	1.0	1.0
MW 43	Anicker-1242	ug/L		U_	\Box	10		U	Ü	1.0		U	٦	1,0		٧	ט	1.0	1.0
MW.43	Ann. hr-1248	ug/L		U		1.0		U	U	1.0		U	U	1.0		U	U	1.0	1.0

					Event				Event	,			Event				Event		Highest
Well	Analyte	Units	Result	LQ	DO	Detect Limit	Result	1.0	DO	Detect Limit	Reuli	1.0	DO	Detect Limit	Kesult	1.0	DQ	Detect Limit	Detection
MW 41	Anschu 1254	ug/L	*****	U		1.0		U	U	1.0		U	U	1.0		U	Ü	1.0	10
MW 43	Anschr 1200	ug/L.		U	\vdash	1.0		ŭ	Ü	1.0		Ū	U	1.0		Ü	Ŭ	1.0	1.0
MW-13	beta-BHC	us/L	NA.	+-				Ü	5	0.05		U	U	0.05		כ	U	0.05	0.05
MW-41	delia-BHC	ug/l.	NA.	 				Ü	1	0.05		U	U	0,05		υ	U	0.05	0.05
MW-41	Dickfrin	ug/L	NA	1				U	U	0.10		U	U	0,10		Ü	U	0.10	0.10
MW-41	Luckwoltan I	ug/L	NA	 				U	U	0.05		Ū	Ü	0.05		Ü	U	0.05	0.05
MW-13	Lindonalian II	ug/l.	NA	_				Ū	Ü	0.10		Ü	Ü	0.10		Ü	Ū	0.10	0.10
MW-43	Endosultan sultate	ug/L	NA NA	 				Ü	<u> </u>	0.10	<u> </u>	Ü	Ū	0.10		Ü	Ū	0.10	0.10
MW-41	Lindon	ug/L	NA NA	1				Ü	Ü	0.10		Ü	Ū	0.10		Ü	Ū	0.10	0.10
MW-41	Endon aldehyde	ug/t.	NA	1	_			Ü	Ü	0.10		U	Ü	0.10		Ü	Ü	0.10	0.10
MW-43	Endrin Leione	ug/L	NA	_				Ü	Ü	0.10	t	Ü	Ü	0.10		ŭ	Ū	0.10	0.10
MW-II	gamma-BHC	ug/L	NA	1-				Ü	Ü	0.05		Ü	U	0.05		Ü	Ū	0.05	0.05
MW-11	gamma-Chkordane	ug/L	NA	1				Ü	Ü	0.05		U	U	0.05		U	Ū	0.05	0.05
MW-13	Heptachky	ug/L	NA					U	U	0.05		Ü	Ü	0.05		2	Ü	0.05	0,05
MW-13	Heptachkor epoxide	ug/L	NA	 				Ü	5	0.05		Ū	U	0.05		Ü	Ü	0.05	0.05
	Methorychlor	ug/L	NA	_				Ü	υ	0.50		Ū	U	0.50		U	v	0.50	0.50
MW-II	Toxaphene	ug/L	NA	1				U	υ	5.0		U	Ù	5.0		U	Ü	5.0	3.0
MW-H	4.4°-DDD	ug/L	NA NA					<u> </u>	U	0.10	1	Ū	Ü	0.10		Ü	Ü	0.10	0.10
	4.4'-DDE	ug/L	NA.	_	\vdash			_	Ü	0.10	 	Ü	Ü	0,10	 	Ü	Ü	0.10	0.10
MW-44	4.4'-DDT	ug/L	NA NA	_			0.03	_	1	NA		υ	Ü	0,10		Ü	Ü	0.10	0.10
MW-H	Aktrin	ug/L	NA.	_				_	Ü	0.05		υ	Ü	0.05	—	Ü	Ü	0.05	0.05
MW-44	alpha-BHC	ut/L	NA	-				_	Ü	0.05	·	Ü	Ü	0.05		7	Ü	0.05	0.05
	alpha-Chlordane	ug/L	NA NA	-				_	Ü	0.05	 	Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-H	Anichir-1016	ug/L	 	Ū	1	1,0		├──	Ü	1.0	 	Ü	Ü	1.0	·	Ü	Ü	1.0	1.0
MW-H	Anctor-1221	ug/t.	 	Ü	-	2.0		-	Ü	2.0		Ü	Ü	2.0		Ü	Ŭ	2.0	2.0
MW 44	Anctor-1232	ug/L		Ü	-	1.0		-	Ü	1.0	·	Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW-44	Anoclor 1242	ug/L		ΙÜ	\leftarrow	1.0		-	Ü	1.0		Ü	Ü	1.0	—	Ü	Ü	1.0	1.0
MW-44	Anichir-1248	ug/L		Ιŏ	1	1.0		_	Ü	1.0	 	Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW-44	Anschot-1254	ug/L		Ιŭ	 	1.0		_	Ü	1.0		Ŭ	Ü	1.0		Ü	Ü	1.0	1.0
MW-44	Anchy-1200	ug/l.		Ιΰ	_	1.0		-	7	1.0		Ť	Ü	1.0		0	υ	1.0	1.0
MW-41	Deta BHC	ug/l.	NA.	 	-	1.37			Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-44	delta-BHC	ug/t.	NA NA	-	-			-	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-44	Dicklin	og/L	NA NA		_			_	7	0.10	 	Ü	Ü	0.10		Ü	Ŭ	0.10	0.10
MW-44	linknultan l	ug/L	NA.	+	-			_	Ü	0.05	 	Ü	Ü	0,05		Ü	Ü	0.05	0.05
MW-41	Endoultan II	ug/L	NA NA	_	1			-	Ü	0.10		Ü	Ü	0,10	 	Ü	υ	0.10	010
MW-44	Lindosullan sullaic	ug/L	NA NA	 -	1			_	Ü	0.10	 	Ü	Ü	0.10		Ü	Ü	0.10	010
MW-44	Luckin	ug/L	NA	 				_	Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW-44	Enden akkibyde	ug/L	NA.	 	1			_	Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0 10
	Ludin kejone	ug/L	NA.	 	 				Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW-41	gamma-BHC	ug/L	NA	_				_	U	0.05		Ü	U	0.05		Ü	Ü	0.05	0.05
MW-H	gampa-Chlordane	ug/L	NA	 					5	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-44	Heptachker	υg/l.	NA	 					v	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
	Heptachlor epoxide	uk/L	NA	 				_	Ü	0.05		Ū	Ü	0.05		Ū	Ü	0.05	0.05
	Methnaychlor	ug/L	NA	_				_	Ü	0.50		Ü	Ü	0.50		Ū	Ü	0.50	0.50
MW-H	Toxaphene	UEL	NA.	1	\vdash				Ü	5.0		Ü	Ü	5.0		Ü	Ü	50	5.0
	4.4DDD	ug/L	NA.	t				_	Ü	0.10		Ü	Ü	0.10		Ü	Ü	0.10	0.10
MW-45	4.4°-DDE	ug/L	NA.	+-	-			\vdash	Ü	0.10	 	Ü	Ü	0.10	t	Ü	υ	0.10	0.10
MW-15	4.4°-DDT	ug/L	NA NA	 	 			_	υ	0.10	 	Ü	iu	0.10	t	υ	υ	0.10	.0.10
MW-45	Akirin	ug/L	NA NA	 	 - 			_	l U	0.05	 	Ü	U	0,05	 	Ü	Ü	0.05	0.05
MW-45	alpha-BliC	ug/L	NA NA	 				-	U	0.05	 	Ü	Ü	0.05		-	Ü	0.05	0.05
MW-45	alpha-Chlordane	ug/L	NA NA	 	 				U	0.05		Ü	Ü	0.05	 	-	10	0.05	0.05
MW-45	Anicky-1016	ug/L		U		1.0			Ü	1.0		10	Ü	1.0		U	+	1.0	
MW-45	Anoche 1221			1 0	1	2.0			Ü	2.0		Ü	U	2.0			+		1.0
MW-45	Attacher 1221	ug/t.	 	1 0	 	1.0		-	Ü	1.0		"	Ü	1.0	 -	U		2.0	2.0
MW-45	+		 	U	┢──┤	1.0			7	1.0		U	U		 		U	1.0	10
MM-42	Ann. 64-1242	09/1.		1		1.0	L	Ц		<u> </u>	L		<u> </u>	10	ــــــــــــــــــــــــــــــــــــــ	U	U	1.0	1.0

	,				Event !				Event		r		Event	, 			Event -		History
Well	Analyte	Units	Result	1.0	DQ	Detect Limit	Result	10	PQ	Detect I Amit	Remails	1.0	no	Detect Limit	Renalt	1.0		Detect Limit	Detection
	Ans he 1248	ug/L		Ü		1.0		<u> </u>	Ü	1.0		U	U	1.0		Ü	U	1.0	1.0
MW-45	Anu hr-1254	ug/L		Ū		1,0		_	Ü	1.0		Ť	Ü	1.0		Ü	U	1.0	1.0
MW-45	Anichy-12n0	ug/l.		U		1,0		-	Ü	1.0	·	U	U	1,0		Ü	U	1.0	1,0
MW-45	hela-BISC	ug/t.	NA						U	0.05		U	U	0.05	1	Ū	U	0.05	0.05
MW-15	ikha BIK'	ug/L	NA						U	0.05		U	Ü	0.85	1	U	U	0.05	0.05
MW-45	Dickling	ug/L	NA						υ	0.10		U	V	0.10		U	U	0.10	0.10
MW-45	Emboultan I	ug/L	NA						Ü	0.05		U	U	0.05		U	U	0.05	0.05
MW-45	i mallandari	ug/L	NA						ŭ	0.10		U	Ü	0.10		U	U	0.10	0.10
MW-45	Embnultan sultate	ug/L	NA						C	0.10		U	U	0.10		Ų	U	0.10	0.10
MW-45	Endern	ug/L	NA						U	0.10		U	W	0.10		U	U	0.10	0.10
MW-45	Endon aldebyde	ug/L.	NA						U	0.10		υ	w	0.10		V	U	0.10	0.10
MW-45	Endes kehme	ug/L	NA				L		C	0.10		U	W	0.10		U	U	0.10	0.10
MW-45	gamma-BHC	ug/L	NA						U	0.05		U	U	0.05		U	U	0.05	0.05
MW-45	gamma-Chhridane	ug/L	NA	Γ					U	0.05		U	U	0.05		U	U	0.05	0.05
MW-45	Heptachkir	ug/L	NA	Ι					U	0.05		U	Ü	0.05		U	U	0.05	0.05
MW-45	Heptachlor epoxide	ug/L	NA						U	0.05		U	U	0.05		U	U	0.05	0.05
	Afesta a yezhar	uge/L	NA						U	0.50		U	U	0.50		Ų	U	0.50	0.50
MW-45	Tosaphene	ug/L	NA						U	5.0		U	U	5.0		Ü	C	5.0	5.0
MW-In	4.4' DDD	ug/L	NA					U	U	0,10		U	U	0.10	I	U	U	0.10	0.10
MW-46	4.4'-DDE	ug/L	NA					Ü	υ	0.10		U	U	0.10	I	U	u	0.10	0.10
MW-46	4.4°-DDT	ug/L	NA					U	U	0.10		U	U	0.10		υ	U	0.10	0.10
MW-46	Akkın	uy/L	NA					U	U	0.05		U	U	0.05		U	U	0.05	0 ()5
MW-46	alpha B1K'	ug/L	NA				L	U	U	0.05		U	υ	0.05		Ų	U	0.05	0.05
MW-46	alpha-Chlordane	ug/L	NA					V	U	0.05		Ų	U	0.05	E	Ų	U	0.05	0.05
MW-46	Anche-IDIO	ug/l.		U		1.0		Ü	U	1.0		U	U	1.0		U	υ	1.0	1.0
MW-46	Angler-1221	ug/L		U		2.0		U	U	2.0		U	U	2.0		U	U	2.0	2.0
MW-46	Ann. for-1232	ug/l.		U		1.0		U	U	1.0		U	U	1.0		U	U	1.0	1.0
MW-W	Aniche-1242	ug/L		U		1.0		U	U	1.0		U	U	1.0	L	Ų	U	1.0	1.0
MW-46	Another 1248	ug/L		U		1.0		U	U	1.0		U	U	1,0		Ų	U	1.0	1.0
NW-4n	Attaclor-1254	ug/L		U	1	1.0		U	U	1.0		U	Ü	1.0		U	U	1,0	10
MW-46	Aniche (2nd)	ug/l.		17		1.0	 .	U	U	1.0		U	U	1.0		U	U	1.0	1.0
MW-4n	heta BHC	ug/t.	NA	!			<u> </u>	U	Ų	0.05	L	U	U	0.05		U	U	0.05	0.05
MW in	dens BHC	ug/L	NA	ــــ			ļ	V	U	0.05	Ĺ	U	U	0.05		U	U	0.05	0.05
MW-46	1 % kirus	ug/l.	NA NA	╄	Ш			U	U	0.10	ļ	U	U	0.10	<u> </u>	U	U	0.10	0.10
MW-In	Endoulian I	ug/l.	NA	ļ				U	c	9.05		U	U	0.05		U	U	0.05	0.05
MW-to	Embruttan II	ug/L	NA NA	↓	1-1		ļ	U	U	0.10		U	U	0.10	<u> </u>	Lu	U	0.10	0.10
MW 46	limbisultan sultate	ug/L_	NA	-			 	U	U	0.10		U	U	0.10	1	U	U	9,10	0.10
MW-4n	Emilian	ug/t.	NA	├ ─	-		 -	Ü	L.Y.	0.10	 	U	<u>u</u>	0.10		U	U	0.10	0.10
MW-46	Endett akkhyde	uy/L	NA NA		-		 	U	C C	0.10		U	U	0.10		U	U	0.10	0.10
MW M	Endin keune	ug/L	NA NA	├			 	 	l ü	0.05	 -	U	U	0.10	 	U	U	0.10	0.10
MW-46	gannin-BHC	ug/L	NA NA	} -			 	Ü	Ü	0.05		U	U	0.05	 	Ų	U	0.05	0.05
MW-46	gamma-Chlurdanc	W/L	NA NA	├			 	l ü	Ü	0.05		U	U	0.05	}	Ľ	L U	0.05	0,05
	1 keprachkir	ug/L.	NA NA	┢			 	Ü	Ü	0.05		U	Ü	0.05	 	Ų	U	0.05	0.05
MW-46	Reptachbu epinade	ug/1,	NA NA	┼			 	Ü	Ü	0.50	 	0		0.05		Ü	_	0.05	0.05
MW-In	Milmychhy	ug/L ug/L	NA NA	 	-		 	Ü	Ü	5.0	 	Ü	U	5.0	 -	U	U	0.50	0.50
MW-In	foxaphene	_	NA NA	_			 -	Ü	l ő l	0.10	 	t u	u		 		 - "-	3.0	5.0
MW-47	1.1' DDD	ug/L	NA NA	 	 		 	Ü	Ü	0.10		 	UJ	0.10	 	U	 	0.10	0.10
MW-47			NA NA	\vdash	├┤		 	Ü	l ö	0.10		Ü	· W		 		┢━┩	0.10	0.10
MW-47	44' DDT	ug/L	NA NA	 - 			 	Ü	Ü	0.05	 	 	Ü	0.10	 	U	 -	0.10	0.10
MW-47		ug/L	NA NA	 	\vdash		 	Ü	Ü	0.05	 	+ +		0.05	 	Ų	├ ─┤	0.05	0.05
NIW-47	JIM-BIK	ug/L	NA NA	 	 		 	10	Ü	0.05			n	0.05	 	y	 - 	0.05	0.05
MW-47	alpha-Chlordane	ug/L		 	 	1.0		Ü	Ü	1.0		Ų.	L.Y.	0.08	 	2	1	0,05	0.05
MW-47	Anchr-1016	ug/L		10	 	20	 	 U	Ü	2.0		U	Ų.	1.0	ļ	U	 	1.0	1.0
MW-47	Aniche (1221	ug/L	<u> </u>	_	┝─┤		 -	 U	1 5		 		Ų	2.0	 	U	├ ──-	2.0	2.0
MW-47	Atou lot-1232	ug/L	L	10		10	ł	<u> </u>	ייי	1.0	L	U	U	1.0	L	U	ليبا	1.0	1.0

	T		, , ,	_	Event				Event	1	·		Event	1			Event	4	Highest
Well	Analyte	Units	Kesult	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Result	1.0	no	Detect Limit	Detection
MW-47	Aroclor-1242	ug/L	Resum	U	17.4	1.0		U	U	1.0		U	U	1.0		U		1.0	1.0
MW-47	Anschr-1248	ug/L		l ü	\vdash	1.0		υ	Ü	1.0		Ü	Ü	1.0	 	Ŭ	 	1.0	1.0
MW-47	Aroctor-1254	ug/L		Ü		1,0		Ü	Ü	1.0	 	Ü	Ü	1.0		Ū		10	10
MW-47	Anaclor-1260	ug/L		Ū		1.0		Ü	Ü	1.0		U	U	1.0		U	1	1.0	1.0
MW-47	bela-BHC	ug/L	NA.	 `				Ü	Ū	0.05		U	Ü	0.05	Ì	U		0.05	0.05
MW-47	deha BHC	ug/L	NA.	1				Ü	U	0.05		U	Ü	0,05	 	U	†	0.05	0.05
MW-47	Dicklein	uk/L	NA NA		1			Ū	Ū	0.10		U	Ü	0,10		Ū	 	0.10	0.10
MW-47	Embradian I	ug/L	NA NA	 	\vdash			Ü	Ü	0.05		Ü	U	0.05	<u> </u>	Ū	1	0.05	0.05
MW-47	Endmultan II	ug/L	NA NA	+				Ü	Ü	0.10		Ü	U	0.10		Ü	<u> </u>	0.01	0.10
MW-47	Emboultan sultate	ug/L	NA NA	 				Ü	U	0.10		Ü	Ū	0.10		Ū		0.10	0.10
MW-47	Endrin	ug/L	NA NA	_				Ū	Ü	0,10		Ü	LU I	0.10		Ū		0.10	0.10
	Endrin aldehyde	ug/L	NA.	_				Ü	Ü	0.10		Ū	UJ	0.10		Ü		01.0	0.10
MW-47	Endrin ketone	ug/L	NA.	_				Ū	Ū	0.10		Ü	Ü	0,10		Ū	·	0.10	0.10
MW-47	ganuna BHC	ug/L	NA.	-				Ū	Ü	0.05		Ü	Ü	0.05	1	Ü		0.05	0.05
MW-47	gamma-Chlordane	ug/L	NA NA		-			Ū	Ū	0.05		Ü	Ü	0.05	1	Ü		0.05	0.05
	Heptachlor	ug/L	NA.	_	1			Ū	Ū	0.05	·	Ü	Ü	0.05		Ü		0.05	0.05
	Heptachlor epoxide	ug/L	NA NA		1			Ü	Ü	0.05	 	Ü	Ü	0.05		Ū	1	0.05	0.05
MW-47	Methoxychlor	Ug/L	NA NA	 	\vdash			Ū	Ū	0.50		Ŭ	u	0.50		Ü	 	0.50	0,50
MW-47	Toxaphene	ug/L	NA NA	\vdash	\vdash			Ū	Ū	5.0		Ü	Ū	5.0	 	Ü	 	5.0	5.0
MW-4K	4,4°-DDD	ug/L	NA NA	+	1			Ū	Ü	0.10		υ	Ü	0,10		Ü	U	0.10	0.10
MW-4K	1.1.DDE	ug/L	NA NA	\vdash				Ü	Ŭ	0.10		Ù	Ü	0.10		Ü	Ū	0.10	0.10
MW-4K	1.1 DDT	ug/L	NA.	\vdash	-			ŭ	ŭ	0.10	 	Ü	w w	0.10	 	Ü	ΙŬ	0.10	0.10
MW-4K	Aktrin	ug/L	NA NA	-	_		 	Ü	Ũ	0.05	 	Ü	U	0.05	 	ϋ	Ü	0.05	0.05
MW-4K	alpha-BHC	ug/L	NA NA	+	-			Ū	ŭ	0.05	 	Ü	Ü	0.05		Ü	Ιŭ	0.05	0.05
MW-4H	alpha-Chiordane	ug/L	NA.	+				Ū	Ū	0.05		Ū	Ū	0.05	 	Ü	Ü	0.05	0.05
MW-48	Anctor 10th	ug/L		U		1.0		Ū	Ũ	1.0	· · · · ·	Ū	Ü	1.0		Ŭ	Ü	1.0	1.0
MW-48	Anschr-1221	ug/L.		Ū	1	2.0		U	U	2.0		Ü	Ü	2.0		Ū	Ü	2.0	2.0
MW-48	Aniche-1232	ug/L		Ū		1.0		Ü	Ü	1.0	t	Ū	Ü	1.0	<u> </u>	Ū	Ü	1.0	1.0
MW-48	Anichy-1242	ug/L	· · · · · · · · · · · · · · · · · · ·	Ū		1.0		U	Ü	1.0	1	Ü	Ü	1.0		Ū	U	1.0	1.0
MW-4x	Aniche-1248	ug/1.		U		1.0		U	U	1.0	1	Ü	U	1.0	1	Ū	U	1.0	1.0
MW-4K	Amehr-1254	ug/L		Ū		1.0		υ	U	1.0	1	U	U	1.0		Ü	Ū	1.0	1.0
MW-4K	Aniche-12nt	υμ/L		U		1.0		U	U	1.0		Ü	Ü	1.0		Ū	U	1.0	1.0
MW-4K	tscu-BHC	ug/L	NA.					U	U	0.05		U	U	0.05		Ü	U	0.05	0.05
MW-48	ikitia BHC	ug/L	NA	T				υ	Ü	0.05		U	Ų	0.05		U	U	0.05	0.05
MW-4K	Dickins	ug∕l,	NA					U	U	0.10		U	U	0.10		v	U	0.10	0.10
MW-4K	Endosultan I	ug/t.	NA					U	Ū	0.05	1	U	U	0,05		Ū	U	0.05	0.05
MW-4K	Endosultan II	ug/L	NA					U.	U	0.10]	U	U	0.10	1	U	U	0.10	0.10
MW-4K	Endosultan sulfate	ug/L	NA					ย	U	0.10		U	V	0.10		U	U	0.10	0.10
MW-4K	Emlein	ug/L	NA					U	U	0.10		Ū	Uz	0.10		U	U	0.10	0.10
MW-4K	lindrin aklehyde	ug/L	· NA					U	υ	0.10		U	UJ	0.10		U	υ	0.10	0.10
MW-4K	Endrin ketone	ug/L	NA					U	U	0.10		U	UJ	0.10		U	U	0.10	0.10
MW-4K	gamma-BHC	ug/L	NA					ีย	Ü	0.05		U	V	0.05		U	U	0.05	0.05
MW-4K	ganuua-Chlordane	ug/L	NA.					U	U	0.05		U	U	0.05		U	U	0.05	0.05
MW-48	Heptachlor	ug/L	NA		igsquare			Ų	U	0.05		U	U	0.05		Ü	U	0.05	0.05
MW-4K	Heptachkor epoxide	ug/L,	NA					U	U	0.05		Ü	U	0.05		Ü	U	0.05	0.05
MW-4x	Methoxychlor	ug/L	NA	<u> </u>			L	Ü	υ	0.50		U	U	0.50		U	U	0.50	0.50
MW-48	Toxaphene	υμ/L	NA	ļ	$oxed{oxed}$			U	υ	5.0		U	U	5.0		v	U	5.0	5.0
MW-49	4,4"-DDD	ug/L	NA.	lacksquare	\sqcup			υ	U	0.10			UJ	0.10			U	0.10	0.10
MW-49	4,4"-DDE	ug/L	NA		igsquare		L	U	U	0.10		L	U	0.10			U	0.10	Ó. 10
MW-49	4,4°-DDT	ug/L	NA_	_	\Box			U	U	0.10			UJ	0.10			U	0.10	0.10
MW-49	Akina	ug/l.	NA.	<u> </u>	L			U	U	0.05			U	0.05			U	0.05	0.05
MW-49	alpha-BHC	ug/L	NA	<u> </u>			<u> </u>	U	U	0.05			U	0.05			U	0.05	0.05
MW-49	alpha-Chkordane	սբ/Լ.	NA_	<u></u>	ш		L	U	U	0.05			U	0.05			Ü	0.05	0.05
MW-49	Anichir-1016	ug/L		Ü	ш	1.0		U	U	1.0	L		U	1.0			U	1.0	1.0
MW-49	Aroclor-1221	υ <u>γ</u> /1.		U		20	<u> </u>	U	Ü	2.0			U	2.0			U	2.0	20

AHSUMS
JA1252004285555 97 Sampling RpiMIIghDetects xIsAPPCB
1252042-27

							Baselie	ne Gra a Che	ntions of Festicia undwater Monit micul Services Ni Tith, Indiana	oring
	T			Event 1				Event 2		
Analyte	1 Imples	Mesult	1.0	DQ	Detect 1.lanit	Result	LQ	DQ	Detect Limit	Result
Ann. (h.w. 1212	100/4		Ti		1.0		1 0	Ū	1.0	

	r				Event 1				Event	1			Event	3			Event 4		Highest
Well	Analyte	Units	Mesult	1.0	DQ	Detect 1.imit	Result	LQ		Detect Limit	Rendt	10	DQ	Detect 1.imit	Result	1.0		Detect Limit	Detection
	Anichw-1232	ug/L		Ü	-	1.0		Ū	Ü	1.0			9	1.0			Ü	1.0	1.0
	Annihe-1242	ug/L	·	Ū		1.0		Ū	Ü	1.0		_	Ü	1.0			Ŭ	1.0	1.0
	Anrcher-1248	ug/L		Ü	_	1.0		Ü	Ü	1.0			U	1.0			Ü	1.0	1.0
	Ann.hu-1254	ug/L		ΙŪ		1.0		Ü	U	1.0			Ü	1.0		_	Ü	1.0	1.0
	Archite-1200	ug/L.		Ū		1.0		U	Ü	1.0		_	Ü	1.0			l Ü l	1.0	1.0
	heta-BHC	ug/L	NA					Ū	U	0.05			Ü	0.05			Ü	0.05	0.05
	deha BNC	ug/L	NA					U	Ü	0.05		_	Ü	0.05			Ü	0,65	0.05
	Dickins	ug/L	NA					U	Ü	0,10			U	0.10			Ü	0.10	0.10
	Embaghan I	wg/L	NA		1			U	U	0.05		_	υ	0.05			Ŭ	0.05	0.05
MW-19	Endmalles II	ug/l.	NA	_				Ü	Ü	0.10			U	0.10			Ū	0.10	0.10
MW-49	Embaultas sulfate	ug/L	NA					Ü	U	0.10			Ü	0.10		_	Ü	0.10	0.10
MW-19	Emirio	w/L	NA					U	U	0.10			5	d.10			Ū	0.10	0.10
	Endris aldehyde	w/L	NA	_				U	U	0.10			U	0.10			Ü	0.10	0.10
	Endre herene	wg/L	NA					U	Ü	0.10			3	0.10			Ū	0.10	0.10
	gamena BHC	ug/L	NA					U	c	0.05		_	Ü	0.05			l ù l	0.05	0.05
	gamma Chimbine	ug/L	NA					Ū	5	0.05			U	0.05			Ü	0.05	0.05
	Heptachlur	ug/L.	NA					U	5	0.05			υ	0.05			Ŭ	0.05	0.05
	Heriachhu epinide	we/L	NA NA					Ū	v	0.05			Ü	0.05			Ü	0.05	0.03
	Methoxychia	Jug L	NA NA	_	\vdash			Ü	Ü	0.50			Ü	0.50			انا	0.50	0.50
	Torraphene	w/L	NA	_	\vdash			Ü	Ü	5.0			Ü	5.0			l ü l	5.0	5.0
	4,4° DDD	ug/L		U	U	0.10		Ū	-	0.10		-	Ü	0,10		U	┝┷┤	0.10	0.10
	4.4 DDE	we/L		Ü	Ü	0.10		Ū	_	0.10		Ü	Ü	0.10		Ü	-	0.10	0.10
	4.4' DDT	ug/L.		ŭ	Ū	0,10		Ü	_	0.10		Ü	Ü	0.10	 	Ť	 	0.10	0.10
	Ahlrin	ug/L		Ü	Ũ	0.05		Ü		0.05		Ü	Ü	0.05		Ü		0.05	0.05
	alcha-81K	sug/L		Ü	Ü	0.05		Ü		0.05		Ü	Ü	9.05		Ü	 	0.05	0.05
	alpha Ohindane	ug/t.		Ü	Ŭ	0.05		Ü	_	0.05		Ü	Ü	0.05		Ü	 	0.05	0.05
	Anshe-1016	we/L.		Ŭ	Ū	1.0		Ü		1.0		Ü	Ü	1.0		Ü	 	1.0	1.0
	Anwhw-1221	ug/L		Ü	Ü	2.0		Ū	_	2.0		Ü	Ü	2.0		Ü	-	2.0	2.0
	Anwhw-1232	w/l.		Ü	Ü	1.0		Ü		1.0		Ü	Ü	1.0		Ü	-	1.0	1.0
	An-44-1242	ug/L		U	Ť	1.0		Ü		1.0		Ü	Ü	1.0	I	Ü		1.0	1.0
	Anwher-1248	ug/L		Ū	Ü	1.0 _		Ü		1.0		Ü	Ü	1.0	 	Ü	- 1	1.0	1.0
	Analy-1254	ug/l.		Ū	Ü	1.0		Ū		1.0		Ü	Ū	1.0		Ü	 	1.0	1.0
	Annaw-12M)	ug/L		Ü	Ü	1.0		Ū	_	1.0		Ü	Ü	1.0		Ü	 	1.0	1.0
	hesa HHC	we/L		Ü	Ü	0.05		Ū	_	0.06		Ü	Ü	0.05		Ü	 	0.05	0.05
	den Bik.	ug/L		Ū	Ü	0.05		Ū		0.05		Ü	Ü	0.95		Ü		0.05	0.03
	l)schime	ug/l.		Ü	Ü	0.10		Ü		0.10		Ū	C	0.10		Ü		0.10	0.10
	linknakan l	- Nyu		Ü	Ü	0.05		Ü		0.05		Ü	Ü	0.05		Ū	-	0.05	0.05
	Embruitan II	ug/1.		-	Ü	0.10		Ù	_	0.10		Ü	Ü	0.10		Ū		0.10	0.10
	himb maken sulfate	w/A.		Ü	Ť	0.10		Ü	\neg	0.10		Ü	Ü	0.10	 	Ü	 	0.10	0.10
	Emkin	ug/t.		Ü	Ü	0.10		Ü		0.10		Ü	Ü	a.10 .	 	Ü	 	0.10	0.10
	Emires aldehyde	ug/L		Ü	Ü	0.10		Ü		0.10		Ü	Ü	0.10	<u>-</u>	Ü		0.10	0.10
	Endrin heinte	we/L		Ü	Ü	0.10		Ü		0.10		Ü	υ	0.10	 	Ü		0.10	0.10
	stamma-BHC	weA.		Ü	Ü	0.05		Ü		0.05		Ü	Ü	0.05		Ü	 	0.05	0.05
	gamma-Chhudane	ug/L		Ü	Ü	0.05		Ü		0.05		Ü	-	0.05		Ü	-	0.05	0.05
	thinam's	w/l.		Ü	Ü	0.05	0.002	1		NA		Ü	2	0.05		Ü	 	0.05	0.05
	Heprachter epistisks	ug/L		Ü	Ü	0.05		Ü		0.05		Ü	Ü	0.05		Ü	-	9.05	0.05
	Akshinyebba	ug/L		Ŭ	Ü	0.5		Ü		0.50		Ü		0.50		Ü	 	0.50	0.50
	Toxenhous	w/L		Ü	Ü	5.0		Ü		5.0		Ü	Ü	5.0		Ü	 	5.0	5.0
	4.1° DOD	w/L		<u> </u>	Ü	0.10		Ū	6	0.10		Ü	W	0.10		Ü	U	0.10	0.10
	4.4'-DDE	W/L		_	Ü	0.10		Ü	6	0.10		Ü	3	0.10	 	Ü	"	0.10	0.10
	4.4' DDT	wg/t.			Ü	0,10		Ü	Ü	8.10		Ü	3	9.80	 	Ü	*	0.10	0.10
	Aldres	ug∕l.			Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05	0.05
MW-51	alpha-BIK	ug/L			۳	0.05		Ü	Ü	0.05		Ü	U	0.05	 	Ü	Ü	0.05	0.05
	alpha-Chloidanc	ug/L		_	Ü	0.05		Ü	Ü	0.05		Ü	-	0.05	 	Ü	0	0.05	0.05
					Ü	1.0		Ü	- C	5.45				4.47			_	17.02	U.U3

	,				V				Event	 			Event				Event	4	19:35 :
Well	A multi-di-	l limites	Hesult	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DO	Detect Limit	Result	1.0	DQ	Detect Lissit	Highest Detection
MW-51	Analyte Anaku 1221	Units	MOUN	+::~	<u> </u>	2.0	result.	Ü	<u> </u>	2.0	NO.	10	U	2.0	- Attour	Ü	10	2.0	20
MW-51	Anichir 1232	ug/L	 	╀	U	1.0		Ü	Ü	1.0		Ü	Ŭ	1.0		Ι ΰ	l ü	1.0	10
MW-51	Anicho (242	ug/L ug/L	 	+	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	10	10
MW-51	Anickie-1248	ug/L	 	+-	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0	 	ΙŬ	Ü	1.0	10
MW-51	Angler-1254	ug/L		+-	Ü	1.0		Ü	Ü	1.0		Ū	Ü	1.0		Ü	U	1.0	1.0
MW-51	Anichr-1200	ug/L		+	Ü	1.0		Ü	Ü	1.0		Ü	υ	1.0	 	υ	Ü	1.0	1.0
MW-51	hela-BHC	ug/l.	·	+	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ū	0.05	0.05
MW-51	deha-BHC	ug/L		_	Ü	0.05		U	Ü	0.05		Ū	Ū	0.05		Ü	Ü	0.05	0.05
MW-51	Deldon	ug/1.		1-	Ū	0.10		U	Ü	0.10		Ū	U	0.10		Ū	Ū	. 0.10	0,10
MW-51	limbouiles !	ug/L	<u> </u>	1	U	0.05		5	U	0.05		Ū	U	0.05		U	Ü	0.05	0.05
MW-51	limboultan II	ug/l.			U	0.10		5	5	0.10		U	Ü	0 10		Ū	U	0.10	0.10
MW-51	Endmultan sultate	ug/L	l		U	0.10		C	U	0.10		v	U	0.10		U	U	0.10	0.10
MW-51	Endrin	ug/L.			υ	0.10		U	υ	0.10		υ	Ü	0.10		U	U	0.10	0.10
MW-51	Lindrin aldehyde	ug/L			5	0.10		U	U	0.10		2	W	0.10		U	C	0.10	0.10
MW-51	Endrin kelone	ug/L.			٦	0.10		U	U	0.10		2	UJ	0.10		U	U	0.10	0.10
MW-51	gammu-RI(C	UK/L.			٦	0.05		>	U	0.05		5	U	0.05		U	Ü	0.05	0.05
MW-SI	gamma Chlordane	up/L		L	U	0.05		حا	د	0.05		U	U	0.05		U	U	0.05	0.05
MW-SI	Heptachlor	ug/L		\Box	U	0.05		2	υ	0.05			U	0.05		U	U	0.05	0.05
MW-SI	Heptachlor epoxide	υg/l.		L	Ü	0.05		U	U	0.05		>	U	0.05		U	<u></u>	0.05	0.05
MW-51	Methoxychlur	ו/עט 🏻			5	0.5		Ü	U	0.50		۳	U	0.50		U	Ų.	0.50	0.50
MW-51	Toxaphene	ug/L			U	5.0		U	U	5.0	ļ	2	U	5.0		U	U	5.0	5.0
MW-52	4,4"-DDD	uy/L		U	U.	0.10		U	U	0.10		U	U)	0.10		U	U	0.10	0.10
MW-52	1.1-DDE	nk/r	<u> </u>	U	U	0.10		U	U	0.10		>	UJ	0.10		U	Ü	0.10	0.10
MW-52	1.1'-DDT	ug/L		U	Ü	0.10		U	U.	0.10		υ	U	0.10		U	U	0.10	0.10
MW-52	Aldrin	υμΛ.		U	U	0.05		U	U	0.05		U	U	0.05		U	U	0.05	0.05
MW-52	alpha BHC	ug/L		U	<u></u>	0.05		Ų.	U	0.05		υ	U	0.05		U	U	0.05	0.05
MW-52	alpha-Chlordane	ug/L	<u> </u>	Ų.	U	0.05		Ü	U	0.05		U	U	0.05		Ų.	U	0.05	0.05
MW-52	Anichr-1016	1/40	ļ	U	0	2.0		U	U	2.0		"	U	2.0		U	U	2.0	1.0
MW-52	Anwhy-1221	ug/L		U	Ü	1.0		-	U	1.0		₩.	U	1.0		+ +	U		2.0
MW-52	Aniche-1232 Aniche-1242	ug/L		Ü	Ü	1.0		5	Ü	1.0		ᆢ	 	1.0		Ü	Ü	1.0	1.0
MW-52	Aniche-1248	ug/1.		Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW 52	Anichir-1254	ug/t.		Ü	Ŭ	1.0		Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0	1.0
MW 52	Atoclor-1260	up/L		Ü	"	1.0		Ü	Ü	1.0		Ü	Ü	1.0		١ ٽ	Ü	1.0	1.0
MW-52	heta-BIIC	ug/l.		ŭ	Ü	0.05		Ü	Ü	0.08		Ü	Ü	0.05		Ŭ	Ü	0.05	0.05
	delta-BHC	1/40		Ū	U	0.05		c	Ü	0.05		Ü	Ü	0.05		Ŭ	Ü	0.05	0.05
	Dickkin	ug/L		Ü	11	0.10		U	Ü	0.10		U	Ü	0.10		Ü	U	0.10	0.10
MW-52	linkmultan l	ug/L		U	υ	0.05		U	U	0.05		حا	υ	0.05		U	U	0.05	0.05
MW-52	Endosultan II	ug/L		U	U	0,10		5	Ü	0.10		5	Ü	0.10		Ü	U	0.10	0.10
MW-52	Enclosuttan sultute	ug∕l.		U	U	0.10		U	U	0.10		U	U	0.10		Ü	U	0.10	0.10
MW-52	Endem	սբ/Լ.		U	IJ	0.10		U	U	0,10		U	UJ	0.10		U	U	0.10	0.10
MW-52	Endrin aklehyde	սբ/۱.		Ü	U	0,10		Ü	U	0,10		U	Ü	0.10		٦	U	0.10	0.10
MW-52	Endrin ketone	ug/L		U	υ	0,10		U	U	0.10		U	IJ	0.10		υ	U	0.10	0.10
MW-52	gamma-BHC	ug/t.		٦	U	0.05		٦	c	0.05		ح	U	0.05		υ	U	0.05	0.05
MW-52	gamma-Chlordane	ug/L		U	5	0.05		G	c	0.05		٥	U	0.05		υ	U	0.05	0.05
	Heptachlor	uk/L		C	υ	0.05		c	c.	0.05		حا	Ü	0.05		Ü	U	0.05	0.05
	Heptachlor epoxide	nk/r		U	Ξ	0.05		د	מ	0.05		٧	U	0.05		U	C	0.05	0.05
MW-52	Methoxychior	ug/L		U	U	0.5		2	U	0,50		U	U	0.50		U	U	0.50	0.50
MW-52	Toxaphene	ug/L		U	U	5.0		U	U	5.0		U	U	5.0		٥	U	5.0	5.0
MW-53	4,4'-DDD	ug/L		U	U	0.10		٧	_	0,10		υ	U	0.10		>	2	0.10	0,10
MW-53	4,4'-DDE	ug/1.		U	U	0.10		U	_	0.10		U	U	0.10		>	٦	0.10	0.10
MW-53	4.4°-DDT	ug/L		U	U	0.10		٦		0.10		U	U	0.10		>	5	0.10	0.10
MW-51	Akhin	ug/L		U	U	0.05		U		0.05		ט	U	0.05		٦	5	0.05	0.05
MW-53	alpha-BHC	ug/L		U	U	0.05		U		0.05		U	U	0.05		υ	U	0.05	0.05
MW-53	alpha-Chlordane	ug/L		U	U	0.05		U		0.05	نــــــن	U	U	0.05		U	_U	0.05	0.05

					Event				Event				Event		, 		F		10. 1
Well	A	Units	Result	I.Q	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Remit	10	DQ	Dytect Limit	Result	I.Q	Event 4	Detect f.imit	Highest Detection
	Analyte		- Indiana	1 1	 "	1.0		10	1-7	1.0		13	7	1.0	Newson.	U		1.0	
	Arca hw-1016	ug/L		1 0	l U	2.0		+ +	 	2.0	 	10	1 5	2.0		U		2.0	2.0
MW-53 MW-53	Anickii 1221 Anickii 1232	us/L		10	Ü	1.0	 	H ii	\vdash	1.0		╁	- ö-	1.0		U	l U	1.0	
		w/L		Ü	Ü	1.0		U	-	1.0		10	"		 	-	_	1.0	1.0
MW-53	Asen, km-1242	ug/L		1 0	l ü			"		1.0		1		1.0			1		1.0
MW-53	Anuku-1248	ug/L			10	1.0							U	1.0		U	Ų	1.0	1.0
MW-53	Arockit-1254	ug/L		Ų.		1.0	 	U.		1.0		U.	U	1.0		U	U	1.0	1.0
MW-53	Anicke-1200	ug/L		U	U	1.0		U	-	1.0	 	U	Ü	1.0		U	U	1.0	1.0
MW-53	heta BHC	υ <u>μ</u> /1.		U	U	0.05		U	_	0.05		2	U	0.05		U	U	0.05	0.05
MW-53	deha-BHC	ug/L.		Ū	U	0.05		U	<u> </u>	0.05		٧	U	0.05		>	U	0.05	0.05
MW-53	Dicklin	ug/L		U	U	0.10		U.	<u> </u>	0.10	<u> </u>	V	U	0.10		υ	U	0.10	0.10
MW-51	Endosultan I	ug/L		U	U.	0.05		ַ	<u> </u>	0.05		2	U	0.05		U	U	0.05	0.05
MW-51	lind-nultan II	ug/L.		U	U	0.10		υ		0.10		כ	U	0.10	1	υ	Ü	0.10	0.10
MW-51	Endesultan sultate	ug/L		U	U	0.10	Ĺ	U		0.10		ט	U	0.10		U	Ü	0.10	0.10
MW-53	Endien	ug/L		U	U	0.10		U		0.10		9	٦	0.10		U	U	0.10	0.10
MW-51	limbin akkiyde	ug/l.		Ū	U	0.10		U		0.10		5	٦	0.10		2	C	0.10	0.10
MW-5)	Endrin ketone	ug/s.		U	c	0.10		U		0.10		ָט	٦	0.10		U	U	0.10	0.10
MW-51	Farinira BIIC	ug/L		U	6	0.05		U		0.05		כ	اد	0.05		U	U	0.05	0.05
MW-53	garrina Chlordanc	ug/L		Ü	U	0.05		υ		0.05		>	>	0.05		U	U	0.05	0.05
MW-53	Heptachkor	ug/L		U	C	0.05		U		0.05		٥	٦	0.05		U	U	0.05	0,05
MW-53	Heptachka epistide	ug/L		U	C	0.05		U		0.05		C	U	0.05		υ	U	0.05	0.05
MW 53	Medicaychlar	ug/L		U	U	0.5		U		(1.50		0	٥	0.50		U	U	0.50	0.50
MW-53	Toxaphere	ug/L		U	U	5.0		U		5.0		U	υ	5.0		v	U	5.0	5.0
MW-54	4.4 (DDD	ug/L.		U	U	0.10		U	C	0.10		J	Ü	0.10		U	U	0.10	0 10
MW 54	4.4 DDE	ug/L		U	v	v 10		U	U	0.10	-	U	3	0.10		U	Ū	0.10	0.10
MW-54	1.4 DDT	ug/l.		U	U	0,10		U	u	0.10		c	5	0.10		U	U	0.10	0.10
MW-54	Akhin	ug/L.		v	U	0.05		U	U	0.05		5	0	0.05		U	Ü	0.05	0.05
MW-54	alpha BIK	ug/l.		U	U	0.05		U	υ	0.05		C	U U	0.05		U	Ü	0.05	0.05
	alpha Chlordane	ug/L		Ü	U	0.05		Ü	U	0.05		Ü	2	0.05		Ü	Ť	0.05	0.05
	Anchy-1016	ug/l.		Ü	U	1.0		U	U	1.0		-	Ü	1.0		Ü	l ŭ l	1.0	1.0
MW-54	Ann.hr-1221	wg/l.		Ü	Ü	2.0		U	2	2.0		Ü	Ü	2.0	 	Ū	Ü	2.0	2.0
	Angles-1232	ug/L.		U	Ü	1.0		Ü	U	1.0		Ü	U	1.0		Ü	l ŭ l	1.0	1.0
MW 54	Aniche-1242	ug/L		Ü	Ü	1.0		v	U	1.0		Ü	Ü	1.0		Ŭ	Ü	1.0	1.0
	Aniche-1246	ug/l.		Ü	Ü	1.0		Ü	5	1.0		Ü	Ü	1.0	 	Ü	انا	1.0	1.0
MW-54	Aniche-1254	ug/t.		Ü	Ü	1,0		Ü	J	- 1.0		Ü	Ü	1.0	 	ぜ	υ	1.0	1.0
	Ann. bu-1260	ug/1.		Ü	Ü	1.0		Ü	Ü	1.0		Ü	Ü	1.0	 	Ü	Ü	1.0	1.0
	pela BIK,	ug/1.		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.05		Ü	l ü l	0.05	0.05
	della BHC	ug/1.		Ü	Ŭ	0.05		Ü		0.05	. —	Ü	Ü	0.05		-	T U	0.05	0.05
	Dicking	ug/1.		Ü	Ü	0.10		Ü	Ü	0.10		Ü	C	0.10		ีบ	l ü	9.10	0.10
	Linckmultan I	ug/L		Ü	Ü	0.05		Ü	Ü	0.05		Ü	Ü	0.06	 	Ü	l ö l	0.05	0.05
	tinchoultan II	ug/L		Ü	ΙŬΙ	0.10		Ü	Ü	0,10		Ü	Ü	0.16	 	÷	Ü	0.10	0.10
	Enknullag spliate	ug/l.		Ü	Ť	0.10		Ü	Ü	0.10		Ü	Ü	0.16	 	ü	1 0	0.10	0.10
MW-54		ug/L		Ü	Ŭ	0.10		Ü	Ü	0.10		Ü	3	0.16	 	-	l U l	0.10	0.10
	Enden aldehyde	ug/l.		Ü	Ü	0.10		Ü	Ü	0.10		Ü	5	0.10		-	Ü	0.10	0.10
	Finden Letine	ug/1.		U	Ü	0.10		Ü	Ü	0.10		5	3	0.10	 	Ü	Ü		
		ug/1.		U	۳	0.05		Ü	Ü	0.05		Ü	- 13	0.05	 	Ü		0.10	0.10
	ganuta-BHC			Ü	Ü	0.05		۳	U	0.05			Ü		 	_	Ų.	0.05	0.05
	ganum-Oskstane	ug/L			_	0.05		Ü	"			Ü	_	0.05	}	Ų	U	0.03	0.05
	Heptachkor	wg/L		7	<u> </u>			۳	8	0.05		Ų.	۲	0.05		U	Ų	0.05	0.05
	Heptachkir epistide	ug/L			U	0.05				0.05		ÿ	2	0.05		U	Ü	0.05	0.05
	Akshaychlar	ug/L		<u></u>	<u> </u>	0.5		: c	Ü	0.50		บ	2	0.50		U	U	0.50	0.50
MW-54	Totaphene	ug/L.		Ľ	Ų.	5,0		5	Ü	5.0		U	C	5.0	L	U	U	5,0	5.0
	4'4, 13DD	ug/L		\vdash \dashv	V	0.10		U	U	0.10		IJ	2	0.10		U	U	0.10	0.10
	4.4. DDE	ug/L		⊢ _	U	0.10		ט	U	0.10		ح	٦	0.10		U	U	0.10	0.10
MW-55	4.4. DDT	uy/L		$oxed{oxed}$	U	0.10		υ	U	0,10		2	2	0.10		c	Ü	0.10	0.10
MW-55	Akkın	ug/l.			٦	0.05		5	U	0.05		C	ט	0.05		C	٦	9.05	0.05
MW.55	alpha BHK	ug/L			U	0.05		U	U	0.05		S	c	0.05		G	U	0.05	0.05

		T		Eve	nt I			Event :	2			Event	3			Event	· · · · · · · · · · · · · · · · · · ·	lighest
Well	Analyte	Units	Result	I.Q D	Q Detect Limit	Result	IQ	DQ	Detect Limit	Result	I,Q	QQ	Detect Limit	Result	1.Q	DQ	Detect Limit	Detection
MW-55	alpha-Chlordanc	ug/L.			0.05		U	U	0.05		U	U	0.05		כ	U	0.05	0.05
MW 55	Arockir-1016	uy/L_			1.0		U	V	1.0		U	U	1.0		ح	U	1.0	1.0
MW-55	Anicke-1221	ug/L			2.0		U	U	2.0		Ų	U	2.0		٦	U	2.0	2.0
MW 55	Anicke-1232	ug/l.		يللا	1.0		U	U	1.0		U	Ū	1,0		٦	U	1.0	1.0
MW-55	Attacher-1242	ug/L			1,0		U	Ü	1.0		Ü	u	1.0		٥	U	1.0	1.0
MW 55	Aroclor-1248	ug/l.			1.0		U	U	1.0		U	U	1.0		υ	U	1.0	1.0
MW-55	Anichr-1254	ug/L			1.0		U	U	1.0		U	U	1.0		٥	C	1.0	1.0
MW-55	Anicky-12M)	ug/L	1		1.6		U	U	1.0		U	υ	1.0		5	U	1.0	1.0
MW-55	hera-BHC	ug/L			0.05		U	Ü	0.05		Ü	U	0.05		د	U	0.05	0.05
MW-55	delia-BHC	υgΛ.			0.05		U	U	0.05		U	U	0.05		حا	J	0.05	0.05
MW-55	Dieldrin	ug/t.			0.10		U	υ	0.10		U	U	0.10	I	5	U	0.10	0.10
MW-55	Enchrouten I	ugΛ.			0.05		U	U	0.05		U	U	0.05		2	حا	0.05	0.05
MW-55	Endosultan II	ug/L			0.10		U	U	0.10		U	U	0.10		٦	٥	0.10	0.10
MW-55	Enclosultan sultate	ug/L			0.10		U	U	0.10		U	U	0.10	I	حا	U	0.10	0.10
MW-55	Endria	uy/L_			0.10		ับ	ับ	0.10		U	U	0.10		٥	U	0.10	0.10
MW-55	Lindrin akkehyde	ug/L			0.10		U	Ü	0.10		Ū	U	0.10		٥	U	0.10	0.10
MW-55	Endrin kelone	ug/L			0.10		U	U	0.10		U	U	0.10		5	U	0.10	0.10
MW 55	gamma-BHC	ug/L			0.05		υ	υ	0.05		U	U	0.05		5	C	0.05	0.05
MW 55	ganutus-Chlordane	ug/L			0.05		U	U	0.05		Ū	U	0.05		U	J	0,05	0.05
MW-55	Heptachkor	ug/L	I	\coprod	0.05		U	U	0.05	L	U	U	0.05		5	U	0.05	0.05
MW-55	Heptachlor epoxide	ug/L			0.05		U	U	0.05		Ŭ	U	0.05	I	٦	U	0.05	0.05
MW-55	Methoxychlor	υμ/l.			0.5		U	U	0.50	L	U	U	0.50		ט	U	0.50	0.50
MW 55	foxaphene	ug/L	Γ		5.0		U	ีย	5.0_		U	U	5.0	I	U	U	5.0	5.0

	,								B								P: -4		
	1	1		T	Event	Detect Limit		1.0	Event	Detect Limit	Result	1.0	Event:	Detect Lineit	B	1	Event 4		Highest
Well	Analyte	Unita	Kesult	W	DQ	Detect Class	Rout	10	8		-	10	DQ		Result	10	DQ	Detect Limit	Detection
M-IS	Aluminum	ug/L	NA	├ ──	-			В	5	122		-	ט	105	891	N	-	10	191
M-15	Astumeny	<u>ug/1.</u>	NA					U_	U	1.0		U	Ų.	2.0	 	U	U	1.0	2.0
MIS	Amenic	w/L	NA NA	╄	├ ──			<u> </u>	V	3.0	737	U	U	2.0	2.1	1 8	1	2.0	3.0
M-1S	Bariuni	ug/l.	NA NA	↓	-		562	 	 	1.0	528	E	<u> </u>	1.0	904	}	 	1.0	908
MIS	Berythum	ug/L	NA NA		├ ─		1.0	U	٦	1.6		U	U	1.0		U	1 !!	1.0	1.0
M-1S	Cadmium	w/L	NA	├ ──	├ ──			3	_	7.0	212.000			1.0		U	U	1.0	1.0
MIS	Caksum	<u>₩/1.</u>	NA .	├ ┈	 		270,000	<u> </u>			212,000	E	1	7.0	251,000	├	-	8.0	270,000
M-1S	Chromon (1043)	W/L	NA	├ ──			2.3	-		1.0		1-	υ	3,6	23		-	1.0	23
M 15	Cohalt	ug/L	NA NA	₩-				-			2.2	-		1.0	5.1	1 8	 	1.0	5.1
MIS	Соррет	W/L	NA .	.	}		1.2		 -	1.0		8	U.	3.0		3	UI I	R.3	8.3
M-1S	Cyanide (total)	W/L	NA .				55 cm	U	٦	10		U	U	In-		U	U	10	10
M-1S	linat	wg/L_	NA .	-	-		23,600	N		4.0	19,700	E	1	8.0	13,300	<u> </u>	├ ──┤	6.0	23,400
M-1S	Lead	wg/L	NA	—				U	٦	1.0		U	G	1.0	2.5	8	1	1.0	2.5
MIS	Марпемит	ug/L	NA.	 	-		8R,800	<u> </u>		5.0	73,400	E	1	3.0	91,100	!	- 1	3.0	91,100
	Manganese	up/t_	NA .	├ ──	├ ─		704	 -	اـــا	1.0	577	E		1.0	347	├	├	1.0	704
	Mercury	W/L	NA .	-				U	U	0.20		U	U	0.20		U	U	0.20	0.20
	Nickel	ug/L_	NA	 	├ ─┤		7.5	-		1.0	44 400	-	U	6.2	22	3	├ ┼	1.0	22
	Potassium	ug/L	NA_		├		42,800	 	ا۔۔۔ا	27	46,400	E	1	18	38,100	E	1	16	46,400
M-15	Scienium	Ug/L	NA	↓	├ ──┤			U	U			Ü	U	2.0		U	U	2.0	2.0
M-15	Silver	ug/L	NA	-	-			۳	٦.	1.0	45.00	υ	Ų	1.0		U	U	1.0	1.0
	Schum	ug/L	NA NA	ļ	-		X1,200	ш:		20	67,300	E	-	***	125,000	E		76	125,000
M-1S	Thallium	up/L.	NA .					2	U	3.0		U	υ	2.0		U	U	2.0	3.0
M-1S	Vanadium	ug/L	NA	 	\vdash		3.0	-	<u> </u>	`1.0	1.8			1.0	3.4	-		1.0	3.4
M-1S	Zinc	ug/L	NA .	-	-			-	Ü	11		-	U	15		ļ	ļ Ų ļ	21	21
M 35	Alumnum	m/L	NA NA		├ ──┤			υ;	5	109		-	U	72	197		14	NA NA	197
M-38	Antinuny	ug/L	NA	-	-			2	٦	1.0		U	٦	2.0			U	1.0	2.0
	Amenic	wg/L	NA_					2	8	10	6.7	•		2.0	15	<u> </u>		NA NA	15
M-38	Barium	wg/L	NA .	-			290)		<u> </u>	1.0	112	BE	-	1.0	212	<u> </u>	 	NA	280
M-38	8cryllium	wg/L.	NA	 				U	Ų.	1.0		٧	Ü	1.0	L	L	U	1.0	1.0
	('adınıunı		NA	 	 		20.000	٦	υ	1.0		U.	Ų	1.0	<u> </u>	<u> </u>	U	1.0	1.0
M-35	Caktum	ug/L	NA	-	┝╼┥		20,000	_		7.0	25,400	E	1	7.0	132,500		1-1-1	NA NA	132,500
	Chromoun (total)	ug/L.	NA	!	 		2.000		U	1.0		_	U	43	8.7		 	NA NA	X.7
	Cohalt	ug/L	NA	-	┝╼╌┤		2,900	Ĭ	_	1.0	1.5	-		1.0	1.1	L	 	NA NA	2,900
	Copper	ug/l.	NA				2,500		В	1.0			Ü	3.5	<u> </u>		U	4.5	2,500
	Cyanide (total)	ug/L	NA		├{		2 000		Ü	10		U	Ų	10		ļ	U	10	10
	lam	w/L	NA.	 	┝╼╼┥		2,890	ש	-	4.0	2,1120		<u> </u>	1.0	4.475	Ь—	├ -{	NA	4,475
	Lead	wg/l.	NA NA	-	├		47	۳,	——	1.0	30 500	-	٦-	3.0	1.4	 	├─ ┤	NA .	3.0
	Magnesium	ug/L	NA NA	—	┝╼╾┥		47,600	\vdash		5.0	30,300	E	-	3.0	38,550	├		NA NA	47,000
	Manganese	ug/L	NA NA		┝┈┤		1,240	U		0.20	618	E	-	1.0	4K5	 	├─ ╤-╁	NA	1,240
	Mercury	wg/1.	NA	— —	├		12		 			Ų.	2	0.20			U	0.20	0,20
M-15	Nickel	ug/L	NA NA		┝╼╼┥		12	-	\vdash	1.0	# 14n	-	٦.	1.0	10		┞┯┩	NA	12
	Petassium	ug/L	NA NA	 	┝┈┥		21,200	┝╦┤		27	R,330	8	-:-	18	13,400			NA NA	21,200
	Sciennin	ug/L	NA .) —	┝╾┤			<u> </u>		2.0		=	ς:	2.0			U	2.0	2,0
	Stiver	ug/L	NA.		├ ─-{			7	-	1.0	44	U	U	1.0		<u> </u>	U	1.0	1.0
	Scoleum	we/L	NA	├	 		30,400	==		20	24,100	E	-	89	42,500		\vdash	NA	42,500
M-35	Thallium	ug/L	NA	-				U		3.0		U	۳	2.0		<u> </u>	U	2,0	3.0
M-35	Vanadium	wg/L	NA_		┡			ū		1.0	1.5	_	$ldsymbol{\sqcup}$	1.0	3.1		$oxed{L}$	NA	3.1
M-35	Zim:	ug/L.	NA .		 			-	U	14		-	·U	17			٦	17	17
M-4D	Aluminum	ug/L.	NA	├	┝╌┤			-	5	147		_	2	17	1,140	N	1	to -	1,140
M-4D	Antinumy	ug/L	NA	└				В	U	1.1		5	C	2.0		υ	U	1.0_	2.0
M 4D	Апенк	ug/L	NA					В	U	2.5		۵	2	2.0		U	U	2.0	2.5
M 4D	Barrum	ug/l.	NA	L			214	ليبا		1.0	179	B		1.0	177	В		1.0	204

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

		T			Event				Event 2		T		Event .				Event 4		Highest
Well	Analyte	Units	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
	Berythum	ug/L.	NA		-			Ü	U	1.0		Ū	U	1.0		Ü	U	1.0	1.0
M 4D	Cadmium	ug/l.	NA NA		 			Ü	Ü	1.0		υ	U	1.0		U	U	1.0	1.0
M 4D	Calcium	ug/L	NA.	 			99,100			7.0	84,100			7.0	KK,(KK)	Ι –	7	80	99,100
M 4D	Chromium (total)	ug/L	NA	_	1		1.3	В		1.0		В	U	2.7	14			1.0	14
M 4D	Cobalt	ug/L.	NA	\vdash				U	5	1.0		U	Ü	1.0	1.2	В		0.1	1.2
M 4D	Copper	ug/L	NA	!		· · · · · · · · · · · · · · · · · · ·		U	υ	1.0		В	U	4.3		В	U	4.2	4.3
M 4D	Cyanide (total)	ug/L	NA					U	U	10		U	U	10		U	U	10	10
M 4D	Iron	ug/L	NA	T^{T}			1,900	7		4.0	1,700			8.0	2,990			6.0	2,990
M 4D	Lead	wg/L	NA					U	_	1.0		B	U	2.1	3.1			1.0	3.1
M-40	Magnesium	υμ/L.	NA				45,600			5.0	39,800			3.0	41,000		1	3.0	45,600
M 4D	Manganese	ug/L	NA				37			1.0	34			1.0	56			1.0	56
M-4D	Meicury	ug/L	NA					U	٦	0.20		Ü	U	0.20		U	U	0.20	0.20
M-4D	Nickel	ug/L	NA	1			3.3	В		1.0		В	٦	2.5	12	В		1.0	12
M 4D	Potassium	ug/L	NA				4,490	В		27		BE	ບນ	4,890	4,640	BE	1	16	4,890
M 4D	Selenium	ug/L	NA					U	U	2.0		U	C	2.0		Ü	C	2.0	2.0
M-4D	Silver	ug/L	NA					٥	ט	1.0		U	υ	12		U	C	1.0	1.0
M 4D	Sodium	ug/L	NA				78,300	E.	-	20	71,700			*	70,600	E	-	76	78,300
M 4D	Thallium	ug/t.	NA					U	٥	3.0		2	٥	2.0		Ū	C	2.0	3.0
M 4D	Vanadium	ug/L	NA					υ	د	1.0		5	٦	1.0	2.0	B_		1.0	2.0
M 40	Zinc:	ug/L	NA					В	5	10		В	υ	19		B	Ü	13	19
M-48	Aluminum	ug/L	NA				548			11	653			17	1,120	N	1	10	1,120
M 45	Antimony	ug/L	NA					υ		1.0		U	-	2.0		Ü	U	1.0	2.0
M 48	Arsenic	ug/t.	NA				4.0	В		2.0	5.5	В		2.0	6.8	В		2.0	6.8
M 45	Barrum	ug/l.	NA				553			1.0	737			1.0	446			1.0	737
M 48	Beryllium	ug/L	NA					υ	٦	1.0	1.2	В		1.0		U	C	1.0	1.2
M 45	Cadmium	ug/L	NA				1.0	В		1.0		U	C	1.0		Ū	υ	1.0	1.0
M 48	Caktum	ug/L	NA				356,000			7.0	397,000			7.0	281,000		J	K.O	397,000
M 48	Chromian (total)	ug/L	NA				68			1.0		B	U	5.8	29			1.0	68
M 48	Cobalt	ug/l.	NA				N.2	В		1.0	6.3	. 8		1.0	5.4	В		1.0	8.2
M 48	Соррет	ug/t.	NA	匚				В		9.0		В	٦	5.9		В	U	11	11
M 48	Cyanide (total)	ug/L	NA NA					U	U	10	<u> </u>	U	C	10		U	U	10	10
	Iron	nk/r	NA NA	L			29,300		نـــا	14	39,500			8.0	22,000	<u> </u>		6.0	39,500
M 48	land	vg/L	NA NA				6.1	L	_	1.0	L	8	U	2.2	3.5	Ļ	$ldsymbol{\sqcup}$	1.0	6.1
	Magnesium	uy/l.	NA		L		57,300			5.0	49,500	<u> </u>		3.0	47,H(X)	!		3.0	57,3(10)
M 45	Manganese	ug/1.	NA NA	ļ	-		582	<u> </u>	ـــا	1.0	353	<u> </u>	L	I.O	557		-	1.0	582
	Mercury	ug/L.	NA	 	1		 -	U	U	0.20	 _	Ü	U	0.20		U	U	0.20	0.20
M 48	Nickel	ug/1.	NA NA	├	-		75	<u> </u>	 	1.0	 	-	U	17	2X	В	┞┯┨	1.0	75
M 48	Potassium	ug/l.	NA NA	 	₩-		20,000	E	<u>د</u> ا	27	 	U	U	23,000	22,800	E	1	16	23,000
M 48	Selemum	up/L	NA NA	╄	 -			U	Ü	1.0		U	U	2.0		U	Ų.	2.0	2.0
M-45	Silver	ug/1.	NA NA	├	 		98,800	۳		180	130,000	۳-	۳-	1.0	72,NOO	U	U	1.0	1.0
M 45	Scalium	ug/L	NA NA	├	├ ─┤		YN,MA)	U	₩	3.0	UNIA, UNIA	U	U	2.0	(Z , NUR.)	E	Ü	76 2.0	130,000
M-45	Thallom Vanadorn	ug/L.	NA NA	 	-		3.5	В	۳,	1.0	3.4	B	۳	1.0	3.9	B	⊦∸⊣	1.0	3.0
M 45	Zinc Zinc	ug/L ug/L	NA NA	 	 		3.5	-	U	23	}	 	U	20	3.9	 	U	30	3.9
MW-06	Aluminum	ug/L	150	В	+	NA	 	В	ᡰ᠊ᢆ	87	106	В	۳'	17	180	BN	1	10	180
MW 0o	Antimony	ug/L ug/L	 '.''	В	U	2.1	 	U	 	1.0	1(8)	U	Ü	2.0	1 (147	U	-	1.0	2.1
MW 06	Arsenic	ug/L	72	+	╁┷┤	NA NA	11	<u> </u>	⊢	2.0	17	- ٽ	۳	2.0	42	-	├┴┤	20	72
MW-(%)	Barium	ug/L	281	 	+	NA NA	182	В	 	1.0	168	В		1.0	369	 	 	1.0	369
MW-On	Beryllium	UK/L		U	U	1.0	 	U	U	1.0		Ü	U	1.0	77	Ü	U	1.0	1.0
MW-06	Cadmium	ug/L		U	10	1.0		U	٦	1.0	 	U	U	1.0		Ü	Ü	1.0	1.0
MW-06	Calcium	ug/L	216,000	ا ا	+-	NA NA	177,000		۳	7.0	174,000	۳	۳	7.0	174,000	- ' ا	1	K.0	216,000

					Event				Event 2				Event.	3			Event 4		Highest
Well	Austyte	Units	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	ΙQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
AN WIA	Cohale	ug/L.	3.0	1		NA	3.6	1		9.0	2.8	1		1.0	1.5	-		1.0	3.6
MW-0h	Copper	ugA.	7.6	1		NA	52			1.0	15	7		1.0		-	U	7,5	52
MW 06	Cyanuk (total)	up/L.		Ū	ΰ	10	17	1		1.0	15			10		Ü		to	17
MW (%	leum	w/L	16,500	1		NA	1,590	1		14	3,230			8.0	14,300			6.0	16,500
MW-m	Lead	up/L	7.6	 	—	NA NA	1.2	В		1.0	9.6			1.0	9.0			1.0	10
MW-III	Magnessons	ug/L	37,600	 		NA	32,200	1		5.0	34,400	†	_	3.0	34,200	_		3.0	37,400
AIW-IM	Allungum: No	ug/L	2,900	1		NA	486		1	1.0	1,580		_	1.0	2,170	_		1.0	2,900
MW-Wh	Mercury	upft.		Ū	Ü	0.20		Ü	U	0.20		U	U	0.20		Ü	Ü	0.20	0.20
AIW UM	Nachel	upl	39		 	NA	33		7	1.0	17	1		1.0	25	-		1,0	39
MW-06	Pritabalum	up/L	27,400	E	1	NA	24,100	E		27	19,000	<u> </u>	_	18	16,900	È	7	lo	27,400
VIM-00	Schoium	ug/L	27,544	1-5	Ü	2.0		Ü	Ü	2.0		U	U	2.0		7	Ü	2.0	2.0
MW-06	Silver	ug/L		Ü	Ü	1.0		Ü	Ü	1.0	 	Ü	Ü	1.0	 	Ü	_	1.0	1.0
MW-(III	Sadium	up/L	121,000	╁	 	NA	449,000	E	<u> </u>	1300	134,000	Ť	Ĭ	26	79,300	Ť	H	76	449,000
MW-06	Thallown	- WAL	121,1000	1 6	U	3,6		Ū	Ü	3.0	127,22	U	U	2.0	.,,,,,,,	Ü	ان	2.0	3.6
MW-00	Vanadium	ugl	3,8	1	- ~−	NA NA	<u> </u>	Ŭ	Ü	1.0		Ü	Ü	1.0		Ü		1.0	3.8
		W/A.		 	10	13	-	1 3	Ü	11		ř	Ü	27		-	١٠	20	27
MW-06	Zine	ug/L	NA NA	┝╌	<u> </u>		1,630	<u> </u>	H	11	1,030		Ť	17	1.280	z	H	10	1,630
	Alummum		NA NA	├	-			8	U	2.2	1,000	U	U	2.0	1,2,440	Ü	٦	1,0	2.2
MW-07	Antiminy	mg/L	NA NA	├	┢┈			-	Ü	3.5		Ü	l ü	2.0		Ü	 	2.0	3.5
MW-07	Arsenic	up/L		┢━			138	1 1		1.0	124	_	۳-	1.0	132		\vdash	1.0	
MW-07	Barrioni	ug/L	NA NA					Ü	U	1.0	149	B U	U	1.0	132	8	H.:-I		138
MW-07	Beryllium	w/L.		├─-				+	Ü	1.0						۲	Ų.	1.0	1.0
MW-07	Cadmium	ug/L	NA NA	├			113,000	اٽ		7.0	97,000	<u>u</u>	ų.	1.0	102.000	2	Ü	1.0	1.0
MW-07	Cakeum	· wy/L	NA NA	├	 		94	├		4.0		E	-	7.0	102,000		J	8.0	113,000
MW-07	Chromoum (total)	we/L	NA NA		-		24	-			18	<u> </u>		1.0	44		-	1.0	94
MW-07	Cutuit	- ug/L	NA.	├			16	1:	\vdash	1.0	1.5			1.0	1.9	•	1	1.0	2.4
MW-07	Copper	ug/L	NA NA	├ ─	 		10	-	U	1.0	7.2	-		1.0	"			1.0	16
MW-07	Cyanide (total)	ug/L	NA NA	├			4 3000	—			1.0	U	ح	10		٥	U	10	10
	leun	w/L	NA NA	├ ──			6,790	-	-	4.0	4,650			8.0	5,570		\vdash	6.0	6,790
MW-07	ical	ug/l.	NA		┢		5.8			1.0		<u> </u>	_	5.8	3.9		$oxed{oxed}$	1.0	5.8
MW-07	Magnesium	W/L	NA NA	 	-		30,000	<u> </u>	-	5.0	29,100			3.0	28,600	_	-	3.0	.30,000
MW-07	Manganese	ug/L	NA	 -	-		219		 	1.0	195	<u> </u>	-	1.0	205	٠	Ь	1.0	219
	Mercury	wil	NA .					U		0.20		=	2	0.20		۲	٧	0.20	0.20
MW-07	Nickel	ug/L	NA	<u> </u>	-		2.11	-	Ľ	38	14			1.0	31			1.0	38
MW-07	Potassium	w/L	NA .		├ ─-		2,660	BE.		27	2,170	-		18	2,190	BE		16	2,660
	Schmm	w/L	NA	├	-			U	U	2.0		2	ح	2.0		٧		2.0	2.0
MW-07	Silver	W/L	NA	 				UN	-	1.0		ט	U	1.0		U	U	1.0	1.0
	Sadium	we/L	NA .	├	┝╼┥		18,900		<u> </u>	1300	19,000	<u> </u>	L	***	20,200	E	1	76	20,290
	Thulirum	ug/L	NA	ļ	\vdash			ע	υ	3.0		2	2	2.0		U	٦	2.0	3.0
	Vpradrum	- we/L	NA	<u> </u>			3.4	-		1.0	2.2	-		1.0	2.8	•	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1.0	3.4
	Zink:		NA		احبا			.	Ü	23	22			1.0			ט	30	30
	Aluminum			U	U	16	612		اسبا	11			٦	97	X39	N	-	10	1139
MW 4M	Ammuny	w/L		U.	C	10	ļi	2	2	1.0		>	2	2.0		U	U	1.0	2.0
MW4H	Amenk	ug/L	4,4			NA NA		_	Ü	5.7	5.1	•		2.0	6.1			2.0	6.1
MW-IM	Barium	wg/L.	12K	_B_		NA NA	99	•		1.0	126	-		1.0	111	•		1.0	128
VIM-IM	Beryllium	⊎g/L.		U	U	1.0	<u> </u>	5	ح	1.0		٥	ע	1.0		C	Ų	1.0	1.0
M-WIA	Cadmium	- Jugh		U	5	1.0		2	5	1.0		Ü	C	1.0		U	U	1.0	1.0
MW-(M	Calcium	ug/L	SK_MX)	L		NA NA	46,800			7.9	53,600	8	-	7.0	55,200			8,0	58,300
NW-198	Chemium (tetal)	ug/L		В	Ü	1.9	21			4.0	3.4			1.0	37			1.0	37
MW-IR	Cohult	ug/L		U	U	1,0		5	U	1.0		U	ט	1.0	J.B.	В		1.0	1.8
MW-m	Copper	By/L		U	U	1.0		8	U	4.7	1.5			1.0		•	U	7.3	7.3
MW-UR	Cyanide (total)	ug/L		U	c	10		٥	U	10		U	5	10		Ü	Ü	10	10
	fron	ug/L	1,030			NA	2,950			4.0	3,000			8.0	3,420			6.0	3,420

Appendix C

Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

		7			Event :				Event	2			Event.	3			Event		Highest
Well	Anulyte	Units	Result	I.Q	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Keruli	LQ	DQ	Detect Limit	Detection
MW-08	Lead	ug/L		U	U	1.0	3.4	-		1.0		В	U	2.7	3.1	-`		1.0	3.4
MW 08	Magnesium	ug/L	18,600	 ~	├ `	NA	14,700	 		5.0	17,100	宀	 	3.0	17.700	_	1	3.0	18,600
MW-08	Manganese	ug/L	108	 	1	NA	102			1.0	173	_	1	1.0	134		 	10	173
MW 08	Mercury	ug/1.	 	U	U	0.20		Ū	U	0.20	 	U	Ü	0.20		U	U	0.20	0.20
MW 08	Nickel	ug/L	<u> </u>	В	Ü	2.4		B	Ü	4.9	2.5	В	<u> </u>	1.0	23	8	<u> </u>	1.0	23
MW 08	Potassium	ug/L	1,540	В	- <u>*</u> -	NA NA	1,260	BE	-	27	1,260	В		18	1,410	BE	7	16	1,540
MW OK	Sekmun	vg/L	1,3,747	ΙŪ	U	2.0		U	Ü	2.0		Ū	U	2.0		U	Ü	2.0	2.0
NO-W14	Silver	WE/L	 	ΙŪ	Ü	1.0		UN	R	1.0	 	Ū	Ü	1.0	t	Ü	Ü	1.0	1.0
AIW-OR	Sadium	ug/L	12,700	 ~	<u> </u>	NA NA	10,200			180	12,000	 	-	89	13,500	Ē	1	76	13,500
MW-08	Thallium	ug/L	, , , , , , , , , , , , , , , , , , ,	tυ	U	2.0		U	C	3.0		U	ΙŪ	2.0		Ū	U	2.0	3.0
NIW OK	Vanadium	ug/L		Ť	Ü	1.0	1.2	В	_	1.0	1	Ü	Ū	1.0	2.0	B	1	1.0	2.0
MW-08	Zinc	Ug/L		В	Ü	7.4		<u> </u>	c	25	 		ΙŪ	8.0	 -	_	Ü	34	34
MW-09	Aluminum	ug/L		Ū	Ü	16	2,580	N.	-	11	 	 	Ū	53	863	_	<u> </u>	10	2,580
MW-09	Antomony	UW/L		Ů	Ü	1.0		U	Ü	1.0	}	 	Ū	2.0		U	U	1.0	2.0
MW-09	Arsenic	ug/L	3.2	B	-	NA	6.8	В	_	2.0	2.5	 		NA	3.4	8	<u> </u>	2.0	6.8
MW-IP	Barium	ug/L	337	 		NA	301			1.0	331			NA	349	<u> </u>	$\overline{}$	1.0	349
MW (P)	Beryllium	ug/L		Ū	U	1.0		Ü	υ	1.0	 	_	Ü	1.0		U	U	1.0	1.0
MW-09	Cadmium	ug/L		Ü	Ü	1.0	2.4	В	<u> </u>	1.0			Ü	1.0		Ü	Ŭ	1.0	2.4
MW-09	Calcium	ug/L	159,000	1		NA	135,000		_	7.0	152,000	_	† <u> </u>	NA	155,000	- ّ -	<u> </u>	8.0	159,000
MW-m	Chromium (total)	ug/L		В	Ü	2.4	45		_	4.0	1		υ	2.2	12	_		1.0	45
MW 49	Cohalt	ug/L	3.5	В		NA.	9.3	В		1.0	5.4	┰	1 -	NA	6.0	В		1.0	9.3
MW 09	Copper	ug/L.		Ü	U	1.0	24	В		1.0	 	_	U	1.2		В	Ü	6.0	24
MW 09	Cyanide (total)	ug/L		Ū	Ü	10		Ū	Ü	10	 	 	Ü	10		Ü	Ü	10	10
MW (9)	Iron	nk/L	17,800		-	NA.	20,700	Ť		4.0	15,650			NA NA	16,900	 -	 ~	6.0	20,700
MW (P)	Lend	ug/L		U	UJ	1.0	6.7	_	_	1.0	1.2.3.	_	Ü	1.0	2.9	B	 -	1.0	6.7
MW (P)	Magnesium	ug/l.	33,000			NA .	28,000			5.0	25,750	 	<u> </u>	NA	26,100	_		3.0	33,000
	Manganese	uy/L	231	 		NA.	249		_	1.0	184	_	1	NA	219			1.0	249
MW (9)	Mercury	Ug/L		U	U	0.20	0,67	2.	-	0.20	1		U	0.20		U	U	0,20	0,7
	Nickel	ug/L.		В	Ü	4,6	38	В		1.0	<u> </u>		Ū	4.0	13	1		1.0	38
	Potassioni	ug/L.	10,800			NA	9,140	E	J	27	1		UI	11,150	11,000	E	1	16	11,150
MW-09	Selenium	ug/L		U	U	2.0		Ų	U	2.0			U	2.0		Ü	U	2.0	2.0
MW-09	Silver	ug/L		U	5	1.0		U	נט	- 1.0	1	_	Ū	1.0		U	Ü	1.0	1.0
	Sedium	ug/L	110,000			NA	82,6(N)			180	AN,750			NA	66,400	E		76	110,000
MW-09	Thalloum	ug/t.		U	U	2.0		C	U	3.0			υ	2.0		-	U	2.1	3.0
MW-09	Vanadium	ug/L	50	В		NA .	4.6	8		1.0	3.8			NA	5.4			1.0	10
MW-(H	Zinc	ug/L.		В	U	4.5			U	41			U	8.0			U	23	41
MW-IIK'	Aluminum	ug/t.	1,170			NA			U	275	3,535			NA	6,990	×	1	10	6,990
MW-HC	Antimony	wg/L.		U	υ	1.0		В	U	1.3	2.8			NA		כ	Ü	10	2.8
MW-IIK	Arsenic	ug/L	2.4	В		NA :		В	U	4.3	3.2			NA	10			2.0	10
MW-IOC	Bartem	ug/L	368			NA	372			0.1	342			NA	337			1.9	372
MW-IOC	Beryllium	ug/L		U	U	1.0		_U	U	1.0	1.3			NA		Ü	U	1.0	1.3
MW-10C	Cadmium	ug/L		U	U	1.0		Ü	U	0.1			U	1.0		Ü	U	1.0	1.0
MW-HX.	Calcium	ug/L	118,000			NA	122,000			7.0	131,500			NA	141,000		7	X.O	141,000
MW-10C	Chromsum (total)	ug/L	14_			NA	3.6	В		1.0	29			NA	360			1.0	360
MW-toc'	Cuhak	ug/L	29	В		NA	2.1	В		1.0	4.7			NA	14	В		10	14
MW-IDC	Соррег	ug/l.		В	U	4.4	5.9	В		1.0	12			NA	46		-	1.0	46
MW-IIIC	Cyanide (total)	ug/L		U	U	10		υ	Ü	10			U	10		C	U	10	10
MW-IIC	lnın	ug/L	10,100			NA	9,080	N	3	4.0	12,950			NA NA	21,300			6.0	21,300
MW-10C	læd	ug/L	3.2		-	NA	1.8	В		1.0	5.6			NA	19			1.0	19
MW-10C	Magnesium	ug/L	57,200			NA	58,300			5.0	60,200			NA	65,900		7	3.0	65,900
MW-10C	Manganese	ok/L	107			NA	74			1.0	287			NA	447			1.0	447
MW loc		υμΛ.		υ	U	0.20		2	U	0.20			U	0.20		υ	U	0.20	0.20

					Event !				Event				Event 3				Event 4		ifighest
Well	Analyte	Links	Result	1Q	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	iQ	DQ	Detect Limit	Result	10	DQ	Detect Limit	Detection
MW-toC	Nickel	ug/L	14	8		NA	7.7			1.0			Ü	2#	257			1.0	257
		"WA	6,150			NA	4,700			27	 		UI	6,710	7,460	E	7	16	7,460
	Sclenium	we/L		U	U	2.0		Ū	U	2.0	1		Ü	2.0		U	Ü	2.0	2.0
MW-10C	Silver	Up/L		Ū	Ü	1.0		Ū	Ü	1.0	1	_	Ü	1.0		5	Ü	1.0	1.0
MW-10C	Sodium	we/L	193,000	_		NA	185,000	E	1	20	162,500	1		NA NA	158,000	E	1	76	193,000
MW-lix*	Thullium	ug/L	,	Ü	U	2.0		Ū	Ü	3.0		 	U	2.0		U	Ü	2.0	3.0
MM-10C	Vanadium	wg/L	3.8	B		NA NA		Ü	Ü	1.0	X.0		 	NA	15	-		1.0	15
MW-10C	Zini	- June		┝╼╌	Ü	27		1	Ü	13	82	-		NA NA	119	<u> </u>		1.0	119
MW-11	Aluminum	ug/L	1,460	_	<u> </u>	NA	1,470	EN	1	ii ii	633			17	421		 	10	1,470
MW-11	Antimuny	ug/L	1,-1,-1,-	U	U	1.0	- '''-	Ü	Ü	1.0		U	U	2.0	· · · · · ·	Ü	U	1.0	2.0
MW-11	Assenic	Wg/L		Ü	Ü	2.0	<u> </u>	Ü	Ü	2.0		Ü	Ü	2.0		1	Ü	2.0	2.0
		ug/L	24	Ť	۳	NA NA	21	l ü		1.0	17	1	┝╩╢	1.0	27	-	├ ┷┤	1.0	27
MW-II	Винит			Ü	U	1.0	 	Ü	U	1.0	 ''	Ü	U	1.0		Ü	 	1.0	
MW-11	Beryllium	⊌g/L		Ü	ŭ	1.0		Ü	Ü	1.0		Ü	₩	1.0		ᆢ	انا	1.0	1.0
MW-11	Cadmium	ug/L	41 300	<u>"</u>	⊢∸⊢	NA NA	38,300			7.0	33,400	E		7.0	14 200	-			
MW-II	Calcium	ug/L	44,300	-	Ü	4.8	2.9	8		1.0	5.0	-	ᆜ		35,700		\vdash	X.0	44,300 -
	Cheomium (total)	ug/L		-	-	NA NA	2.2	-	-	1.0	2.1		-	1.0		1	1	12	12
MW-11	Cobalt	ug/L	2.2			NA NA		-	U	10		-	\vdash	1.0	1.3	- 8		1.0	2.2
	Copper	ug/L		B	U	10		+	Ü	10	7.9	B	 -I	1.0		-	Ų.	3.9	!
MW-11	Cyanide (total)	ug/L	2.000	۳.		NA NA	2.010	-		4.0	2.280	<u> </u>	2	10		Ü.	U	10	10
MW-II	Iron	ug/L	2,910		١			-			2,200	_	 	#.0	000,1			6.0	2,910
MW-11	lesi	ug/L		 	Ü	7.9	5.3	_		1.0			>	5.3			٦	4.6	7.9
MW-11	Марисъции	ug/L_	18,200	<u> </u>	\vdash	NA	16,300		\vdash	5.0	13,400		\vdash	3.0	11,400		\vdash	3.0	18,200
MW-11	Manganese	ug/L	145			NA	139	<u> </u>		1.0	128	ļ.,	 	1.0	525	<u> </u>	\vdash	1.0	525
MW-11	Mercury	ug/L		U	C	0.20		U	U	0.20		U	2	0.20		7	2	0.20	0.20
MW-11	Nickel	ug/L	××	- 8	_	NA NA	7.4	8	_	1.0	7.5	<u> </u>	\vdash	1.0	4.5	-		1.0	N.H
MW-11	Petassium	w/L	2,450	В		NA NA	ORX, I	38	1	27	1,590		\vdash	18	1,150	346		16	2,450
MW-11	Selenium	Ug/L		٧	٧	2.0		U	L U	2.0	<u> </u>	υ	U	2.0		5	U	2.0	2.0
MW 11	Silver	ug/L		υ	U	1.0		υ	Ü	1.0		U	٧	1.0		2	٥	1.0	1.0
MW-11	Sodium	wg/L.	4,460	В		NA			υ	3,310	4,410	В		89		8	U	4,890	4,890
MW-11	Thallium	ug/L		υ	U	2.0		U	Ľ	3.0	<u> </u>	U	Ü	2.0		5	J	2.0	3.0
MW-II	Vanadium	ug/L	6.5			NA NA	3.8		\vdash	1.0	4.0			1.0	1.4	B		1.0	6.5
HW-II	Zank	ug/L	41			NA			U	40	23			1.0		B	U	14	91
MW-12	Alummum	ug/l.	311			NA .	2,020	EN		11	786			17	1,640			10	2,020
MW-12	Antinuny	wg/L			υ	1.0		2	U	1.0		حا	5	2.0			U	1.2	2.0
MW-12	Arsenic	ug/L	47			NA	7.6	-		2.0		U	5	2.0	7.8			2.0	7.8
MW-12	Barrum	w/L	* 1			NA	11.3	В		1.0	48	3		1.0	73			1,0	N3
MW 12	Beryllium	ug/L			U	1.0		٥	U	1.0		حا	ح	1.0		Ü	U	1.0	1.0
MW-12	Cadmium	ug/L			U	1.0	1.5	В		1.0		U	5	1.0		Ü	Ü	1.0	1.5
MW-12	Calcium	ug/L.	55,700			NA	45,900			7.0	43,900	E		7.0	47,400			8.0	55,700
MW-12	Chromoun (total)	ug/L			C	5.1	12			1.0	4.6	В		1,0	8.9		-	1.0	12
MW-12	Cohalt	ug/L			U	1.0	2.4	M		1.0	1.1	3		1.0	2.4	В	-	1.0	2.4
MW-12	Copper	ug/L			נט	6.3	17			1.0	5,6			1.0	15			1.0	17
MW-12	Cyanide ((otal)	wg/L			U	, IU		٦	2	10	1	U	U	IL.		U	Ü	10	10
	leve	- WA	IK,MXI			N	30,100			4.0	10,300			8.0	24,400			6.0	30,100
	Loud	wg/L	12		1	N	11			1.0	1	Ι –	U	4.1	12			1.0	12
	Magnesium	ug/L	18,850			NA	17,500			5.0	15,700			3.0	17,300			3.0	18,850
	Manganese	ug/L	1,340			NA	1,050			1.0	1,070		\vdash	1.0	1,210		\vdash	1.0	1,340
MW-12	Mencury	ug/L		 	U	9.20		Ü	U	0.20	†	U	U	0.20	-,-,-	U	U	0.20	0.20
MW-12	Nickel	W/L	41	—	1	NA.	13	i		1.0	3.5	<u>.</u>	┝┷┥	1.0	7.4	B	 	1.0	13
MW-12		Ug/L.	4,780	 		NA NA	2,860	BE	- ,-	27	2,610	- B	┝╌┥	1.0	2,930	BE	 		
MW-12	Potassium Selemum	92/L	7,/61/	 	U	2.1	-,	U	Ü	2.0		U	U	2.0	2,9.90	U	'	2.0	4,780 2.1
	Lackiniam	. wy/I.				4.1				4.1/				211		u	ı U İ	2 (1	. , , ,

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

	Analyte	(Inits	Event 1				Event 2				Event 3				Event 4				Highest
Weff			Result LQ DQ Detect Limit							Detect Limit	Result LQ DQ			Detect Limit	Result J.Q DQ				Detection
		_	20,000		1/2	NA NA				7,360	8,690	-		K 9		E	UJ	10,600	20,000
	Sidium	uy/L.	20,000		U	2.0		Ü	Ü	3.0	4,070	U	U	2.0		B	Ü	2 3	30
MW 12	Thallium	ug/L.	1.4		15	NA NA	24	В	<u> </u>	1.0	7.9	В	اٽ ا	1.0	20	В	-	1.0	24
MW-12 MW-12	Vanadium	ug/L		├	ti	10		-	υ	39		B	U	12		-	Ü	27	39
MW 13	Zinc	υμ/L	232		 "	NA NA	96	В		11	427	 	<u> </u>	17		В	Ü	172	427
MW U	Aluminum			U	10	1.0		Ü	U	1.0		U	U	2.0		+	Ü	1.0	2.0
		ug/L		1 0	Ü	2.0		Ü	Ü	2.0		Ü	Ü	2.0		Ü	Ü	2.0	2.0
MW-11	Arsenic	ug/L			10	NA NA	55	1 -	۳	1.0	68	B		1.0	69	-		1.0	69
	Barium	ug/L	67	B	 	1.0	- 33	Ü	- U	1.0	1100	Ü	U	1.0	- 179	U	U	1.0	1.0
MW-13	Berylhum	ug/L		U	Ų.	1.0		Ü	٠	1.0		Ü	Ü	1.0		₩	Ü	1.0	1.0
MW-13	Cadmium	vg/L.		U	U	1.0	1011 (000)		۳	7.0	107,000	 -		7.0	130,000	ٽ		8.0	130,000
MW-13	Calcium	na/r	TTK (KK)	├ —			103,000			4.0	107,000	 -	υ	4.2	UNULUE	U	·		
MW-13	Chromium (total)	ug/L		В	U	 :		U	U		 	В	<u> </u>			_	Ų	1.0	4.2
MW-13	Cobalt	ug/l.	1.9	8		NA		U	Ü	1.0	1.7	8		1.0		U	U	1.0	1.9
MW-13	Copper	uy/L		В	U	5.9		B	U	2.5		<u>B</u>	U	4.3		B	U	2.3	5.9
MW-13	Cyanide (total)	ug/L.		L U	U	10		U	ט	10	 	U	υ	01		U	U	10	10
MW-13	Iron	ug/L	5,240	! -	1	NA .	6,090			4.0	5,7101	<u> </u>		8.0	4,420	<u> </u>		6.0	6,090
MW-13	Lesi	ug/L	 _	В	U	2.0		U	٥	1.0		В	U	2.3		٦	U	1.0	2.3
MW-13	Magnesium	ug/L	32,000		!	NA NA	27,800	_	<u> </u>	5.0	30,000	-	-	3.0	37,000	├		3.0	37,000
MW 13	Manganese	nk/L	674	Ļ	├	NA NA	657	-	L	1.0	636	 	1	1.0	604	<u> </u>		1.0	674
	Mercury	ug/L		U	U	0.20	ļ	U	U	0.20	!	U	U	0.20		U	U	0.20	0.20
MW 13	Nickel	ug/L	31	В	↓	NA .	ļ <u>.</u>	<u> </u>	U	2.4	 	В	U	4.3		B	U	1.9	4.3
MW-11	Potassium	ug/L	2 940	BE	1	NA NA	1,900	BE	1	27	 -	BE	נט	2,K2O	2,020	BE	1	16	2,940
MW II	Selemum	ug/L		l u	U	2.0		U	U	2.0	ļ	U	Ľ	2.0		U	U	2.0	20
VIM. 13	Silver	ug/L	L	U	U	1.0	L	UN	R	1.0		U	U	1.0		U	U	1.0	1.0
MW 13	Section	ug/L	27,800	<u> </u>		NA NA	30,700	↓		180	35,700	<u> </u>		ЖУ	24,600	E	1	76	35,700
MW 13	Thallium	ug/L	L	В	U	2.0		U	υ	3.0	ļ	U	U	2.0		U	U	2.0	3.0
MW-13	Vanadium	ug/L	+7	В		NA	<u> </u>	Ū	U	1.0	1.8	<u> </u> B	L	1.0		U	U	1.0	1.8
MW-11	Zinc	ug/L		В	l u	12		В	U	12	ļ	B	U	17		В	U	12	17
MW-14	Alummum	ug/L.	780	1	1	NA NA	2,550	_			13,800	Ļ		17	7,180			10	13,800
MW-14	Anumony	ug/l.		U	U	1.0	<u> </u>	U	υ	1.0	2.3	В		2.0		A	U	1.3	2.3
MW 14	Arsenic	ug/1.		U	Ü	2.0	<u> </u>	U	U	2.0	11			2.0	9.2	R		20	H
MW 14	Barrom	ug/L	122	В		NA	33	В		1.0	112	В		1.0	KK	В		1.0	122
MW 14	Beryllium	ug/L		υ	U	1.0	<u> </u>	ַט	U	1.0	<u> </u>	U	U	1.0		U	U	1.0	1.0
MW-14	Cadmium	ug/L		U	U	1.0		υ	ט	1.0		U	υ	1.0		U	U	1.0	1.0
MW-11	Calcium	սց/Լ.	142,000	Γ		NA	26,100			7.0	104,000			7.0	96,400			8.0	142,000
MW-14	Chromium (total)	ug/L		В	U	8.6	12			1.0	.36			1.0	26			1.0	36
MW-14	Cohalt	ug/L.	91	В		NA	2.3	В		1.0	12	В		1.0	X.3	В		1.0	12
MW-14	Copper	ug/l.	- 11	В		NA		В	U	9.0	26			1.0	.32			1.0	32
MW-14	Cyanide (total)	ug/L		U	U	10		U	U	10		U	U	10		U	U	10	10
MW-14	low	ug/L	1,650			NA	5,610			14	33,000			8.0	25,900			6.0	33,000
MW-14	Lead	ug/L	9,X			NA	17			1.0	19			1.0	20			1,0	20
MW-14	Magnesium	ug/L	26,200			NA	6,830			5.0	25,600	7		3.0	22,000			3.0	26,200
MW-14	Manganese	ug/l.	811			NA	60			1.0	351			1.0	290_	I		1.0	831
MW-14	Mercury	ug/l.		U	U	0.20		U	U	0.20		U	U	0.20		U	Ü	0.20	0.20
MW-14	Nickel	ug/L	17	B		NA	9.3	В		1.0		В	U	29	22	В		1.0	29
MW 14	Potassium	ug/l.	12,500			NA .	2,770	BE	1	27		E	ιυ	9,870	6,440	É	7	16	12,500
MW-14	Seleman	ug/L	1	U	U	2.0		U	U	20	2.3	В		2.0	· · · · · ·	Ū	U	2.0	2.3
MW-14	Silver	· uy/L		U	υ	1.0	I	U	U	1.0	T T	U	U	1.0		Ü	Ū	1.0	1.0
MW-H	Sedium	ug/l.	37,900		T	NA	3,610	В		180	9,460			89		E	Ū,	11,600	37,900
MW-14	Thaileum	ug/1.	1	U	U	2.0		Ü	U	3.0		U	U	2.0		Ū	Ü	2.0	30
MW 14	Vanadium	ug/1.	10	B	1	NA	6.4	В	_	1.0	34	B	┌╌	1.0	21	В	<u> </u>	1.0	34
MW 14	Zinc	ug/L	 	 ~~	tu	2)	 	 	U	27	63	 		1.0	59	⊢ ∸	-	1.0	63

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

No. Assayle		1				Event				Event :	<u> </u>	1		Event	1	·		Event		Ilighest
Wilson W	AAVM		1 state	No.	Tio			2-4	10			 	LIA				110			Detection
No. 15 Ameney 19th 19t				RESUM					-~				12					_		487
Section Sect				 					-			.70	٠	 -		487	-			
Section				400	۳-				 -	-			<u> </u>			79	۳.	1		2,0 59
SeyNome					├─				\vdash	├			١.	 -			├	_		1.470
Section Sect				1,470	}	 -		1,240	·			0,0,1				1,3(10)	٠	 		
SWY-15 Change c				}	_											 				1.0
Section Sect				414 1488	 	۳-		70.000	۳.	۲		43 890					۳.	_		1.0 94.100
Section Sect				94,100	-	 			-	_		07,740					├	1 -		
SWY-15 Oppor				 		۳.				\vdash				۳-			┝ <u>-</u>	1		13
SWEST Symmetricisty Speed Symmetricisty Symmetricist				3.1					 •			3.4		 				 -		5.1
No. No.				ļ	_				 				_			13		_		26
SWY-15 Mary No. SWY-10					۳.	┝╩┈			۳	-							<u> </u>	1 "		10
May 15 May 15 May 15 May 16 May 17 May 18 M				7,9(3)		 		3,350		١		3,310		_			└ ┈	ļ		7,900
May 15 Marganes May 15 15 15 15 16 17 16 17 16 17 16 17 16 17 17									٠	۲				_			 -			2.4
SWY-15 Mex-vary						\vdash			_	ш				_			 -			93,100
SWY-17 No.44 94. 23 8 NA 19 8 10 19 8 1.0 19 8 1.0 19 1.0 1.				534		البيا		276	L.,	اسبا		167				141	!	1		534
No. 1				<u> </u>		괵			_	ט		<u> </u>		U			_	U		0.20
NW 15 Scheme NW 15 S	MW-IS	Nickel											_	L						24
Section Sect	MW-15	Potassium		122,000				102,000				96,500				118,000	_			122,000
MAY 15 Scheme	MW-15	Sciennim																		2.0
MW 15 Tullium		Silver			U	-				_				_				_		1.0
Mile 15 Machine Mile 15 18	MW 15	Sindium	wg/L	4,59,000				311,000				347,008				415,000	E	لـنــ		459,000
MW-15 Zax		Thallium			_	٧												U		3.1
MW-1X Administry Mg/L U U 16 B U 56 B U 56 U 36 MW-1X Administry Mg/L U U 12 B U U 13 U U 12 B U U 14 U U 15 B U 14 U U 12 B U U U 15 B U U U U U U U U U	MW-15	Vanadium	ug/L	1.5	_	\Box										1.1				1.5
New Relationship State	MW-15	Zinc				_								_						44
Since Sinc	MW-1X	Aleminum												_						56
MW 18 Battom	MW-IN	Antimony				_							_				U	_		2.0
MW 18 Rep. Hum	MW-IX	Arsenic				U				2			כ				U	U		2.4
NW-18 Calmium	MW-18	Barieni	ug/L	35				34				25		1		32			1.0	35
NW-18 Calcium gg/L 81,000 NA 88,500 7.0 63,700 E 1 7.0 64,200 RO RO RO NW-18 Chornwan (steal) gg/L 17 NA 30 1.0 B U 5.8 71 1.0 1.0 NW-18 Colored gg/L 1.1 B NA U U U 1.0 U U 1.0 U U 1.0 NW-18 Colored gg/L 1.1 B U U U 1.0 U U 1.	KI WIA	Bery lhum	ug/L								1.0		٦	٥	0.0		2	Ü	10	1.0
MW-18 Chromom (total) mg/L 17	MW-18	Cadmium	ug∕l,		U	7			2	٥			U	U			U	U	1.0	1.0
NW:18 Cubult ugl. 1.1 B	MW-18	Cakrum	ug/L	N1,600				28,500			7.0	63,700				64,200			N.O	RK,500
MW-18 Copper	KI-WIA	Chromuum (total)	wg/L	17				30			1.0			ح	5.8	71			1.0	71
MW-18 Brown sight September sight	MW-18	Cubalt	ug/L	1.1			NA		U	Ų	1.0		2	>	1,0		5	U	1.0	1.1 26
MW-1R Room My-L 24R NA 16S N J 4.0 BE UJ 54 U 24R 24R MW-1R Lepal My-L 1.6 B J NA 1.5 B 1.0 6.3 My-R	MW-18	Cupper	wg/L.			U	1.2	2.8	ı.		1.0			-	6.7	13			1.0	13
MW-18 Lead	MW-18	Cyanide (total)	. Ngu		5	ט	10		U	U	10		U	U	HO HO		U	U	10	10
MW-18 Magracistra	MW-IX	line sp	ug/L	2KM			NA.	165	N	1	4.0		DE	IJ	.54			U	208	2M8
MW-18 Marganese ug/L 609	MW-18	ليزما	ug/L	1.6	4	-	NA	1.5	B		1.0	6.3			1.0	14			1,0	14
MW-18 Marganese mg/L cs(P) C	MW-IX	Magnessum	i iig/L	28,500			NA .	27,300			5.0	19,600	E		3.0	18,900			3.0	28,500
MW-18 Mercury Mg/L Mg/			ug/L	(4)9			NA NA	13			1.0	24	E	1	1:0	#5			3.0	609
MW-1K Nuclei					U	U	0.26		U	U	0.20		U	U			U	U		0,20
MW-18 Pression ug/L 3.850 B NA 2,420 B 27 2,720 BE J 18 3,220 BE J 16 3,						U	3.0	3.3			1.0					6.2				6.2
MW-18 Seleman ug/L 3 0 8 NA U U U 2.0 3.2 B 2.0 3.9 B 2.0 MW-18 Seleman ug/L U U 1.0 U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-18 Seleman ug/L 34.400 NA 64.600 E J 20 67,700 E J 10 MW-18 Tealman ug/L U U U 2.0 U 3.0 U U 2.0 B U 2.8 MW-18 Tealman ug/L 1.1 B NA U 1.0 U U 1.0 U 1.0 U 1.0 U 1.0 NA U U U 1.0 U 1.0 U 1.0 MW-18 Veradoen ug/L 1.1 B U NA U U U 1.0 U 1.0 U U 1.0 U 1.0 NA 1.0 U U 1.0 NA NA U U U 1.0 U 1.0 U U 1.0 U 1.0 NA NA U U U 1.0 U 1.0 U U 1.0 NA NA U U U 1.0 NAW-18 Veradoen ug/L 2.8 U 1.4 U 1.0 U 1.0 U U 1.0 U 1.0 NAW-18 Veradoen ug/L 2.8 U 1.0 NA 3.22 U 1.1 U 1.0 U 1.0 U 1.0 U 1.0 O 0 U U 1.0 O 0 U U 1.0 O 0 U U 1.0 O 0 U U 1.0 U				3,850	•		NA	2,420			27	2,720	SE.					 , 		3,850
MW-IN Silver ug/L U U 1.0 U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-IN Sindren ug/L MA-MOD U U U 1.0 U U 3.0 E J 20 67,700 E J 20 67,500 E J 76 67 MW-IN Thallium ug/L I B U U U 3.0 U U U 3.0 U U U 2.0 B U 2.8 MW-IN Variables ug/L I B U 7.0 B U 1.0 U 1.0 U 1.0 U 1.8 I 5 B I 1.0 MW-IN Variables ug/L B U 7.0 B U 1.4 U 1.0 U 1.8 I 5 B I 1.0 MW-IN Variables ug/L B U 7.0 B U 1.4 U 1.5 U 0 7 U 0 2.0 I 0 MW-IN Variables ug/L I B U 7.0 B U 1.4 U 1.5 U 0 7 U 0 2.0 I 0 MW-IN Variables ug/L 2.8 I NA 3.22 I II 421 U 0.7 U 0 2.0 U 0 2.0 MW-IN Variables ug/L 2.8 I NA 3.22 I II 421 U 0.7 U 0 2.0 U 0 1.0 I 0 MW-IN Variables ug/L 2.7 U 0 I 1.0 U 0 1.0 U 0 1.0 U 0 1.0 U 0 1.0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I			_		•		NA		U	U			_							3.9
NW-18 Stakens mg/L 34,400 NA 64,600 E J 20 67,700 E J 30 67,500 E J 76 67						J			U				_	U			_	1 U 1		1.0
MW-18 Tabilium upfL U U 2.0 U 1.0 U 3.0 U U 2.0 B U 2.8 MW-18 Variabus upfL 1.1 B NA U 1.0 U U 1.0 U 1.0 U U 1.8 I.5 B 1.0 MW-18 Zinc upfL 283 U 7.0 B U 14 U 14 U 15 MW-19 Antimum upfL 283 U U 1.0 U U 1.0 U U 1.0 U U 2.0 U U 1.0 U U 1.0 MW-19 Antimum upfL 283 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 U U 1.0 MW-19 Antimum upfL 27 U U 1.0 U 1.0 U U 24 21 U 2.0 U U 2.0 U U 1.0 U 1.0 U U U 1.0 U U 1.0 U U U 1.0 U U 1.0 U U U 1.0 U U 1.0 U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U 1.0 U U U U 1.0 U U U U 1.0 U U U U 1.0 U U U U 1.0 U U U U 1.0 U U U U 1.0 U U U U U U 1.0 U U U U U 1.0 U U U U U U U U U U U U U U U U U U U				34,400			NA	64,600	E		20	67,700				67,500				67,700
MW-18 Variabless ug/L 1.1 B NA U U U 1.0 1.0 U U 1.9 1.5 B 1.5 B 1.0 MW-18 Zinc ug/L 283 NA 322 U 14 U 1.0 U 0 1.0 U 0 20 MW-19 Animony ug/L 283 U U 1.0 U 1.0 U 0 1.0 U 0 1.0 U 0 1.0 U 0 1.0 MW-19 Animony ug/L 27 U U 1.0 U 1.0 U 0 1.0 U 0 1.0 U 0 1.0 U 0 1.0 MW-19 Arctic ug/L 27 U 0 NA U 0 U 0 1.0 U 0					U	U	2.0		U		3.0		_	•				_		3.0
MW-18 Zinc ug/L B U 7.0 B U 14 U 07 U 07 U 20 MW-19 Alaminany ug/L 283 U U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0 1.0 U				1.1			NA NA									1.5		Ĭ		1.5
MW-19 Abunnum ug/L 283 NA 322 III 421 I7 402 I10 4 MW-19 Animony ug/L U U I.0 U U 1.0 U U 2.0 U U 1.0 MW-19 Animony ug/L 27 NA U U 24 21 22 20 27 20						Ü											<u> </u>	, , 		67
MW-19 Animany ug/L U U 1.0 U U 1.0 U U 2.0 U U 1.0 MW-19 Animany ug/L 27 NA U U 24 21 U 2.0 27 20				283				322				421	-			402		┝┷┥		421
MW-19 Arsonic ug/L 27 NA U 34 21 20 27 20					Ü	U			U	U I			11	1			11	 		2.0
				27	<u> </u>							21		–		77	<u> </u>	ĬĬ		27
		Barium	ug/L	673		—	NA NA	666	\vdash		1.0	587			1,0	648		 -1	1.0	673

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

			r		Event				Event	2			Event:	3			Event	4	Highest
Well	Analyte	Units	Result	LQ	DQ	Detect Limit	Repult	LO	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
	Beryllium	ug/L		U	Ü	1.0		Ü	Ü	1.0		Ū	U	1.0		Ü	U	1.0	1.0
MW 19	Cadmium	ug/L		Ü	Ι υ	1.0		Ü	Ü	1.0	 	Ū	Ū	1.0		Ü	Ū	1.0	1.0
MW-19	Calcium	ug/L.	79,400	 	 	NA	72,7(X)		<u> </u>	7.0	73,400	-		7.0	85,300			8.0	R5,300
MW-19	Chromium (total)	u≱/L		В	υ	6.8	5,5	В		1.0	10			1.0	K.2	В		1.0	10
MW 19	Cohalt	ug/L.	14	В	 	NA	1.6	В		1.0	2.3	В		1.0	1.5	В		1.0	2.3
MW-19	Соррег	Ug/L		В	U	5.0	4.9	B		1.0		В	UJ	6.7	184			1.0	184
MW-19	Cyanide (total)	ug/L		U	U	10		υ	U	10		U	U	10		U	U	10	10
MW-19	Invo	ug/L	4,810			NA	4,630	N	7	4,0	4,370			K.O	4,660			6.0	4,810
MW-19	Lead	ug/L	1.5	В	1	NA		υ	ט	1.0	3.7			1.0	2.4	В		1.0	3.7
MW-19	Марпемопі	ug/L	67,700			NA	65,000			5.0	56,200			3.0	63,900			3.0	67,700
MW-19	Manganese	ug/L	26#			NA NA	165			1.0	243	<u> </u>		1.0	243			1.0	26K
MW-19	Mercury	ug/L		U	U	0.20		U	٧	0.20	! _	U	U	0.20		U	U	0.20	0.20
MW-19	Nickel	ug/L	18	В		NA NA	19			1.0	16	<u> </u>		1.0	17	-	lacksquare	1.0	19
MW-19	Potassium	υμ/L.	113,000		L	NA .	114,000	ļ		27	16,100	<u> </u>		18	98,000	E	1	16	114,000
MW-19	Scienium	ug/L		U_	U	2.0		U	ט	2.0		U	U	2.0	L	U	U	2.0	20
	Silver	ug/L		U	U	1.0		U	U	1.0		V.	U	1,0		U	U	1.0	1.0
	Sedium	nle\r	772,000	_		NA NA	975,000	E	-	100	663,000		<u> </u>	130	719,000	E		76	975,000
MW-19	Thallson	ug/L	2.4	_B_	L	NA NA		U	U	3.0	3.7	8	-	2.0	ļ	3	U	4.7	4.7
MW-19	Vanadiem	uy/L.		U	υ	1.0		U	U	1.0	1,6	-	ļ.,	1.0		U	U	1.0	1.6
MW-19	Zinc	ug/L		В	U	8.6			2	16	ļ	В	IJ	14		В	Ü	16	16
MW-22	Alunimum	ug/L		В	U	36		B	U	115	218	<u> </u>		17	579		1	10	579
MW-22	Antimony	ug/L		<u>u</u>	U	1'		U	U	1.0	 _ _ _ _ 	U	U	2.0		В	U	3.8	3.8
	Arsenic	ug/L	ļ	U	U	2 (1		В	υ	3.3	 	U	U	2.0		Ľ	U	2.0	3.3
	Barrom	ug/L.	170	В		NA .	580	٠		1.0	547	 	<u> </u>	1.0	628			1.0	628
	Beryllium	uk/L		U	U	1.0		2	ט	1.0	 	U	U	1.0		U	U	1.0	1.0
	Cadmium	ug/1.	84.7(8)	U	U	NA NA	238,000	-		7.0	234,000	├ ─	۳	7.0	254,000	├ <u></u>	├	1.0 8.0	254,000
	Calcium Chromium (total)	ug/L ug/L	84,787	В	U	5.0	9.7	В	-	1.0	12	 	-	1,0	20		 	1.0	254,000
MW 22	Cobali	ug/L	10	В	۳-	NA NA	7.7	Ü	U	1.0	1.2	-		1.0	1.3	8	┝─┤	1.0	1.3
	Copper	ug/L	39	 -	-	NA NA	3.8	H B	<u> </u>	1.0	- :- -	1	U	11	125	┝╼ਁ╌	-	1.0	125
	Cyanick ((mal)	ug/L		υ	U	10		Ü	U	10		Ü	۳	10		U	U	10	10
	Iron	ug/L	322	├	<u> </u>	NA	389	N	7	4.0	746			8.0	1,340	<u> </u>	-	6.0	1,340
	Lead	ug/L	2.5	В	,	NA	5.2		<u> </u>	1.0	4.9			1.0	6,8		1	1.0	6.8
	Magnesium	ug/l.	30.000			NA	41,500			5.0	3x,500			3,0	39,100	_		3.0	41,500
	Manganese	ug/L	15			NA	16			1.0	39	_		0.1	49	_		1.0	49
MW-22	Mercury	ug/L		U	υ	0.20		2	υ	0.20		U	٦	0.20		Ü	Ü	0.20	0.20
MW-22	Nickel	ug/L.	00.	В		NA	(1	8		1,0	9.5	В		1.0	1#	В		1.0	18
MW-22	Potassium	ug/L	93,100			NA	17,600			27	22,100			18	24,700	E		16	93,100
MW-22	Selenium	ug/L		U	Ü	2.0		5	U	2.0		2	Ū	2.0		Ü	U	2.0	2.0
MW-22	Silver	ug/L		2	U	1.0		حا	ט	1.0		כ	ט	1.0		Ü	C	1.0	1.0
MW-22	Sixtium	ug/L	301,000			NA	242,000	E	-	20	257,000			130	338,000	E	,	76	338,000
MW-22	Thalliom	ug/L		٥	ט	2.0		٦	J	3.0		د	٦	2.0		В	C	2.6	3.0
MW 22	Vanadium	ug/L		٦	U	1.0		٦	U	1.0		ح	ح	1.0		٥	٥	1.0	0.1
MW 22	Zinc	J. Jaker		تسا	C	21		e e	5	15		8	٦	18		В	٥	18	21
MW 23	Alummum	υμΛ	2,120			NA	2,480				265			NA .	2,440			10	2,480
MW-21	Antimony	uy/L		υ	υ	1.0		U	U	1.0			حا	2.0		บ	2	1.0	2.0
MW-21	Arsenic	ug/L	3.7	В		NA		В	2	5.3			>	2.0	3.5	В		2.0	5.3
	Barium	ug/L.	130	В	 	NA NA	140	•	L	1.0	118			NA NA	133	В		1.0	140
	Beryllium	ug/L		٥	U	1.0		ט	U	10	ļ	L	٦	1.0		٦	>	1.0	1.0
MW-23	Cadmium	ug/L		U	U	1.0		U	U	1.0			v	1.0		٦	U	1.0	1.0
	Calcium	ug/L	73,100	 -	 	NA NA	86,500	—		7.0	72,350	L	_	NA NA	H4,H(X)		lacksquare	K ()	86,500
MW 23	Chromium (total)	ug/L	19	L	لــــا	NA ,	19		لــــا	4.0	5.3			NA NA	19		I	12	19

	T	_			Event				Event 2				Event 3				Event		
Well	Analyte	Units	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Highest Detection
) X	B		NA NA	4.2	В	177	1.0	13		7	NA NA	4.7	B	177		4.7
	Cohali	uge/L		B	-	NA NA	16	-	-	1.0	2.6	- -	-			-	-	1.0	
	Copper	up/L.	14	Ü	U	10	10	Ü	U	10	4.6		U	NA IO	20	U	U	1.0	20
	Cyanide (total)	up/L	0.160	- "	<u> </u>	NA NA	11.200		-	4.0	5.580	┝	-		11 200		<u> </u>	10	10
MW 23	lem	uk/L	9,150	├	 , 		11,700		┝━┥	1.0	3,380	<u> </u>		NA NA	11,300			6.0	11,700
	Less	uje/L	6.3		<u> </u>	NA NA	7.6	ļ	<u> </u>	5.0	18,850	├	٦	2.2			υ	7.7	7.7
	Magnesium	ug/L.	19,400		 	NA NA	23,100	 		1.0	245	<u> </u>		NA NA	23,800	_		3.0	23,800
MW-21	Manganese	ug/L	295	 	U		361	 	 	0.20	243			NA	377			1.0	377
	Mercury	ug/L		L U	۳-	0.20		U		18	 	┝	U	0.20		υ	U	0.20	0.20
	Nickel	wp/L	IX.	쁩	 -	NA NA	4 4990	B	U.	27	4.1 3,245	 -	Ь	NA NA	20	B		. 1.0	20
MW-23	Potassium	ug/L	4,150	B	 	NA NA	4,090	BE	-	2.0	3,243		<u> </u>	NA NA	3,940	BE	1	16	4,350
MW-23	Scknium	up/t.		Ü	U	2.0		U		1.0		 	Ü	2.0	<u> </u>	Ü	U	2.0	2.0
MW-23	Silver	ug/L		 " -	٠.	1.0	22 400	UN	R		11111		כ	1.0		U	U	1.0	1.0
MW-23	Sedium	w/L	65,000	 		NA 2.0	73,400	 	١	180	64,600	<u> </u>		NA	75,300	<u> </u>		22 4	75,300
MW-23	Thallium	wg/L		Ų.	C			U	٥	3.0		-	υ	2.0	<u> </u>	U	U	2.0	3.0
MW-23	Vanadium	ug/L	71	В	ļ	NA	6.9	В		1.0	2.3	<u> </u>	<u> </u>	NA NA	6.7	В		1.0	7.1
MW-23	Zinc	ug/L		-	υ	30		├	υ	33	ļ	<u> </u>	2	10			U	33	33
MW 24	Aluminum	ug/L	4,850	I	L	NA NA	1,100			11	14,800	<u> </u>		17	9,660	<u> </u>		10	14,800
MW-24	Anumony	ug/L		U	U	1.0		Ų.	U	1.0	 	υ	٥	2.0	L	٥	υ	1.0	2.0
MW-24	Arsenic	ug/L.	4.5	В	—	NA		В	U	4.6	10			2.0	7.7	8 ·		2.0	10
	Barrom	ug/L	334	-		NA NA	186	8		1.0	386	└ ─		1.0	330			1.0	386
MW-24	Beryllium	ug/L		U	U	1.0		U	٧	1.0	1.6	В		1.0	1,2	В		1.0	1.6
MW 24	Cadmium	uy/L		U	C	1.0		U	2	1.0		υ	٦	1.0	<u> </u>	Ü	U	1.0	1.0
MW-24	Calcium	ug/L.	162,000	—		NA	114,000	-	\vdash	7.0	170,000	E		7.0	161,000			8,0	170,000
MW 24	Chrommun: (total)	uy/L.	28	L_		NA NA	14		_	4.0	143			1.0	62			12	143
	Cohult	ug/L.	70	<u> </u>	<u> </u>	NA NA	1.4	В	لسا	1.0	14			1.0	8.9	8		1.0	14
	Copper	ug/1.	41	!		NA NA	14	В		1.0	94			1.0	.58			10	- 94
	Cyanide (total)	ug/l.		U	u	10		Ļυ.	٦	10		U	υ	10		ט	U	10	10
	leun	uy/L	28,300			NA NA	7,890			4.0	51,500			8.0	36,300			60	51,500
MW-24	الدعا	ug/L	18		1	NA NA	3.9		\vdash	1.0	25	<u> </u>		1.0	17			1.0	25
MW 24	Magnesium	ug/L	44,100			NA NA	28,500	-	Ь	5.0	51,100			3.0	45,700			3.0	51,800
MW 24	Manganese	ug/l.	546			NA NA	239	L		1.0	696	<u> </u>		1.0	566			1.0	696
MW-24	Mercury	ug/L		U	נ	0.20		Ų.	U	- 0.20		U	U	0.20		υ	U	0.20	0.20
MW 24	Nickel	ug/L	23	-	┝╼┩	NA NA		8	υ	6.8	96	<u> </u>		1.0	- 44		_	1.0	96
	Potassium	ug/L	4,540	В		NA NA	2,020	96	1	27	9,750	<u> </u>		tx	6,240	E	,	16 1	9,750
MW 24	Scienum	n#/L		U	U	2.0		U	U	2.0	<u> </u>	U	ט	2.0	2.6	8		2.0	2,6
MW 24	Silver	ug/L.		U	υ	1.0		UN	R	1.0		U	U	1.0		ح	U	0.1	10
MW-24	Scalium	ug/L	90,400	 		NA .	95,600	<u> </u>	\vdash	180	H9,700			119	62,900			22	95,600
MW 24	Thailium	ug/L		U	υ	2.0	4.0	В	\vdash	3.0		U	ح	2.0		٦	U	2.0	4.0
MW-24	Vanadium	ug/L	16	<u> </u>		NA NA	2.7	В		1.0	30	8		1.0	20	В		1.0	30
	Zinc	ug/L			٦	67			U	25	97			1.0	62			1.0	97
MW 28	Aluminum	ug/L.		18	U	=======================================	2,650	EN	-	- 11	(4)			17	2,850	Z	1	10	2,850
MW 28	Antimony	ug/L		U	U	1.0		U	٦	1.0		υ	ם	2.0		υ	U	1,0	2.0
MW-28	Amenic	ug/L.		U	υ	2.0	2.4	В		2.0		دا	U	2.0	4.9	В		2.0	. 4.9
MW-28	Barrens	ug/L.	95	В	لــــا	NA NA	131	В		1.0	102	•		1.0	123	B		1.0	131
MW-2X	Beryllium	ug/L		c	٦	1.0		5	٦	1.0		٥	U	1.0	1.1	В		1.0	1.1
MW-28	Cadmiuni	ug/L		c	٥	1.0		C	٦	0.20		ح	U	1.0		υ	υ	1.0	1.0
MW-28	Calcium	wg/L	79,400			NA NA	96,300			7.0	77,900	E	J	7.0	96,800		7	K.O	96,800
MW-28	Chromium (total)	ug/L		U	٦	1.0	104			1.0	51			1.0	71			1.0	108
MW-28	Cohalt	wg/L		U	U	1.0	5.2	В		1.0	2.0	•		1.0	6.4	В		1.0	6.4
MW-28	Copper	υμ/1.		U	U	1.0	55			1.0	14	В		1.0	41		-	1.0	55
MW-28	Cyanide (total)	ug/1.	NA					υ	U	8.0		Ü	U	10		U	٦	10	10
	+	uy/L	1,840	_		NA	7.030			4.0	2,880			K.O	7,090		<u> </u>	60	7,090

Appendix C
Maximum Concentrations of Inorganics
Bascline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

					Event 1				Event 2				Event .				Event		Highest
Well	Analyte	linits	Result	LQ	DO	Detect Limit	Result	LQ	DQ	Detect Limit	Kesult	LQ	no	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
			Kesuit	U	Ü	1.0	12			1.0			U	4.6	11	+	-	1.0	12
MW 2x	Lead	ug/L	38,100	 -	 	NA NA	41,400	В	\vdash	5.0	35,200	_	۰	3.0	39,700	 	1	3.0	41,400
	Magnesium		119	} -	1-1	NA NA	155	ٿ	_	1.0	72	_	_	1.0	169	-	 	1.0	169
NIW 28	Manganese	ug/L	117-	U	U	0.20		U	U	0,20	 	U	U	0.20		l u	U	0.20	0 20
MW-28	Mercury	ug/L		<u> </u>	Ü	1.0	74	۳	۳	1.0	36	B	Ť	1.0	49	۱Ť	 ~	1.0	74
	Nackel		3,580	BE		NA NA	3.040	BE	-	27	2,220	1	_	18	2,980	BE		16	3,580
MW-28	Potassium	ug/L	3,340	U	U	2.0	- 3,,,,,,,	U	ان	2.0		Ü	Ü	2.0	2,7187	U	Ú	2.0	2.0
MW 2K	Selemum	ug/t.		Ι ΰ	ΙŬ	1.0	 	Ü	Ü	1.0	 	U	υ	1.0		Ť	1 0	1.0	1.0
MW-2K	Silver	uy/L	14,100	۳.	├ ─	NA NA	15,300	-	 "	185	14,400			89	16,400	E	1 5	76	16,4(0)
MW-2K	Soutium	ug/L.	14,100	U	U	3.0	13,347	Ü	U	2.0	17,742	U	Ü	2.0	10,400	1 B	Ιΰ	2.5	3.0
MW-2K	Thalloum	uy/L		l ü	Ü	1.0	5.7	n	-	1.0	1.7	8	-	1.0	7.1	B	+	1.0	7.1
MW 28	Vanadium	up/L.		B	10	10	3.5	-"- -	U	49	20	۰	-	1.0		+-	l u	42	49
MW-2H	Zinc	ug/L			┝╩┤	NA NA	 	В	Ü	93	635	-	-	17		-	1 0		635
MW-29	Aluminum	ug/L	133	В	 		 -	U	Ü	1.0	133	U	U	2.0		1 0		91	
MW-29	Antimisity	ug/L		U	U.	1.0			-		 			2.0			U.	1.0	2.0
MW-29	Arsenic	ug/L	 	U	U	2.0	 	В		2.9		L.	U		114	l u	U	2.0	2.9
MW 29	Barium	ug/L.	62	B	 	NA LO	27	U	U	1.0	140	<u>B</u>	U	1.0	116	B U	 	1.0	140
MW-29	Beryllium	ug/L	 	10	U	1.0	 	U	U	1.0	 	U	U	1.0		1 0	U	1.0	1.0
MW-29	Cadmium	ug/L	44 200	+-	-		50 400	۳	۳,		116.000		<u>- ۲</u>		41 600	+ -	∫ 		1.0
MW-29	Calcium	ug/L	65,200	├	}—-	NA NA	59,400			7.0	115,000	-		7.0	93,500	- -	l	8.0	115,000
MW-29	Chromoni (total)	ug/L	16	 _	ļ	NA NA	5.1	В	٠	1.0	24	<u> </u>	-	1.0		B	U	1.7	24
MW-29	Cobalt	ug/L	10	B	 	NA NA		U	U	1.0	2.6	В		1.0		U	U	1.0	2.6
MW-29	Copper	uµ/L	ļ	В	U	1.0	15	В		1.0	15	B		1.0		В	U	2.6	15
MW-29	Cyanide (total)	ug/L	NA	├	-			U	U	10		U	U	10		U	U	10	10
MW 29	Iron	ug/L	3,030	-	├	NA NA	335	N		4.0	7,410	<u> </u>		8.0	5,790	├ —	├	6.0	7,410
MW-29	12:41	ug/L	ļ		U.	1.0	2.1	В	_	1.0	1	<u>B</u>	U	2.4	1.0	В	├	1.0	2.4
MW 29	Magnesium	ug/L	33,500	ļ		NA	26,100		ļ	5.0	55,7(0)	-	-	3.0	42,500	├ ─	-	3.0	55,700
MW 29	Manganese	uy/L	218	 	 	NA	86			1.0	118	 	-	1.0	97	١	├	1.0	218
MW 29	Meicury	ug/l.		U	U	0.20		U	U	0,20		U	U	0.20		U	l U	0.20	0.20
MW 29	Nickel	ug/L	20	B	1	NA	31	В	ļ	1.0	 	В	U	29		B	U	5.0	31
MW 29	Polassium	ug/L.	7,040	E	1	NA NA	5,090			27	ļ	BE	UJ	3,580	2,950	BE	1	16	7,040
MW 29	Sekmun	ug/1.		B	U	2.0			U	2.0	<u> </u>	U	U	2.0		υ	U	2.0	2.0
MW 29	Silver	ug/l.		U	U	1.0		U	U	1.0	 	U	U	1.0		U	U	1.0	1.0
MW 29	Scalcum	ug/L	50,700	ļ.,	 	NA	39,800	E	1	20	76,100	<u> </u>		#9	73,900	E	1.	76	76,100
MW 29	Thalleom	ug/l.	ļ	U	U	3.0	<u> </u>	U	· U	3.0	 	<u>u</u>	U	2.0	L	U	U	2.0	3.0
MW 29	Vahadium	ug/L	ļ	U	U	1.0	 	U	U	1.0	1.8	_B_		1.0		U	U	1.0	1.8
MW-29	Zuk	ug/t.		В	U	10		В	U	18	 	-	U	22		B	U	- 11	22
MW to	Alummum	ug/L	ļ	B	U	U		<u>B</u>	U	127	277	ļ		17_	1,830	N	1	NA NA	1,830
MW 40	Antimony	ug/L		U	U	1.0	 	В	U	1.6	 	U	U	2.0	1.1	B	U	NA NA	2.0
MW-30	Arsenic	ug/L	<u> </u>	В	U	2.0	 	<u> </u>	U	2.3		<u>u</u>	υ	2.0	4.3	B	├	NA NA	4.3
MW W	Barrum	uk/L	181	В	٠	NA	58	В	L.,	1.0	197	B		1.0	210	 _		NA NA	210
MW to	Betyllium	ug/L	<u> </u>	U	U	1.0		U	U	1.0		U	U	1,0		U	 	1.0	1.0
MW 30	Cadmium	ug/L		U	U.	1.0		U	U	1.0		U	U	1.0		U	├	1.0	1.0
MW W	Culcium	ug/L	99,100	↓	-	NA NA	56,700	 	<u> </u>	7.0	90,500	—	<u> </u>	7.0	170,000	١	-	NA NA	170,000
MW-30	Chromium (total)	ug/L	K 4	В	 	NA NA	12			1.0		В	U	7.9	50	!	<u> </u>	NA NA	50
MW-40	Cobalt	ug/L	14	В	 	NA	2.1	В		1.0	3.7	В	<u> </u>	1.0	15	В		NA	15
MW-30	Соррег	ug/L	<u> </u>	В	U	1.0	6.1	В	<u> </u>	1.0		В	U	3.7	40	L_		NA NA	40
MW W	Cyanide (total)	uk/l.	NA	└	-			U	U	10		U	U	10		U		10	_10
MW-10	Iron	ug/L	5,980	L	↓	8.0	252	N	-	4.0	3,900			K.O	K,590			NA	K,590
MW-30	Lead	nkV.		В	υ	1,0	1.4	<u> </u>		1.0		В	U	1.6	8.0			NA	8,0
MW-30	Magnesium	υgΛ.	51,000	 	 	7.0	21,000			5.0	45,300		L	3.0	49,200			NA .	51,000
MW-10	Manganese	ug/L_	223	<u> </u>		1.0	240			1.0	51	ļ		1.0	139			NA	240
MW 30_	Mercury	ug/L		U	U	0.20	L	U	U	0.20	<u> </u>	U	Ü	0.20		U		0.20	0.20

		T	1		Event				Event				Event :)	[Event	<u> </u>	Highest
Well	Analyte	Units	Result	W	DQ	Detect Limit	Result	10	DQ	Detect Limit	Rendt	LQ	DQ	Detect Limit	Result	IQ	DQ	Detect Limit	Detection
NW-W	Nickel	ug/L	22	1		1.0	32	1		1.0		B	U	8.5	59			NA	59
MW 30	Potassium	ug/L.	4,980	BL		22	2,520	В		27		- BE	U	2,780	3,260	BE	7	NA	4,980
MW-W	Selenium	ug/L		U	U	2.0		U	U	2.0	T	U	Ü	2.0	<u> </u>	U		2.0	2.0
MW 10	Silver	ug/L		U	U	1.0		Ū	5	1.0	T	U	U	1.0		U	1	10	1.0
MW-30	Sudium	ug/L	40,900			36	21,100	Ε	-	20	33,400			#9	36,660			NA	40,900
MW-30	Thallum	we/L		U	Ū	3.0		U	U	3.0		U	U	2.0		U		2.0	3.0
MW-10	Vanadium	wg/L		U	U	1.0		U	U	1.0		U	U	1.0	3,8	1		NA NA	3,8
MW-30	Zinc	ug/L		ΤĒ	Ū	10		B	C	19	·	В	U	17	40	۲Ť	Ü	NA NA	40
MW-11	Aluminum	ug/L		B	Ü	11	739			11	412	<u> </u>	Ť	17	1,890	N	1	10	1,890
MW-11	Antimony	ug/L	27	1 8		2.0		U	U	1.0		U	U	2.0		Ü	Ü	1.0	2.7
MW-31	Arsenic	ug/L		B	Ū	2.0		В	-	6.4	4.3	Ì	 	20	7.5	T B	~	20	7.5
MW-11	Barrum	ug/L	200	 -	<u> </u>	1.0	228	<u> </u>		1.0	246	 	_	1.0	245	-		1.0	240
MW 31		we/L		٦	T _U	1.0		U	U	1.0		U	U	1.0	243	U	Ü	10	1.0
_	Berylhum	ug/L		l ü	Ü	1.0		Ü	Ü	1.0		U	l ü	1.0		Ü	Ü	1.0	1.0
MW 11	Cadmium		NO.900	 	⊢ ∸	18	85,600	├ ~	Ť	7.0	96,400	E	1	7.0	94,900	۳	1	8.0	
	Calcium	wp/L	14	 		1.0	42			4.0	24	-	-	1.0	94,900 89			1.0	96,400 89
MW-11	Chromium (total)	ug/L		В	-	1.0	2.2	В		1.0	2.1	-		1.0		┝╼			
MW-31	Cobult	we/L	20	-	Ü	1.0	52	-	-	1.0	24	B	-	1.0	4.3	_B_		1.0	4.3
MW-31	Copper	up/L		 	-	1.0	- 32	U	U			<u> </u>			44		1	1.0	52
MW-11	Cyanide (total)	up/L	NA	├ ──		8.0	5,530			10		U	υ	10		U	Ü	10	10
	Brown	wp/L	2,640	-			4.8		-		3,730			8.0	6,230	├—		6.0	6,230
	لعدا	uge/L.		В	<u> </u>	1.0	30,900	\vdash		1.0	H.9			1.0	8.2	<u> </u>		1.0	8.9
MW II	Magnesium	ug/L	33,900	 		7.0		-		5.0	35,100	<u> </u>	-	3.0	34,100		-	3.0	35,100
	Manganese	ug/L	122	-		1.0	126			1.0	141			1.0	174	<u> </u>		1.0	174
MW-11	Mercury	uge/L		U	Ü	0.20		U	υ	0.20		υ	υ	0.20		υ	U	0.20	0.20
MW-31	Nickel	ug/L	33	8		1.0		В	U	19	29	[<u>B</u>	-	1.0	66	L		1.0	66
MW-31	Potassium	ug/L	3,870	BE		22	2,100	BE		27	2,130	_ B	lacksquare	18	2,410	86	1	16	3,K70
MW-11	Selemum	wg/L	<u></u>	U	U	2.0		U	υ	2.0		U	U	2.0	<u> </u>	U	υ	2.0	2.0
MW-31	Silver	wg/L		U	U	1.0		UN	R	1.0	L	U	٧	1.0		U	Ü	1.0	1.0
MW-11	Sedium	ug/t.	17,500			36	17,500			190	19,100			NY.	19,800	E	ı	76	19,800
MW 31	Thallium	ug/L		U	U	3.0		Ü	U	3.0		U	U	2.0		U	U	2.0	3.0
MW-31	Vanadium	ug/L		U	U	1.0	1.4	В		1.0	1.3	В		1,0	4.3	В		1.0	4.3
NW-31	Zinc	ug/L		В	U	10			U	- 17	30			1.0			U	.3#	38
MW-32	Aluminum	up/L	766			13	10,500			11	1,190			17	780	z		10 %	10,500
MW-42	Antimiony	ug/L.		U	υ	1.0		υ	U	1.0		U	U	2.0		υ	٥	1.0	2.0
MW 32	Arsenic	ug/L		В	U	2.0		В	U	4.9	2.1	8		2.0		U	Ü	2.0	4.9
MW 12	Barrum	ug/L.	63	В		1.0	258			1.0	205			1.0	169	В	_	1.0	25N
MW 32	Beryllium	wg/L		ับ	٦	1.0	1.5	В		1.0		Ū	U	1,0		U	Ü	0.1	1.5
MW-32	Cadmium	ug/L		U	U	1.0		C	U	0.1		U	U	1.0		U	υ	1.0	1.0
MW-32	Cuknum	ug/L	49,100			18	77,700			7.0	66,500	E		7.0	75,200			0.8	77,700
MW-32	Chromium (total)	ug/L	92	В		1.0	63			4.0	149			1.0	21			1.0	149
MW-32	Cubali	ug/L_		υ	٥	1.0	3.2	В		1.0	2.4	В		1.0	1,4	В		1.0	3.2
MW-32	Соррет	ug/L.	I	В	Ü	1.0	28			1.0	30			1.0	13	В	-	1.0	30
	Cyanide (total)	ug/L	NA					U	υ	10	Γ	Ū	U	10		Ü	Ü	10	10
	Inm	ug/L	1,550	T		8.0	14,600	\Box		4.0	5,840	┱		8.0	4,860	<u> </u>		6.0	14,600
	Lead .	ug/L	 	В	U	1.0	11			1.0	7.0	 	Н	1.0	3.9		Н	1.0	11
	Magnesium	ug/L	23,200	† <u> </u>	<u> </u>	7.0	48,000	\vdash		5.0	41,800	 	_	3.0	47,500	\vdash		3.0	48,000
MW-32		ug/L	219	 		1.0	146			1.0	86	├─	\vdash	1.0	78	 	$\vdash \vdash \vdash$	1.0	219
	Manganese	up/L	 	10	Ü	0.20	''' -	U	U	0.20		U	U	0.20		U	U	0.20	0.20
	Mercury		86	1 6	├ ~	1.0	 	┝┷┤	Ü	51	96	⊢∸	┝┷┤	1.0	19	8	\vdash		
	Nickel	ug/L	5,560	╁┺	Ė	22	5,020	E	-	27	4,500	-	 	18				1.0	96
MW-32	Potassium	ug/l.	3,300	U	U	2.0	- 120	U	Ü	20	4,300	B	 		4,630	BE	닏귀	16	5,560
MW-12	Selenium	nk/L										υ	U	2.0		υ	Ų	2.0	2.0
MW 12	Silver _	ug∕l.	1	U	U	1.0	L	UN	R	1.0	1	U	Ūυ	1.0	l '	U	U	10	10

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

					63A				Event				Event	1			Event		Highest
		1		T 1.	Event	Petect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ		Detect Limit	Detection
Well	Analyte	Units	Result	LQ	DQ	36		LV	1/2	180	38,200		177	89	35,4(x)	E	17	76	55,000
	Sedium	uy/L	55,000	 	 -		36,900	U	U	3.0	36,200	U	Ū	2.0	33,4411	1 5	Ú	2.0	
MW-12	Thallium	ug/L		U	U	3.0	<u> </u>		- 0	1.0	14	B	۳-	1.0	1,3	B			3.0
	Vanadium	ug/L	L	<u> </u>	U	1.0	5.6	В	<u> </u>	47	1.6	 		1.0	1,3	 ° -	U	31	5.6
MW 12	Zinc	ug/L		В	U	10		<u> </u>	U		- 22	-	 _	153		 _			47
MW-33	Aluminum	ug/L	L	В	U	11		В	Ü	114			Ų.			B	Ü	195	195
MW-11	Antimony	ug/L.		U	U	1.0		1'	U	1.0		U	L.	2.0		U.	U	1.0	2.0
MW-11	Arsense	ug/L.		В	U	2.0	23		_	2.0	19	├	├	2.0	20	├ ─		2.0	23
MW 11	Barroni	uk/L	902	<u></u>		1.0	1,340	<u> </u>	<u> </u>	1.0	1,200	├ —	├	1.0	1,280	 	.	1.0	1,340
MW-11	Beryllium	up/L	<u> </u>	U	U	1.0		U	U	1.0	1.0	B		1.0		U	U	1.0	1.0
MW 11	Cadmium	ug/L	1.4	B		1.0		U	υ	1.0		U	U	1.0		U	U	1.0	1.4
MW-13	Calcium	nk/L	248,000		L	18	313,000			7.0	273,000	٠.	<u> </u>	7.0	290,000	<u> </u>		8.0	313,000
MW-11	Chromium (total)	υμ/L.	15			1.0	3.6	<u> </u>		1.0		<u>B</u>	U	5.h	9,8	<u>B</u>	1	1.0	15
MW-11	Cubalt	uk/L	6.1	В		1.6	3.6	В		1.0	3.0	<u>B</u>	L	1.0	3.4	B		1.0	6.1
MW-11	Copper	ug/L		В	U	1.0	4.8	B		1.0	<u> </u>	B	L U	8.6	15	B		1,0	15
MW-13	Cyanide (total)	ug/L	NA					U	٦	10		U	U	10		U	U	10	10
MW-11	ltion	ug/L	24,600			8.0	28,500	N		4.0	25,300		<u> </u>	8.0	27,800			6.0	28,500
MW-13	لحما	ug/L			U	1.0	1.0	В		1.0		B	U	1.3	1.5	В		1.0	1.5
MW-13	Magnesium	ug/L.	56,900			7.0	70,500			5.0	63,000	<u>1</u>	1	3.0	65,900	L	L	3.0	70,500
MW-33	Manganese	ug/L	686			1.0	111			1.0	102	<u> </u>		1.0	128			1.0	686
MW-11	Mercury	υμ/L.		υ	υ	0.20		U	U	0.20		U	Ü	0,20		U	U	0.20	0.20
MW-11	Nickel	ujt/L	- KF			1.0	20	В		1.0	1	В	U	18	22	В		1.0	4×
MW-33	Potassium	υμ/L	13,900	E		22	14,300	L_	<u> </u>	27		E	UJ	15,800	15,500	E	J	16	15,800
MW 13	Scienium	uµ/L.		В	U	2.0		υ	Ü	2.0		U	Ü	2.0		U	U	2,0	2.0
MW 33	Silver	υμ/t.		U	U	1.0		υ	U	t.0		U	U	1.0		U	U	1.0	1.0
MW H	Sodium	ug/L	INN,(KR)			36	195,000	E	,	20	179,000	<u> </u>		K 9	178,000	E	Į į	76	195,000
MW 33	Thallom	υμ/L	3.8	8		3.0		U	U	3.0		U	Ü	2.0		U	บ	2.0	3.8
MW H	Vanadeum	ug/L	1.8	В		1.0		U	ט	1.0		U	Ü	1.0		U	Ü	1.0	1.8
MW 33	Zatuc	.Nyu			U	10		В	כ	12			U	27		В	Ü	16	27
MW 14	Aluminum	ug∕l.		В	2		1,140			=	384			17		В	C	167	1,140
MW-14	Алилия	ug/L	2 1	В		2.0		U	Ξ	1.0		ט	U	2.0		U	C	1.0	2.1
MW: 14	Arsena	uk/L		U	U	2.0		В	ح	2.8		U	U	2.0		U	U	2.0	2.8
MW-14	Barium	ug/L.	151	В.		1.0	165	В		1.0	176	В	1	1.0	176	В		1.0	176
MW-14	Beryllium	υμ/1.		U	÷	1.0		U	U	1.0		U	U	1.0		υ	υ	1.0	1.0
MW-14	Cadmium	ug/L		U	٦	1.0		Ü	U	1.0		U	U	1.0		U	U	1.0	1.0
MW-14	Calcium	uje/L	78,500			18	K2,200			7.0	X5,700			7.0	84,300			8.0	K5,7(X)
MW-34	Chrumium (total)	uje/L	29	В		1.0	25			1.0	38			1.0	17			1.0	38
MW-34	Cobalt	ug/L	1.3	В		1.0	2.4	В		1.0	1.4	В		1.0		U	U	1.0	2.4
MW-34	Copper	ug/L		В	5	1.0	22	В		1.0	24	В		1.0	13	В		1.0	24
MW-14	Cyanide (total)	ug/L	NA					5	U	10		U	U	10		U	Ū.	10	10
MW-W	low	ug/L	4,360			0.8	3,520	z	-	4.0	4,320			0.3	3,190			6.0	4,360
MW-14	Lead	ug/l.		В	Ü	1.0	1.9	В		1.0			U	3.8	2.9	В		1.0	3.8
MW 14	Magnesium	ug/L	46,000			7.0	48,400			5.0	49,500			3.0	51.000			3.0	51,000
	Manganese	uk/L	138			1.0	68			1.0	56			1.0	42		1 -	1.0	138
MW 14	Mercury	ug/L		U	5	0.20		حا	U	0.20		U	Ū	0.20		U	U	0.20	0.20
MW-14	Nickel	ug/L		Ť	5	1.0	29	В		1.0	1	B	Ü	34	17	à	1	1.9	34
MW 14	Potassium	ug/L	5.810	E		22	4,710	В		27	1	BE	Ü	4,820	4.480	BE		16	5,810
MW-14	Scienium	ug/L		B	U	2.0		U	U	2.0	 	Ū	Ü	2.0		Ü	Ü	2.0	2.0
MW-14	Silver	ug/L		Ū	Ü	1.0		U	U	1.0	 	Ŭ	Ü	1.0		Ŭ	Ü	1.0	1.0
MW-14	Sirdium	ug/t.	26,600	1		36	34,900	E	-	20	35,200	<u>†</u> →	<u> </u>	89	37,200	Ē	1	76	37,200
MW 14	Thallium	ug/L.		U	U	30		<u> </u>	Ü	30		٠,	Ü	2.0	,	Ü	Ü	2.0	3.0
MW-14	Vanadrum	ug/L	11	В		10		Ū	Ü	1.0	 	Ü	Ü	1.0		Ü	Ü	10	1.1
	Zinc	UE/L		B	U	10		<u> </u>	Ü	24	 	- ٽ	Ü	30		├ ~	U	22	30
14 W 14	121IK	1 OK/L		L B	ليا						L	<u> </u>		.,*/		Ь	1 0	22	.30

		T			Event !	1			Event 2	}	T		Event :		T		Event 4		Highest
Well	Analyte	limits	Result	LQ	100	Detect Limit	Remit	LQ	QQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	PQ	Detect Limit	Detection
MW-36	Aluminum	ug/L		В	Ü	11	719	<u> </u>		11	359			17	4,770	N	1	10	4,770
MW-16	Anumony	ug/L		Ū	Ü	1.0		Ü	U	1.0		U	U	2.0		U	Ü	1.0	2.0
MW-16	Arsenic	ug/t.		Ū	Ū	2.0		 	Ü	3.4		Ü	U	2.0	2,X	B		2.0	3.4
MW 16	Barrum	ug/L	140	В		1.0	145	В		1.0	160	В		1.0	242			1.0	242
MW-36	Berylhum	ug/L		U	υ	1.0		U	U	1.0		Ü	U	1.0	 	U	Ü	1.0	1.0
MW-36	Cadmium	OK/L		U	U	1.0		υ	υ	1.0		U	U	1.0	Γ	U	U	1.0	5.0
MW-36	Calcium	ug/L.	70,600			18	71,500			7.0	74,400	E	1	7.0	75,400	$\overline{}$		8.0	75,400
MW-36	Chromium (total)	ug/L_		U	U	1.0	22			4.0	17			1.0	81			1.0	*1
MW-36	Coheli	ug/L	1.1	8		1.0	1.1	В		1.0	1.3	В		1.0	3.1	-		1.0	3.1
MW-36	Copper	ug/L		U	U	1.0	14	В		1.0	7.6	В		1.0	3X			1.0	38
MW-36	Cyanide (total)	ug/L	NA	T				Ü	U	10		U	U	10		Ü	U	10	10
MW-36	Iron	ug/L	2,890	1		A.O	4,530			4.0	4,310			8.0	9,550			6.0	9,550
MW 16	الدعا	ug/L		U	U	1.0	4.0			1.0	4.1	\Box		1.0	K.9			1.0	». 8.9
MW-36	Magnesium	ug/L	48,100			7.0	44,900			5.0	47,100			3.0	46,600		7	3.0	48,100
MW-16	Manganese	ug/L	145			0.1	114			1.0	72			1.0	122			1.0	145
MW-16	Mercury	uy/L		U	U	0.20		U	U	0.20		U	U	0.20		Ü	Ü	0.20	0.20
NW to	Nickel	ug/L.	12	В		1.0		В	5	18	14	В		1.0	68			1.0	6H
MW 36	Polassium	ug/L	6,990	E		22	5,010	E	-	27	5,020			18	4,690	BE	7	16	6,990
AIW 36	Selenium	Uµ/L		U	U	2.0		U	5	2.0	T	Ü	U	2.0		5	Ü	2.0	2.0
MW-16	Silver	ug/L		Ú	U	1.0		UN	R	1.0		2	U	1.0		Ü	U	1.0	1.0
MW-W	Sidium	ug/L.	25,900			36	34,600			180	35,500			109	40,600	E	<u>, </u>	76	40,600
NW-W	Thallium	ug/L		U	U	3.0		U	U	3.0		5	U	2.0		U	Ü	2.0	3.0
MW-30	Vanadium	ug/L		U	υ	1.0		U	C	1.0	1.1	В		1.0	3.3	В		1.0	3.3
MW-36	Zanç	ug/L		В	U	7.2			2	32	24			1.0		_	U	46	46
MW-17	Alummum	ug/L	1,410			50		EN	Ü	633	664			17	1,210			NA	1,410
MW-17	Antimony	Jug/L.		U	U	2.0		U	U	1.0		٦	υ	2.0		_	Ü	1.0	20
MW-37	Arsenic	ug/L		บ	U	1.0		υ	5	2.0		C	Ü	2.0	2.5			NA	2.5
MW-17	Barrem	ug/L	24	В		10	17	B		1.0	23	В		1.0	34			NA	34
MW-37	Beryllium	ug/L	0.30	8		0.20		U	U	1.0		-	υ	1.0	1.0			NA	1.0
MW-17	Cadmium	ug/L	0.50	В		0,20		٦	S	1.0		٧	U	1.0			Ü	1.0	1.0
MW-37	Calcium	ug/L.	34,300			1,000	32,700			7.0	27,400	E	,	7.0	85,600			NA	85,600
MW 17	Chromium (total)	ug/L		U	υ	10	2.5	8		1.0	3.8	В		1.0	6.3			NA	10
MW-37	Cobali	Ug/L		U	υ	10	4,4	В		1.0	5.1	В		1.0	5.6			NA Œ	10
MW-17	Copper	uje/L		В	Ü	21		В	Ü	6.6	6.9			1.0	12			NA 2	, 21
MW-17	Cyanide (total)	ug/l.	NA					Ü	Ü	_10		U	c	10			U	10	10
MW-37	trun	J/L		•	UJ	1,240	1,X50			4.0	2,140			8,0	9,665			NA	9,665
MW-37	Lead	ug/L		S	Ü	8.6	4.5			1.0			U	3.9			U	4.0	8.6
MW-37	Magnesium	ug/L	9,160			1,000	10,000			5.0	9,490			3.0	26,850			NA	26,850
MW-37	Manganese	ug/L.	273	E*	,	10	165			1.0	154			1.0	694			NA	694
MW-17	Mercury	ug/L		ac's	Ü	0.20		٧	٥	0.20		C	Ų	0.20			Ü	0.20	0.20
MW-17	Nickel	ug/L		U•	Ü	20	5,3	В		1.0	9.3	В		1.0	14			NA	20
MW-37	Potassium	ug/L	1,500	В		100	1,300	BE	-	27	1,050	В		IX.	2,025		7	NA	2.025
MW-17	Selenium	ug/L		U	J	2.0		٦	U	2.0		U	υ	2.0			Ü	2.0	2.0
MW-37	Silver	ug/L		U	٦	10		Ü	UJ	1,0		Ü	Ü	1.0			υ	1.0	10
MW-37	Sudium	ug/L	5,460			2,000			5	6,420	5,620			29	17,500			NA NA	17,500
MW 37	Thallium	ug/L		U	U	1.0		U	U	3.0		U	U	2.0		\neg	U	2.0	3.0
MW-37	Vanadium	ug/L		U	U	20	1.2	В		1.0	1.6	В		1.0	3.3		- 	NA NA	20
MW-17	Zinc	ug/L		U	Ü	10			U	20		-	Ü	18			U	23	23
MW-3x	Aluminum	ug/L		В	U	IIX	791			11	134	В		17	1,280	-		10	1,280
MW-38	Anumony	ug/L		U	Ü	20		Ü	Ü	0.1		U	U	2.0		<u></u>	"	1.0	20
MW IN	Arsenic	ug/L	3.9	В	\Box	10		В	Ü	3.6		Ü	Ü	2.0	5.3	Ď	∸╁	2.0	5.6
	Barrum	uy/L	37	В		10	28	В		1.0	33	BE	- 	1.0	54	B		1.0	54

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

	T	_			Event				Event 2				Event :				Event -		Highest
Well	Analyte	Units	Kesult	LQ	DQ	Detect Linuit	Result	LQ	DQ	Detect Limit	Kesult	ĹQ	DQ	Detect Linuit	Result	LQ	DQ	Detect Limit	Detection
MW 38	8cryllium	ug/L		UN	UI	0.20		Ü	υ	1.0		Ü	U	1.0		U	Ü	1.0	1.0
MW-3x	Cadmium	uk/L		U	Ü	0.20		Ü	Ŭ	1.0		Ū	Ū	1.0		Ū	Ū	1.0	1.0
MW-3x	Calcium	ug/L	63,500	 -	۰	1,000	30,600	<u> </u>		7.0	54,900	Ē	7	7.0	57,800			K.O	63,500
MW-3K	Chromium (total)	ug/L	171,	U	U	10	,	U	U	4.0		В	Ü	4.2	K.K	В		12	12
MW-38	Cobali	ug/L		Ü	Ü	10	2.1	В		1.0	7.1	B	-	1.0	2.4	8	1	1.0	10
MW-3x	Copper	ug/L		B	Ü	12		В	Ü	12		8	U	10	14	В	1	1.0	14
MW 38	Cyande (total)	uy/L	NA	 -	Ť			Ü	Ü	10		U	U	10		Ü	Ü	10	10
	Iron	ug/L	6,440	· ·	 	20	12,800			4.0	1,940	E	1	W.O	16,200		1	6.0	16,200
MW-38	Lead	ug/L	15,740	U	Ü	1.5	8.3	_		1.0		8	U	1.1			Ü	10	ta
MW-3x	Magnesium	ug/L	22,000	 	1	1,000	10,100			5.0	19,400	E	1	3.0	20,500			3.0	22,000
MW-3x	Manganese	ug/L.	511	E.	7	10	250			1.0	1,270	E	7	1.0	594			1.0	1,270
MW-3x	Mercury	ug/L		U	Ü	0,20		υ	υ	0.20		U	Ü	0.20		Ü	U	0.20	0.20
MW-3x	Nickel	ug/L		U	U	20		В	5	8.3	22	F		1.0	12	В		1,0	22
MW-38	Potassium	ug/L	494	В		100		BE	Ę,	448	593	BE	1	18	959	ΒE	7	16	959
MW-38	Selemum	ug/L	· · · · · · · · · · · · · · · · · · ·	Ü	U	2.0		U	٦	2.0		U	U	2.0		U	U	2.0	2.0
MW-3x	Silver	uy/L		U	U	10		UN	R	1.0		U	U	1.0		U	U	1.0	10
MW-38	Scalium	ug/L	5,130	†		2,000	4,190	В		180	5,400	Ε	3	89			U	7_3XO	7,380
MW-18	Thallium	ug/L		U	U	1.0		U	Ü	3.0		U	U	2.0		Ü	U	2.0	3.0
MW 3x	Vanadium	υμ/L.		U	Ü	20	10	В		1.0	2.7	В		1.0	14	В		1,0	20
MW-38	Zinc	ug/L		U	U	10		В	Ü	20			U	73	56			1.0	73
MW 39	Aluminum	ug/L		U	U	273	520			- 11	153	В		17	366			10	520
MW 39	Antimony	ug/L		U	U	2.0		U	U	1.0		U	U	2.0		U	U	1.0	2.0
MW 19	Arsenic	ug/L	1 8	В		1.0		В	٦	4.3		Ū	U	2.0		U	U	2.0	4.3
MW 39	Barium	ug/L	18	В		10	95	В		1.0	68	BE	1	1.0	7K	В		1.0	95
MW 19	Berylhum	ug/L		U	U	0.20		U	Ü	1.0		U	U	1.0		U	U	10	1.0
MW-19	Cadmium	ug/L		U	U	0.20		U	U	1.0		Ų	U	1.0		υ	U	1.0	1.0
MW-39	Calcium	ug/L	125,000	1		(x00,1	118,000			7.0	101,000	E	1	7,0	000,011			В,О	125,000
MW-19	Chromium (total)	up/L		U	υ	10	6.4	В		4.0		8	บ	2.5	6.9	В		12	12
MW-19	Cobalt	ug/L		U	U	10	1,2	В		1.0		U	U	1.0		U	U	1,0	10
MW-19	Copper	ug/L		В	U	16		В	U	9,4		B	υ	2.8		В	U	3.6	16
MW-19	Cyanide (total)	ug/L	NA					Ü	U	10		U	υ	10		U	U	10	to to
MW-39	leon	ug/L	9,710	•		20	17,300			4.0	6,730	E	J	0.8	7,300			6.0	17,300
MW-39	ليديرا	ug/L		U	U	1.5	3.5			1.0		B	U	t.o		В	U	1.6	3.5
MW-39	Magnesium	ug/L	22, WH			1,000	20,600			5.0	17,500	E	1	3.0	19,200		L	3.0	22,300
MW-19	Manganese	ug/L	1,060	E•	J	10	X76			1.0	779	E	1	1.0	802			1.0	1,060
MW 19	Mercury	nk/r		U	U	0,20		U	٦	0.20		U	U	0.20		U	U	0.20	0.20
MW-39	Nickel	ug/L	712	\cdot	1	20		8	٥	7.4		B	U	3.1	7.3	В		1.0	712
MW-39	Potassium	υμ∕1.	5,130		<u> </u>	100	6,610	E	_	27	7,290	E	J	18	8,190	E	J	16	8,190
MW-39	Selemum	ug/l.		U	U	2.0		U	٦	2.0		U	υ	2.0		U	U	2.0	2.0
MW-39	Silver	ug/L		U	Ū	10		UN	R	1.0		U	U	1.0		U	U	10	10
MW-39	Scalium	ug/L.	117,000			2,000	118,000			180	110,000	E	1	NY	123,000			22	123,000
MW-19	Thallium	ug/L	1.0	В		1.0		U	כ	3.0		U	U	2.0		Ü	U	20	30
MW-39	Vanadium	ug/L,		U	U	20	1.7	В		1.0		U	U	1.0		U	U	10	20
MW-39	Zinc	ug/t.		U	U	10			٦	36		В	U	10		В	U	13	36
MW-40	Atuminum	uk/L	411/2			50	2,040			Ξ	941			17	1,325			NA	2,040
MW 40	Antimotiy	ug/L		U	U	20		U	>	1.0		Ų	U	2.0			υ	10	2.0
MW-III	Arsenic	ug/L.	13	В		1.0		8	ح	3.8		U	U	2.0			U	2.0	3.8
MW-40	Barrum	ug/L	26	8	<u> </u>	10	27	В		1.0	24	В		1.0	26			NΑ	27
MW-40	Beryllium	ug/L	0.20	BN	1	0.20		U	U	1.0		U	U	1.0			U	1.0	10
MW-40	Cadmium	ug/L		U	U	0.20		U	٦	1.0		U	U	1.0			C	1.0	1.0
MW 40	Calcium	ug/t.	.30,000		<u> </u>	000,1	14,700	L		7.0	17,200	<u> </u>		7.0	35,900			NA	35,900
MW-40	Chromium (total)	ug/L	L	U	U	10	4.1	В		40	L	B	U	5.7	4.4			NA	10

Mark Color Mark						Event				Event:	,	T		Event.				Event 4		Highest
No. 20 Control 1971 1972	Well	Anulyte	Units	Result	1.0			Renk	LO			Result	LO			Result	LO			
No. 20 Copyer			_							 			خست	 `			-			
Mary Mary					_					Ιυ				1 0				1		
No. 10 No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				NA.	1					_		f		_		 ~~~		l u		
Mexical Mayer Ma		,			1 .	Ü	1,190	3,470	1	<u> </u>	4.0	3.060	<u> </u>	1		4,120		1		
Mary Mayerson Age War War War War Mayerson Age War Mayerson War Mayerson War Mayerson War Mayerson War Mayerson War War Mayerson War War Mayerson War					Ü				†	1			一	U		 	\vdash	l u		
Mayor Mayo				9,540							5.0		$\overline{}$			12,950				
MAY 20 Movers					E.	<u> </u>			_			365	 	1						
M. W. M. M. M. M. M. M. M. M. M. M. M. M. M.									U	U			U	T U		1	 	U		
Mary Mary												 				75	-	-		
MY 40 MY 4				1.280				1,270	BE	1	27	1		_						
NNY-40 Sheleman						U	2.0		U	U	2.0									
Mar. Mar.						Ū	10		LV	R	1.0			_						_
NY-W-1 Mallorm				4,120	В		2,000	7,800			180	3,320	В	 				_		
MY Anadomin					U	Ü	1.0		U	U	3.0		Ū	U						
No. 10 Zor. No. 1 No.	MW 40				U	Ü	20	4.3	В		1.0	3.1	B		1.0	6.7	\vdash			
Mary Mary					U	Ü	10			U	26			U	20			U		
Mary Mary			_		В	Ü	90	1,040			ii ii	401			NA NA	480	\vdash			
Mile Mile					U	U	2.0		U	Ü	1.0			U			U	U		
Series					U	U	1.0		В	U	3.0		1	U	2.0	 	_	U	2.0	
Second S				19	В		10	31	В		1.0	18	$\overline{}$	7	NA	2N				
No. Column					UN	UJ	0.20		U	U	1.0			U	1.0		Ū	U	1.0	
MW 41 Calcumb My 1. A4180 My 1. A4180 My 1. A5,200 My 1.					Ü	Ü	0.20		U	U	1.0		_	U	1.0		U	U	10	
MW-41 Chemam (rotal) Mg/L U U 19 6.8 8 4.0 U 1.1 7.0 8 1.0 10 10 10 10 10 10 1				44 (NX)	1		1,000	36,200			7.0	33,450		1	NA	55,200			X ()	55.200
MW-41 Ceche wg/L					U	U	10	6.8	8		4.0			ט			8			
MW 41 Cygnet MyL MA MA MA MA MA MA MA M					U	٦	10		U	U	1.0			_						
New					В	υ	11	16	В		1.0		_	UJ	7,4	12	3		1.0	
MW-41 Incord				NA					υ	U	10	· · · · · · · · · · · · · · · · · · ·		U				U		
NN-41 Leal					•	U)	1,670	1,170			4.0	518		1	NA NA	861			6.0	
Magassum					U	_	1.5	13			1.0	. 7.8	\vdash	1						
MW 41 Marganice	AIW-41		ug/L.	13,300			1,000	11,300			5.0	11,100		1	NA	18,500			3.0	
Mercury Marcury Marc	MW 41		. ug/L	414	E.		10	324			1.0	107			NA	210			10	414
NW-41 Petassium ug/L 331 B 100 BE UJ 597 386 J NA 984 BE J 16 988 Memory U 1 10 10 U 1 10 10 U 1 U 1 10 U 1	MW-41	Mercury	ug/L		C	ح	0.20			υ	0.20			U	0.20		U	U	0.20	0.20
MW-41 Schaum	MW-41	Nickel	nk/L		U	ט	20		В	U	6.9			U	6,0	7,8	В		1.0	20%
MW-41 Subtract	MW-41	Petassium	ug/L	331	В		100		BE	UJ	3 97	386		1	NA	964	BE	J	16	963°
MW-41 Sodium My-L 1,4M1 B 2,000 5,950 180 2,745 J NA E UJ 9,560 9,560	MW-II	Selenium	ug/L		U		2.0			U				U	2.0		Ü	C	2.0	2.d-×.
MW-41 Mallum	MW-41	Silver	ug/L		U	U			UN	R				U	10		=	U	1.0	10
MW-41 Vanadium ug/L U U 20 3.0 B 1.0 1.3 NA 1.3 B 1.0 20	MW-41	Sodium	ug/L.	3,480			2,000	5,950			180	2,745		J	NA .		E	נט	9,560	9,560
MW-41 Zinc ug/L N08	MW-41	Thailean	ug/L		U	U	1.0		-	U	3.0			U	2.0		•	c	2.4	3.0
NW 42 Aluminum ug/L NOR S S0 752	MW-41	Variadions	UEL		U	υ	20	3.0	B		1.0	1.3			NA	1,3	8		1.0	20
MW-42 Antinony Mg/L 2.1 B 1.9 1.5 2.0 7.9 NA 1.3 2.0 1.5 1.0	MW-41	Zinc	ug/L		Ü	U				U				UJ	28			U	30	32
Afficient Affi	MW 42	Alyminum	אַער.	XOX				752				710			NA	1,880			10	1,880
NW-42 Barium ug/L 90 B 10 83 B 1.0 71 J NA 97 B 110 97 NW-42 Beryllium ug/L UN UJ 0.20 U U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 1.0 NW-42 Cadentum ug/L 139.000 U U 0.20 U U 1.0 U 1.0 U 1.0 U U 1.0 1.0 NW-42 Cakenim ug/L 139.000 U U 1.0 133.000 U U U 1.0 U 1.0 U U 1.0 1.0 NW-42 Chican ug/L 139.000 U U 10 4.9 B I 1.0 U 8.3 I S I 12 I 15 NW-42 Cobalt ug/L U U 10 1.8 B U 17 19 B 1.0 I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U 11 12 B I 1.0 U	MW-42	Алинину	ug/L			Ü			U	U				U	2.0		U	U	1.0_	2.0
NIW-42 Beryllium ug/L UN UJ 0.20 U U 1.0 U 1.0 U 1.0 U U 1.0 1.0	MW-42	Апсик	ug/L	2.1								7.9			NA NA	13			2,0	15
MW-92 Cadmium ug/L 139,000 U U 0.20 U U 1.0 U 1.0 U 1.0 U U 1.0 1.0 NW-92 Cakium ug/L 139,000 I 130,000 U U 0 1.0 NA III,000 U U 0 1.0 139,000 NW-92 Chromium (total) ug/L U U U 10 4.9 B I.0 U 8.3 IS IS I2 I5 MW-92 Cobalt ug/L U U U 10 I.8 B I.0 I.8 D I.0 NA 2.5 B I.0 H0 NA 2.5 B I.0 D I.0 NA 2.5 B I.0 D I.0 NA 2.5 B I.0 D I.0 NA 2.5 D I.0 D I.0 NA 2.5 D I.0 D I.0 NA 2.5 D I.0 D I.0 NA 2.5 D I.0 D I.0 NA 2.5 D I.0 D I.0 NA 3 D I.0 D II.0 MW 42	Barium	ag/L	90				#3				71		1	NA	9 7	В		1.0	97	
MW-42 Calcium ug/L 139,000 1,000 133,000 7.0 105,000 1 NA 118,000 8.0 139,000 NW-42 Chromium (total) ug/L U U 10 4.9 B 1,0 U 8.3 L5 12 15 NW-42 Cobalt ug/L U U U 10 1.8 B 1.0 L0 1.8 NA 2.5 B 1.0 10 NA 2.5 B 1.0 10 NA 2.5 NA 1.0 NA 1.	MW-42	Beryllium	ug/L			1			_					U	1.0		U	U	1.0	1.0
MW-42 Chromium (total) ug/L U U 10 4.9 B 1.0 U 8.3 15 12 15	MW-42	Cadmium	ug/L		U	٧			U	U				U	1.0		U	U	1.0	1.0
MW-42 Cobalt ug/L U U ID I.8 B I.0 I.8 NA 2.5 B I.0 I0 I0 I0 I0 I0 I0 I0 I0 I0 I0 I0 I0 I0	MW-43	Calcium	ug/L.	1,39,000								105,000		1		118,000			X.O	139,000
NW-42 Copper ug/l. B U 17 19 B 1.0 U 11 22 B 1.0 22 NW-42 Cyande (total) ug/l. NA U U U 10 U 10 U 10 U 17	MW-42	Chromium (total)	ug/L						_					U		15			12	15
MW 42 (yande (total) ug/L NA U U U 10 U 10 U U 10 10	MW-42	Cohalt	ug/L						_			I.X			NA	2.5	3		F.0_	10
	MW-42	Copper			В	ע	17	19		لتبل						22	В		1.0	22
MW 42 Iron ug/l. • UJ 3,340 9.920 N J 40 6,630 J NA 11,100 6.0 11,100	MW 42	Cyanide (total)	up/L	NA										U			U	U	10	10
	MW 42	tron	ug/1.		ட்	UJ	1,140	9,920	N.		4.0	6,630			NA NA	11,100			6.0	11,100

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

	T	T	r		Event :		· · · · · ·		Event 2		1		Event 3			_	Event	1	Highest
Well	Analyte	Units	Result	LQ	DO	Detect Linut	Result	LQ	DQ	Detect Limit	Result	LO	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
	land	ug/L		S	U	5.7	2.8	В		1.0			U	2.6		-	U	5.7	57
MW-42		ug/L.	49,800	 	<u> </u>	1,000	49,000	 -	-	5.0	38.850	 	1	NA NA	44,400		1	3.0	49,800
MW 42	Magnesium	ug/L	928	E.	,	10	796	┼		1.0	598	-	 	NA NA	647	-	-	1.0	928
	Manganese	ug/L	720	U	Ú	0.20	· · · · · ·	U	Ü	0.20		\vdash	Ü	0.20		U	U	0 20	0.20
MW 42	Mercury	ug/L		l ü	lυ	20	6.6	 	۳	1.0		_	Ü	8.6	12	B	<u> </u>	1.0	20
MW-42	Nickel		1,700	B	 -	100	1,380	B	 	27	1,535	-	1	NA NA	2,350	BE	<u>, </u>	16	2,350
	Potassium	ug/L	1.7187	1 5	U	2.0	1,300	٠	U	2.0	1,333	├──	Ú	2.0	1	Ü	Ú	2.0	2.0
MW-42	Scientum	nk/r	}	╁	10	10	 	ťυ	U	1.0	├─ ──	_	l ŭ l	1.0	 	 	Ü	1.0	10
MW-42	Silver	ug/L	13.200	 " -	├ ~	2,000	14,700	E	7	20	11,550	}—	۲	NA NA	1X,000	۰	- ٽ	22	18,000
MW-42	Sodaum	ug/L	12,700	U	10	1.0	14,700	l 5	Ú	3.0	- 000,11	├	10	2.0	10,000	 	U	2.0	3.0
MW-42	Thallium	ug/L	 						۳		1.8	├─	 "	NA NA	1		 "		
MW-42	Vanadium	ug/L		Ų.	ļ <u>u</u>	20	2.2	B		1.0	1.6	├	 		4.0	B	 	1.0	20
MW-12	Zinc	ug/L		U	U	10	10.100	1	Ü	20	4,270	 	<u>"</u>	17	13 700		U	30	30
MW-11	Aluminum	ug/L	2,930	 	 	50	10,100	 	 	<u> </u>	4,270	 	 		12,700	٠.	 	10	12,700
MW-11	Antiniany	ug/L		U	U	2.0		U.	U	1.0		U	۳	2.0	 	U	U	1.0	2.0
MW-41	Amene	ug/L	IX.	S	 	1.0	35	 	<u> </u>	2.0	31	<u> </u>	┞╌┤	2.0	XI	<u> </u>		2.0	KI
MW-13	Barium	ug/L,	6.3	В		10	KK	В	 	1.0	NI NI	BE	⊢∴ ∣	1.0	128	B	-	1.0	128
MW-41	Beryllium	ug/L		U	U	0.20		U	U	1.0		U	U	1,0	1.5	<u>B</u>	1	1.0	1.5
	Cadmium	ug/L		υ	υ	0.20		L.	Ų	1.0	ļ	U	U	1,0	1.3	B		1.0	1.3
	Calcium	ug/L.	115,000			000,1	128,000		_	7.0	123,000	E	1	7.0	134,000	<u> </u>		8.0	134,000
MW-41	Chromium (total)	uy/L	.36	↓		10	26	<u> </u>	\vdash	1.0	26	<u> </u>	-	1.0	95	ļ.,	1	12	95
MW 43	Cobalt	ug/L	<u> </u>	U	υ	10	13	В		1.0	N.O	В	\vdash	1.0	20	В		1.0	30
MW-41	Copper	uy/L		U	U	39	45			1.0	39		\vdash	1.0	75	<u> </u>	L	1.0	75
MW-43	Cyanide (total)	ug/l.	NA	<u> </u>				U	U	10		U	U	10		U	U	10	10
	lnın	ug/L	17,900	1 .		20	29,2(8)	N		4.0	22,200	E		8.0	47,500			6.0	47,500
	Lead	ug/L		S	U	7.5	21	ļ		1.0	16	<u> </u>		1.0	33	L_		10	33
	Magnesium	ug/L	48,100			1,000	55,000	└		5.0	55,400	E	1	3.0	63,600			3.0	63,600
MW-41	Manganese	ug/L	374	E.	,	10	666	<u> </u>		1.0	586	E	J	1.0	¥57	L		1.0	R57
MW-13	Mercury	ug/L		U	U	0.20	L	υ	٦	0.20		2	U	0.20		U	U	0.20	0.20
MM 43	Nickel	ug/L		B.	UJ	27	29	8		1.0	23	В		1.0	#2			1.0	82
MW-41	Potassium	ug/L	1,800	В		100	4,230	В		27	2,770	BE	J	18	5,610	E	1	16	5,610
MW 41	Selenium	ug/L		US	U	2.0	L	U	U	2.0		U	U	2.0	2.1	В		2.0	2.1
MW-11	Silver	ug/L		U	U	10		U	٦	1.0		J	U	1.0		U	U	1.0	10
MW 43	Sedium	ug/L	10,100			2,000	9,210	Ε		20	10,300	E	1	89			U	13,100	13,100
VIW. 11	Thalleen	uy/L		U	U	1.0		U	>	3.0		5	U	2.0		٦	U	2.0	3.0
MW-11	Vanadioni	ug/t.		U	C	20	25	В		1.0	13	•		1.0	31	В		1.0	31
IF.MM	Zinc	ug/L		U	C	29			٥	86			C	57	104			1.0	104
MW 44	Alummum	ug/L		8	٦	175	381			NA	1,710			17	457			10	1,710
MW 44	Antimiony	ug/L		υ	υ	2.0			U	1.1		ح	U	2.0		٦	U	1.0	2.0
NW-H	Arsenic	ug/l.	60	BS		1,0	- 11			NA	41			2.0	11			2.0	41
MW-44	Battum	uy/L	106	В		10	119			NA	150	BE	1	1.0	112	В		1.0	150
MW 44	Beryllium	ug/L		U	U	0.20			U	1.0	1	د	U	1.0		U	U	1.0	1.0
MW-44	Cadmium	ug/L		U	Ú	0.20			Ü	1.0		U	U	1.0		Ü	U	1.0	1.0
MW 44	Calcioni	ug/L	90,500			(400), 1	94,000			NA	85,700	E	1	7.0	K3,300			8.0	94,000
MW-44	Chromium (total)	Jug/L.		υ	Ü	10	2.2			NA	31			1.0		В	U	4.0	31
MW-H	Cobalt	ug/L		Ü	U	10			U	1.0	2.5	В		1.0		Ü	Ü	1.0	10
NW.H	Соррег	ug/L		В	U	le .	4.4			NA	27			1.0	3.9	B	Ť	1.0	27
MW 44	Cyanide (total)	ug/L	NA	<u> </u>					U	10	 	U	U	10		Ü	U	10	10
MW-44	Iron	ug/L		•	UJ	1,490	2,210		<u> </u>	NA NA	14,700	E	1	K.O	2,510		┝┷┥	6.0	14,700
MW-44	العتدا	ug/L		U	Ü	1.5	1.3	_	\vdash \vdash \vdash	NA NA	<u> </u>	Ü	1 1	1.0		U	U	1.0	1.5
MW-44	Magnesium	ug/L	37,200	ٻٽ ا	┝┷┥	1,000	38,450	1	\vdash	NA NA	36,100	E	 ; 	3.0	34,500	_~	⊣	3.0	38,450
MW-44	Manganese	ug/L	19	E.	-,-	10	47	 	-	NA NA	108	E	1	1.0	44	Н		10	108
	Louising and or	I WE'L	.,,			11/	7/	1		140	1 1000			1.07	74	i	l I	1.0	1 108

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

					Event		L		Event 2				Event 3	3			Event	4	Highest
Well	Analyte	Units	Result	LQ	DQ	Detect Limit	Result	rō	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	2	DQ	Detect Limit	Detection
MW-H	Nukel	ug/l.		B.	UJ	23	3.9			NA	18	В		1.0		В	U	3.6	23
MW 44	Potassiuni	ug/L	900	В		100	1,285			NA	2,040	BE	1	1R	1,370	BE	,	16	2,040
MW-44	Selenium	ug/1.		U	U	2.0			C	2.0		U	U	2.0		υ	U	2.0	2.0
MW-44	Silver	ug/l.		U	U	10			U	1.0		U	U	1.0		U	U	1.0	10
MW-H	Sudjuni	ug/L	19,700			2,000	20,NIO		1	NA	17,400	E	j	89	18,900	E	1	76	20,800
MW-44	Thallium	ug/L,		U	Ü	1.0	I		c	3.0		U	U	2.0		U	U	2.0	3.0
MW H	Vanadiem	ug/l.		U	U	20			C	1.0	3.9	В		1.0		٥	U	1.0	20
MW-44	Zinc	ug/L		U	C	10			U	10		U	U	28		В	U	12	28
MW-IS	Aluminum	ng/L	776			50	148			11	F	В	U	183		В	U	100	776
MW 45	Antimony	ug/L		U	U	2.0	1.2			1.0		U	υ	2.0		U	U	1.0	2.0
MW-45	Arsenic	ug/L	22			1.0	17			2.0	24			2.0	44			2.0	44
MW-45	Barrem	ug/L	N5	В		ю	117_			1.0	8.5	В		1.0	110	В		1.0	117
MW-45	Beryllium	ug/L.		Ü	υ	0.20			c	1.0		U	U	1.0		U	U	1.0	5. 1.0
MW-45	Cadmium	ug/L		U	U	0.20			C	1.0		U	U	0.1		U	U	0.1	6- 1.0
MW 45	Calcium	ug/L	97,100			1,00	120,000			7.0	89,100			7.0	112,000			8.0	120,000
MW 15	Chromium (total)	ug/L	29			10	12			1.0		В	υ	5.0		В	U	3.0	29
ļ	Cohali	up/L		U	U	10	4.2			1.0	2.9	8		1.0	3.4	В		1.0	10
MW-15	Cupper	wg/L		В	ט	21	48			1.0	1	В	U	4.4	9.1	В		1.0	48
MW-45	Cyanide (total)	ug/L	NA						S	10		U	U	10		U	U	10	10
_	leon	υμ/1.	9,570	•	1	20	11,400			14	10,100			N.O	15,900			6.0	15,900
	لعديدا	ug/1.	.19	S		1.5		厂一	ΰ	1.0	12			1.0	8.8	_	 	1.0	39
MW-45	Magnesium	ug/L	27,500	1		1,000	322,000			5.0	23,200	1		3.0	28,400	_		3.0	322,000
	Manganese	ug/l.	641	E•	,	10	688	Г		1.0	416			1.0	480		1	10	688
	Mercury	wg/L		υ	U	0.20			U	0.20	 	U	U	0.20		υ	U	0.20	0.20
MW-45	Nickel	ug/L		B*	Ü	35	16	T		1.0		В	U	7.6	9.5	В	-	1.0	35
	Potassium	ug/L	5,350			100	7,230		-	27	 	E	Ü	6,900	8,350	E	,	16	8,350
MW-45	Selemon	Ug/L		U	U	2.0			5	2.0		U	U	2.0		U	Ü	2.0	2.0
MW-45	Silver	ug/l.		U	U	10			U	10	 	U	Ü	1.0		ΰ	Ü	1.0	10
MW 45	Scalcum	ug/L	70,900	1		2,000	101,000			180	79,000			X 9	101,000	E	1	76	101,000
MW-45	Thallium	ug/L		U	U	1.0	F		6	3.0	1	U	U	2.0		U	Ü	2.0	3.0
MW-45	Vanadium	ug/L		U	U	20	1		Ü	1.0	 	U	Ü	1.0		Ü	Ü	1.0	20
MW-45	Zinc	W/L		В	U	15			c	- 12			Ü	21		8	Ü	16	21
MW-In	Aluminum	ا/يرو	821			50		EN		441	544			17		В	Ü	186	S 821
MW-46	Antinumy	ug/L.		U	Ų	20	1	U	Ü	1.0		U	U	2.0		Ü	Ü	1.0	2.0
MW-46	Arsenic	ug/L	3.7	В		1.0	2.1	В		2.0	3.7	В		2.0	2.8	Ė		2.0	3.7
MW-46	Bartum	wg/L	132	В		10	129	В		1.0	110	В		1.0	126	8		1.0	132
MW-46	Beryllium	Wg/L		U	U	0.20	1	U	5	1.0	 	U	U	1,0		Ü	U	1.0	1.0
MW-to	Cadmium	uy/L		U	U	0.20	1.1	В		1.0	 	Ü	Ü	1.0		Ü	Ū	1.0	1.1
MW-46	Cakrum	ug/L	115,000	 		1,000	114,000			7.0	112,000	E	7	7.0	115,000		Ť	8,0	115,000
MW-In	Chromium (total)	ug/L		U	U	10	5.3	В		1.0	4.1	В		1,0	1.9	8	-	12	12
MW-46	Cohalt	ug/l.		Ü	Ü	10	1.8	В	\vdash	1.0	2.0	1		1.0		Ü	U	1.0	10
MW-40	Copper	υμ/1.		В	Ū	13		В	5	3.2	4.9	T-		1.0		В	Ü	2.6	13
MW-46	Cyanide (total)	ug/L	NA		_		1	U	v	to		Ü	Ü	10		U	Ü	10	10
MW-46	Iron	ug/L	21,700	 	- ,	20	17,800			4.0	21,000	T-	┝┷┤	8.0	19,000	<u> </u>	┝┷┥	6.0	21,700
MW-46	land	ug/L	*******	S	Ü	5.0		U	U	1.0		 	U	3.0	174007	В	U	1.6	5.0
MW-46		ug/L	30,500	╆┺	├ ─┤	1,000	32,400	ΓŤ		5.0	29,700	\vdash	┝┷┥	3.0	30,900		┝╩┤	3.0	32,400
MW-46	Magnesium	wg/L	1,510	E•	1	10	1350	 	$\vdash \dashv$	1.0	1,390	 	 	1.0	1,390		┝╼╼┥	1.0	
	Manganese	ug/L	1,,,,,,,	U	Ú	0.20	 	U	U	0.20	1	Ü	U	0.20	- 1,570 -	U	١		1,510
MW 46	Mercury	ug/L.		<u></u>	- W	20	5.4	B	\dashv	1.0	4.7	В	⊦∸⊣	1.0	 	_	U	0.20	0.20
MW 46	Nickel		1,450	H D		100	1,280	BE	 , 	27	1,300	В	┝─┤		4.4	B	┝╼┯┥	1.0	20
MW 46	Potassium	ug/l.	1,410		 -		1,4/8/	U			1,3(8)			18	1,190	BE		16	1,450
MW 46	Sciemum	ug/L		U	וטו	2.0			lυI	2.0	ı	U	lυl	2.0		U	וטו	20	20

Appendix C
Maximum Concentrations of Inorganics
Bascline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

										·									
	J				Event				Event 2				Event.	3			Event	4	Highest
Well	Analyte	Units	Result	1.0	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	3	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
MW-46	Sodium	υμ/l.	62,200	$\overline{}$		2,000	74,900			185	58,600			XY	70,000			22	74,900
MW 46	Thalleum	սբ/Լ.		U	υ	0.1		U	U	3.0		حا	U	2.0		U	U	2.0	3.0
MW 46	Vanadiem	ug/L	1	U	U	20	1.5	В		1.0	2.8	В		1.0		U	U	10	20
MW 46	Zim	ug/L		U	υ	10		В	U	19		В	U	16		В	U	12	19
MW 47	Aluminum	ug/L	430			NA	533			- 11	1,630			17	724	N	J	NA	1,630
MW-47	Antimony	ug/L			U	2.0		U	U	1.0		٦	υ	2.0	1.2	В	U	NA	2.0
MW-47	Arsenic	uk/L.			U	1.0		U	5	2.0		٦	U	2.0		U	L	20	2.0
MW-47	Barium	ug/L			U	10	K.2	В		1.0	12	В		1.0	13	В		NA	13
MW-47	Berylhum	ug/L			UJ	0.20		U	U	1.0		5	U	1.0		U		1.0	1.0
MW-47	Cadmium	υμ/L.	0.20	Ī		NA		U	٥	1.0		حا	U	1.0		U		1.0	1.0
MW-47	Calcium	ug/1.	8,710	T		NA	7,330			7.0	6,130			7.0	13,700			NA	13,700
NIW-47	Chromium (tetal)	υμ/L.		T	U	10	2.3	В		1.0		В	U	6,8	2.1	В	U	NA	10
MW-47	Cobalt	ug/L			U	10 -		U	5	1.0	1.3	В		1.0	1.7	В		NA	10
MW 47	Copper	ug/l.		Γ	U	15_		В	دا	3.0		В	U	8.0	6.0	В		NA	15
MW-47	Cyanide (total)	ug/L	NA					Ü	U	10		5	υ	10		U		10	10
MW-17	Iron	ug/L,			UJ	300	405			14	1,130			0.8	569			NA	1,130
MW-47	Lead	ugΛ.	23			NA	2.3	В		1.0	12			1.0	8.3			NA .	23
MW-47	Magnesium	ug/L	2,685	<u> </u>		NA_	2,070	В		5.0		В	Ü	1,950	3,990	В		NA	3,990
MW-47	Manganese	ug/L	27		I	NA	8.3	В	oxdot	1.0	16			1.0	17			NA	27
MW-47	Meicury	ug/L.			U	0.20		Ü	U	0.20		٦	U	0.20		Ü		0.20	0.20
MW-47	Nickel	ug/L			υ	20	1.3	В		1.0		В	U	4.8	3.4	В		NA	20
MW: 47	Potassium	ug/L	1,130			NA	590	BE	J	27		BE	UJ	1,050	959	BE	J	NA	1,130
MW 47	Selemum	ug/l.		<u> </u>	U	2.0		U	U	2.0		٦	U	2.0		U		2.0	20
MW-47	Silver	ug/1.	l	<u> </u>	U	10		U	U	1.0		U	U	1.0		U		1.0	10
MW 47	Sodium	uk/L	3,560			NA .	2,120	В		180	1,780	В		XY	6,750	L	U	NA	6,750
MW 47	Thathum	ug/l.		1	U	1.0	Ļ	U	U	3.0		U	L"	2.0	4.3	R	U	NA	4.3
MW 47	Vanadium	ug/L		<u> </u>	U	20		٥	2	1.0	3.5	В		1.0	1.9	В		NA NA	20
	Zunc	ug/L		.	U	10		В	υ	17	L		U	42	20	В	U	NA NA	42
MW-48	Alummum	ug/L		U	U	254		В	U	46		8	L U	146	330	Ļ	L	10	330
MW 4K	Antimony	ug/1.		U	U	2.0	1.5	В		10		ט	U	2.0		U	U	1.0	2.0
	Arsenic	uy/L	- 11	↓	<u> </u>	1.0	6.4	В		2.0	9.4	8	!	2.0	13	<u> </u>		2.0	13
MW 48	Barium	ug/L	160	В		10	125	В		1.0	125	В		1.0	141	В		1.0	160
MW 48	Beryllium	ug/L		U	U	0.20		U	Ľ	1.0		ح	U	1.0		U	U	1.0	1.0
VIM 1X	Cadmium	ug/l.		U	U	0.20		U	υ	1.0		ے	٦	1.0		ט	υ	1.0	1.0
MW 18	Calcium	ug/L	142,000	↓	_	1,000	133,000	-		7.0	107,000	<u> </u>	-	7.0	107,000	_	<u> </u>	8,0	142,000
MW 48	Chromium (total)	ug/L	ļ	U.	U	10	1.9	В		1.0		_B_	U	3.9	7.8	В	!	1.0	10
MW-4X	Cobalt	ug/L		٠,	U	10	2.6	В		1.0	3.3	<u>B</u>	 	1.0	3.5	В	ļ	1.0	10
MW-48	Copper	nk/r		B	U	14		U	Ų	1.0		В	Ų.	4.8	13	В	-	1.0	14
	Cyanide (total)	nk/r	NA .	ا	 	200	34 0000	U	U	10	22.700	٧	U	10	A. 200	U	U	10	10
	Iron	աբ/1.	30,800	 	1:	20	24,900	 	⊢∴⊢	14	23,300	<u> </u>	 	8.0	24,500			6.0	30,800
MW-48	Lead	ug/L.	30	S	U	3.4	<u> </u>	υ	υ	1.0	14 ****	В	l u	2.5	7.7	<u> </u>	ļ	1.0	7.7
MW-IN	Magnesium	uk/L	20,100	 	 	1,000	19,600			5.0	14,300			3.0	15,100	⊢	—	3.0	20,100
	Manganese	up/1.	ON N	E.	1 :	10	618	·	ابر-ا	0.20	504		 	1.0	504	ا	-	1.0	CKK
MW-4K	Mercury	uµ/L.	<u> </u>	U	U	0.20	14	U B	5	0.20 1.0		٥	U	0.20		2	U	0.20	0.20
MW 4x	Nickel	ug/L.	2640		(U	20	6,860	_	┝┯┥	27		B	U	16	19	В	├	1.0	20
MW-4x	Potassium	ug/L.	7,560	US	 	2.0	0,400	E U	-	2.0		E	UJ	8,470	8,270	E	-:-	16	H,470
MW-48	Selemum	ug/L.		US	U			U	Ü	1,0		_	U	2.0		2	U	2.0	2.0
MW 4K		ug/L	63 1485	+	۳-	10	46,300	<u> ا</u>		180	43,600	U	U	1.0	43.700	<u> </u>	U	1.0	10
MW 48	Sidium	ug/L.	52,100	В		2,000	40,300	В		3.0	43,000	 -	 	119	42,700	E .		76	52,100
MW 48	Thalbum Vanalum	ug/l.	- 11	<u>"</u> -	 	20	2.4	В	$\vdash \dashv$	1.0		U	U	2.0		U	U	20	40
MW-48	Vanadium	ug/L	ļ	10	U	10	2.4	В	U	6.2	1.6	8	 	1.0	1.6	В	اــــا	10	20
VIA 48	Zinc	up/l.	ــــــــــــــــــــــــــــــــــــــ	۳,	<u> </u>	10	<u> </u>	<u> </u>		0.2		Ь	U	26	L		U	53	53

	Analyte	Units	Result	1.0	DQ												Event		Highest	
				1 0.4	1~	Detect Limit	Result	LQ	DQ	Detect Limit	Remail	LQ	DQ	Detect Limit	Keselt	LQ	INQ	Detect Limit	Detection	
MW 19	Alummum	ug/L			U	NA .	258			11	285			NA	1,070		1	NA	1,070	
	Antimony	ug/l.			υ	2.0	2.0	В		1,0			U	2.0			Ų	1.0	2.0	
MW 49	Amenic	ug/L	25			NA	- 11			2.0	27			NA	38			NA NA	38	
MW 49	Barium	uµ/t.	98			NA	56	8		1.0	12K		1	NA	135			NA	135	
MW 49	Beryllium	ug/t.			υ	0.20		U	5	1.0			U	1.0	1.1			NA NA	1.1	
MW-49	Cadmun	ug/L			U	0.20		U	٦	1.0			υ	1.0		·	U	10	1.0	
MW-49	Calcium	υ <u>μ</u> /1.	R1,050			NA .	50,700			7.0	94,600		1	NA	82,300		1	NA`	94,600	
MW 49	Chromoun (total)	ug/L			U	10	2.2	В		1.0			U	4.2				NA NA	11	
MW 44	Cohalt	uk/L			υ	10	2.4	8		1.0	2.4			NA NA	1.6			NA	10	
MM-14	Соррег	ug/L			U	12	<u> </u>	В	٦	2.6	<u> </u>		U	4.9	9.4		1	NA NA	12	
MW-49	Cyanide (total)	ug/L	. NA					U	5	10			U	10			U	10	10	
MW 49	ln:n	ug/L	20,100			NA NA	9,050			14	27,250			NA	28,700			NA	28,700	
MW-49	لعما	ug/l.			U	1.5	1.2	В		1.0	4.4			NA NA	3.8			NA	· 44	
MW-49	Magnesium	ug/l.	10,600		\Box	NA NA	7,200	$ldsymbol{\sqcup}$		5.0	17,400			NA	10,340		1	NA	11,800	
MM. 14	Manganese	ug/L	1,975			NA	X10			1.0	2,160		J	NA	2,330			NA .	2,330	
MW-14	Mercury	ug/L			υ	0.20		U	U	0.20			U	0.20			U	0.20	0.20	
MW-19	Nickel	ug/L.			3	21	9.7	В		1.0	14-			NA	13			NA NA	21	
MW-19	Potassium	ug/L	3,700			NA	1,600	E	1	27	5,300		1	NA	5,900		-	NA	5,900	
MW-49	Selemum	ug/L			U	2.6		U	υ	2.0			U	2.0			U	2.0	20	
MW-49	Silver	ug/L			U	10		٦	U	1.0			٦	1.0			U	1.0	10	
MW 49	Sodium	ug/L	20,950			NA	12,300	E		110	29,650		-	NA	26,900		ſ	NA	29,650	
MW 49	Thallium	ug/L			υ	1.0		٥	U	3.0			ט	2.0			C	2.0	3.0	
MW-44	Vanahum	. Մար			U	20		U	٦	1.0			U	1.0	1.9			NA NA	20	
MW-49	Zinc	ug/t.			Ü	10			U	36			UJ	60			U	,īy	60	
MW-50	Alummuni	ug/L	1 1X			NA	N,320			- 11	2,780			17	12,000	Z	1	NA	12,000	
MW-50	Anumony	ug/l.		U	U	1.0			٦	1.0	<u> </u>	د	υ	2.0	1.0	N	J	NA	2.0	
MW 50	Arsenic	ug/l.	27	В		NA .		\sqcup	5	7.7	L	υ	U	2.0	6.8	8		NA	7.7	
MW NI	Barrem	ug/L	236			NA ·	314			1.0	232			1.0	285			NA '	314	
MW 50	Beryllium	ug/l.		U	U	1.0			U	1.0	1.1	8		1.0		U		1.0	1.1	
MW 50	Cadmyn	ug/L.		U.	٧	1.0			Ü	1.0		٦	2	1.0		U		1.0	- 1.0	
MW 50	Calcium	ug/L	126,000			NA	191,000			7.0	131,000	E	-	. 7.0	191,000	<u> </u>		NA	191,000	
MW 50	Chromaun (total)	ug/L		В	U	5.0	18	-		- 1.0	6.6	8		1.0	130	<u> </u>		NA NA	130	
MW 50	Cobalt	ug/L	11	В		NA NA	7.3	\Box		1.0	2.9	-		1.0	12	-8		NA F	12	
MW-50	Copper	ug/L		В	U	1.8	41			1.0	9.1	В	Ш	1.0	36			NA ··	41	
MW-50	Cyanide (total)	ug/L		2	U	10			٧	10	<u> </u>	2	U	10		5		10 >	10	
MW-50	lnın	ug/l.	2,760		$ldsymbol{\sqcup}$	NA NA	14,300		_	4.0	5,460			8.0	20,200			NA NA	20,300	
MW-50	Lead	ug/l.	3.9			NA	8.9			1.0			J	4.3	14			NA NA	14	
MW-50	Magnesium	ug/L	62,700		lacksquare	NA	87,800			5.0	63,300			3.0	1/7,400			NA	87,800	
MW-50	Manganese	ug/L	77 .			NA NA	280			1.0	112			1.0	408	L	Ĺ	NA	408	
MW-50	Mercury	ug/l.		υ	U	0.20			υ	0.20		U	U	0.20		5		0.20	0.20	
MW-50	Nickel	ug/L	11	В		NA NA	27			1.0	9.1	В		1.0	105			NA	105	
MW-50	Potassium	ug/L	17,500			NA	21,200]]	27	17,000			18	21,000	E	-	NA	21,200	
MW-50	Scienium	ug/L		ح	U	2.0			U	2.0		c	U	2.0		5		20	2.0	
MW-50	Salver	ug/L		U	U	1.0			U	1.0		U	ט	1.0		5		1.0	1.0	
	Sentrum	ug/L	353,000		لـــــا	NA	368,000		_	20	2110,000			N90	481,000			NA	481,000	
MW-50	Thalloum	ug/L	2.1	В		NA		لببا	5	3.0		C	٥	2.0	2.2	В	٥	NA	3.0	
MW-50	Valudium	ug/L	1.5	R		NA	14	\Box		1.0	4.6			1.0	19	8		NA	19	
MW-50	Zmc	nk/r			٦	30	45]	45		8	U	17	57			NA	57	
MW-51	Aluminum	ug/L	618		oxdot	NA NA	403			- 11	362			17	1,040	z	1	10	1,040	
	Antiniony	ug/L			٦	1.0		υ	U	10	L	C	U	2.0		٥	U	1.0	2.0	
MW 51			3.9			NA		В	U	3.6		Ü		2.0		U				

Appendix C
Maximum Concentrations of Inorganics
Baseline Groundwater Monitoring
American Chemical Services NPL Site
Griffith, Indiana

	1				Event			2	T		Event .	3		1	Highest				
Well	Analyte	Units	Result	I.Q	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
MW 51	Beryllium	ug/L			U	1.0	·	U	C	1.0		U	Ū	1.0		U	U	1.0	1.0
MW 51	Cadmun	ug/L.		 	U	1.0		Ū	U	1.0	1	U	U	1.0		v	U	1.0	1.0
MW 51	Calcium	ug/L	147,(KK)	1	1	NA	153,000	<u> </u>		7.0	137,000	E	1	7.0	138,000			8.0	153,000
NIW SI	Chromium (total)	UE/L		 	UJ	3.1	3.7	8	_	1.0	1	В	Ü	4.6	7.5	В		10	7.5
MW-SI	Cobalt	nk/r	16	+	 "-	NA NA	1.4	В		1.0	1.2	В	Ť	1.0	2.3	В		1.0	2.3
MW-SI	Copper	ug/L		╁	U	2.4	4.5	B		1.0	 	B	U	4.4	6,7	В	1	1.0	6.7
MW 51	Cyanide (total)	ug/L		+	Ü	10		Ü	Ü	10	 	Ū	Ū	10		Ū	U	10	10
MW-51	Iron	ug/L	7,715	 	<u> </u>	NA NA	8,47U	N	-	4.0	6,590	Ē	1	8.0	8,660	<u> </u>	1	6.0	8,660
MW-SI	Lead	ug/l.	2.5	╁┈┈	 , 	NA NA	2.6	B	-	1.0	 	B	Ü	2.1		-	U	3.9	3.9
	Magnesium	Ug/L	66,800	 	 	NA NA	67,600	┝		5.0	61,800	Ē	1 7	3.0	61,600	_	├ Ŭ	3.0	67.6(X)
MW-51	Manganese	ug/L	173	+	 	NA NA	118	-	_	1.0	189	Ē	 	1.0	128		1	1.0	173
MW-51	Meicury	ug/L	- ''''-	+	U	0.20		U	יט	0.20	 	T U	Ü	0.20		Ū	U	0.20	0.20
NIW-51	Nickel	up/L	11	 	-	NA NA	8.0	B	Ť	1.0	 	B	Ū	5.9	11	1	⊢∸⊣	1.0	1 11
MW-51	Potassium	ug/l.	4,495	f	1-	NA NA	3,450	В		27	3,710	BE	1 -	18	3,880	BE	7	16	4,495
MW 51	Scienium	ug/L		├	 "	2.0	3,7.27	Ü	U	2.0	7,7,0	Ü	Üΰ	2.0	27,111117	Ü	Ü	2.0	2.0
MW 51	Silver	ug/t.		┼	Ü	1.0	 	Ü	Ü	1.0	 	Ü	Ü	1.0	 	Ü	Ü	1.0	1.0
MW-51			104,500	 	ļ. 	NA NA	114,000	E	-	20	103,000	E	 	119	108,000	E	Ť	76	114,000
MW-51	Sections Thallions	ug/t.	UM,NRI	}	 	2.0	114,188)	U	Ü	3.0	103,0447	Ü	ti	2.0	106,048)	5	1	2,0	3.0
		ug/l.	 	 			ļ	U	٦	1.0	 	Ü	Ü	1.0	1.8	_	┡	1.0	1.8
MW-51	Vanadium	ug/l.	1 8	├	٠	NA					 	В		12	 '.°	B	1		
MW 11	Zinc	ug/L		}	UJ	NA		В	υ	14	1,360	<u> </u>	U	17	750	В	U	19	19
MW-52	Aluminum	ug/L.	4,190	N.	1		1,030			1.0	1,300	U	 	2,0	7,341	 	 	10	4,190
MW 52	Antimony	ug/L	6.8	В_	-	NA .		U	٥		 	۳	U			U	U	1.0	6.8
MW-52	Arsenic	ug/L.	40	╄	ļ	NA .	125	!		2.0	71	-	 	2.0	42		-	2.0	125
MW 52	Barrom	nt/l	264	 	\vdash	NA NA	369	٠ا	لببا	1.0	308	E	\ <u>'</u>	1.0	321	-	1—1	1.0	369
MW 52	Beryllium	ug/L	12	B	I	NA NA		U	Ü	1.0	 	U	U.	1.0	1.1	В	 	1.0	12
MW-52	Cadmium	ug/L		U	L U	1.0		υ	U	1.0		Ü	U	1.0		<u>u</u>	U	1.0	1.0
MW 52	Calcium	ug/L	135,000	 		NA NA	139,000	 		7.0	113,000	E	1	7.0	114,000	<u> </u>	1	8.0	139,000
	Chromum (total)	ug/L	134			NA NA	248	<u> </u>		4.0	15			1.0	9.3	В	ļ	12	248
	Cobult	ug/L	13	В		NA_	8.3	В		1.0	2.8	В	 	1.0	2.1	В		1.0	13
	Copper	ug/L	67	_		NA NA	23	В		1.0	ļ	8	U	7.6	10	В	1	1.0	67
	Cyanick (total)	up/l.		U	U	10		L"	U	10	ļ	U	U	10		U	U	10	10
	lton	ug/l.	11,600	 		NA NA	9,320			4.0	6,820	E	1	0,8	5,340	ļ		6.0	11,600
	اسما	ug/L.	- 11	ļ	_	NA NA	8.9	\vdash		1.0		υ	U	1.0	<u></u>		U	4.1	31
	Magnesium	up/I.	49,100	<u> </u>		NA NA	52,800	L		5.0	43,300	E	1	3.0	44,100			3.0	52,H(H)
	Manganese	ug/l.	673	L		NA NA	378			1.0	222	E	1	1.0	207			1.0	673
	Mercury	ug/L		U	U	0.20		U	٦	0.20	L	U	٦	0.20		U	U	0.20	0.20
	Nickel	ug/l.	201	1		NA	124			1.0	17	В		0,1	12	В	oxdot	1.0	201
	Potassium	ug/l.	7.770	E	3	NA NA	4,120	8E		27	3,990	BE	,	18	3,640	BE		16	7,770
MW 52	Selemum	ug/l.		U	U	2.0		2	U	2.0	<u> </u>	U	U	2.0	2.1	В		2.0	2.1
MW-52	Silver	ug∕1.		U	U	3.0	L	אט	R	1.0		U	U	1.0		ادا	U	1.0	1.0
MW 52	Sodium	υ κ/1.	K7,900)			NA	152,000			180	138,000	Æ		#9	145,000			22	152,000
MW 52	Thallium	ug/L	4	В		NA		د	U	3.0	L	כ	U	2.0		V	U	2.0	4.1
MW-52	Vanadium	ug/t.	i t	В		NA	2.8	В		1.0	2,9	8		0.1	1.8	8		1.0	- 11
MW-52	Zinc	up/L	90			NA			U	28			U	21			U	22	90
MW 53	Aluminum	ug/L	39,200	N°	1	NA	265			- 11	15,000			17	7,490			10	39,200
MW 53	Antimismy	ug/l.		В	U	1.7			υ	1.2	3.3	В		2.0	1.6	В		1.0	3.3
MW 53	Arsenic	ug/L	3()			NA			C	7.0	8,9	В		2.0	10			2.0	30
MW-53	Barrom	ug/L	997	T		NA	1,410			1.0	1,620			1.0	1,520			1.0	1,620
MW 53	Beryllium	υμ/1.	6.2			NA			ับ	10	1.9	В		1.0	1.8	В		1.0	6.2
MW 53	Cadmium	ug/L.		U	U	1.0			U	1.0		U	U	10		Ü	U	1.0	1.0
MW-ST	Calcium	ug/L	1640,000	<u> </u>		NA	222,000			7.0	25K(K)()	E	1	7.0	230,000	<u> </u>	┝╧┪	8.0	258,000
	Chromium (total)	ug/L	189		\vdash	NA			U	40	102		<u>├</u>	10	58	-		1.0	189

							Event :				Event	3		4	Highest				
Well	Analyte	Units	Result	I.Q	DQ	Detect Linut	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Linuit	Result	LQ	DQ	Detect Limit	Detection
MW 51	Cobalt	ug∕1.	25	8		NA	5.2			1.0	8.6	В		1.0	6.6	В		1.0	25
MW-51	Соррег	ug/L	107			NA			U	3.9	49			1.0	40		T -	1.0	107
	Cyanide (total)	ug/l.		U	5	10			U	10		Ü	υ	10		Ū	Ü	10	10
MW 51	Iron	ug/L	48,800			NA	21,300			4.0	32,700			8.0	27,4(X)			6.0	48,800
MW 51	Land	ug/L	138			NA	1.1			1.0	24			1.0	17			1.0	138
MW 51	Magnesium	ug/L	75,300			NA NA	108,000			5.0	117,000			3.0	102,000			30	117,000
MW 51	Manganese	ug/L	1,630			NA	321			1,0	521		Г	1.0	417			10	1,630
MW-51	Mercury	ug/l.	0.24			NA.			U	0.20		U	U	0.20		U	U	0.20	0.24
MW 11	Nickel	nk\t"	139			NA			U	38	93			1.0	62			1.0	139
MW-51	Potassium	ug/L	24,400	E	1	NA	28,800)		1	27	33,200			18	29,000	E	Ţ	16	33,200
MW 11	Seknium	ug/L			Ü	5.1			U	2.0		U	U	2.0		U	U	2.0	5.1
MW 51	Silver	ug/L		U	Ü	1.0			R	1.0		U	U	1.0		U	U	1.0	1.0
MW 51	Sedium	ug/l.	252,000			NA	342,000			180	404,000			890	380,000			110	4()-1,(XX)
MW SI	Thalloum	ug/l.	2.0	В		NA			U	3.0		U	U	2.0		U	Ū	20	3.0
MW 11	Vanadium	ug/L	32	В		NA			U	1.0	7.8	В		1.0	4.1	В		1.0	32
MW 51	Zinc	ug/L	443			NA			U	27	109			1,0	79			10	443
MW 51	Alummum	ug/L	853	N°		NA	1,340	EN	-	1	1,860			17	1,980	N		10	1,980
MW 54	Anuniony	ug/L		В	U	3.2		2	ح	1.0		٥	U	2.0		U	Ü	10	3.2
MW 51	Arsens	ug/l.	7.5	В		NA	9.8	В		2.0	5.3	В		2.0	4.7	В	F	2.0	10
MW 51	Barrom	ug/L.	190	В		NA.	145	В		1.0	149	BE	1	1.0	153	В		1.0	190
MW 54	Beryllium	ug/l.		U	U	1.0		U	٦	1.0		U	บ	1.0		U	U	0.1	1.0
MW 54	Cadamum	ug/l.		U	b	1.0		υ	٦	1.0		U	٥	1.0		U	U	£.0	1.0
MW SH	Calcium	ug/l.	132,000			NA	113,000			70	123,000	E	Ţ	7.0	126,000		1	80	132,000
MW 54	Chromium (total)	ug/l.	X2			NA	12			1.0	24			1.0	46			0.1	K2
MW-54	Cobult	υμ/l.	40	В		NA	2.3	В		1.0	1.8	В		1.0	3.2	В		1.0	4.0
MW 54	Copper	ug/l,	ci)			NA	51			1.0	42			0,1	.39		-	1.0	60
MW 51	Cyanide (total)	ug/l.		U_	U	10		υ	U	10		υ	כ	10		U	S	10	Ю
MW: 54	Iron	ug/L	1,880			NA	3,240			4.0	4,270	E	_	X.O	5,480			60	5,480
MW 51	Lead	ug/L			U	6.3	60			1.0	10			1.0	5.5			1.0	10
MW 54	Magnesium	ug/l.	54,100			NA NA	47,900			5.0	51,900	Ε	_	3.0	52,(NX)		,	3.0	54,100
MW 44	Manganese	υμ/t.	202			NA.	130			1.0	163	E	J	1.0	256			1.0	256
MW 54	Meicury	ug/L		U	U	0.20		U	ט	- 0.20		U	Ü	0.20		٦	U	0.20	0.20
MW 54	Nickel	ug/l.	66			NA .	13	8		1.0	23	В		1.0	37	8		1.0	66
MW 54	Potassium	ug/l.	4,540	BE_	-	NA NA	2,340	BE	_	27	2,950	8E		18	2,750	BE	J	16 €	4,540
MW-51	Selenium	ug/L		В	U	2.7		υ	כ	2.0	L	U	U	2.0		٦	U	2.0	2.7
MW-54	Silver	ug/L		U	U	1.0		U	נט	1.0	L	U	U	1.0		٦	U	1.0	1.0
MW 54	Sodium	ug/t.	20,600			NA NA	16,700		\vdash	185	19,400	E	В	189	28,700	E	,	76	28,700
MW-54	Thallium	ug/L		U	٦	2.0		>	Ü	3.0		U	U	2.0		ح	U	2,0	3.0
MW-54	Vanadium	ug/L	1.9	В		NA	2.1	8		1.0	3.3	8	┕	1.0	3.4	В		1.0	3.4
MW-54	Zunc	ug/l.		В	0	14			U	31	128		L	1.0			Ü	54	128
MW-55	Aluminum	ug/L	15,950		-	NA.		BEN	U	61	1,870	L		17	6,100	z	1	10	15,950
MW-55	Antimony	ug/L			υ	2.2			U	1.9	<u> </u>	U	U	2.0		٦	U	1.0	2.2
MW-55	Americ	ug/l.	13			NA .	3.8	B		2.0	2.8	В		2.0	5.9	В		2.0	13
MW-55	Barium	ug/L	286	L		NA NA	115	a	Ь	1.0	178	-		1.0	219			1.0	286
MW-55	Beryllium	ug/L	2.7		$oxed{oxed}$	NA		υ	υ	1.0	L	U	υ	1.0	1.1	В		1.0	2.7
MW-55	Cadmium	ug/1.			٥	1.0		5	٦	1.0		U	U	1.0		υ	Ü	1.0	1.0
MW-55	Calcium	ug/l.	79,100		\Box	NA	47,600		\vdash	7.0	100,000	E		7.0	78,200			8.0	90,000
MW-55	Chromium (total)	ug/L	145			NA NA	7.8	8		1.0	17			1.0	61			1.0	145
MW-55	Cobalt	ug/l.	11			NA NA	1.6	<u> </u>	L	1.0	2.5	<u>B</u>		1.0	4.4	В		1.0	11
MW 55	Copper	ug/L	95	<u> </u>		NA	105	<u> </u>		10	II	В	L	1.0	54		_	1.0	105
MW-11	Cyanide (total)	ug/t.			U	10		ט	U	10	<u> </u>	U	U	10		5	5	10	10
MW -55	Iron	ug/l.	17,700			NA			U	198	1,580			8.0	5,850			60	17,700

					Event 1				Event 2	2	L		Event 3			Highest			
Well	Analyte	Units	Result	LQ	DQ	Detect Limit	Result	LQ	nQ	Detect Limit	Result	LQ	DQ	Detect Limit	Result	LQ	DQ	Detect Limit	Detection
MW 55	Lead	ug/L	46			NA	2.K	В		1.0	ж.3			1.0	17			1.0	46
MW 55	Magnesium	υ <u>γ</u> /1.	38,150			NA NA	24,200			50	48,500			3.0	47,700		-	3.0	48,500
MW 55	Manganese	ug/L	594			NA .	100			1.0	284			1.0	388			1.0	594
MW-55	Mercury	ug/l.			Ü	0.22		U	υ	0.20		U	U	0.20		U	U	0.20	0.22
MW-55	Nickel	υμ/t.	110			NA .	23	В		1.0	29	В		1.0	61			1.0	110
MW 55	Potassium	սբ/1.	11,350		J	NA	7,180	E	-	27	6,650			IK,	6,660	E		16	11,350
MW-55	Selemani	ug/l.			Ų	4.7		U	٥	2.0	L	U	U	2.0		U	U	2.0	4.7
MW 55	Silver	սչ/Ն.			C	1.0		U	IJ	1.0		Ü	U	1.0		U	U	1.0	1.0
MW-55	Sodium	ug/L	128,000	[NA	109,000			185	47,400			#9	49,500	E	1	76	128,000
MW-55	Thalloon	υμ/t.	21			NA		U	ט	3.0		U	U	2.0		U	Ü	20	3.0
MW-55	Vanadium	ug/L	16			NA.		U	5	1.0	1.6	8_		1.0	5.3	В		1.0	16
MW 45	Zinc	ug/L	114)			NA			U	22	31			1.0			U	77	110

Appendix C Appendix C Appendix C Assimum Concentrations of Natural Attenuation Study Analytes Baseline Croundwater Monitoring American Chemical Services NPL Site Criffith, Indiana

			 	VN	VN	_	┰	6917		╅—-	+	VN		├	 	VN	.Nge	Minachhine	
		U	n			_	Щ.	VN				VN				VN	.1\qu	Mailk	
			┼	618	+	┼	┼	VN		┼─	╁	VN		├	├	VN	7/80	Menny	
7	-	n	7		2,000	1		<u> </u>		┼	 	VN	 	├─		VN	-Valu	purusej usikacji jesikajug	
Ť		n	l n		001	tu.		 		 	+	VN	 	 	├─	VN	-1/dn	Literaturi A	
			 ``	VN	3'(0))	 	\vdash	CON, L1		+-	+	VN		┼	╁─	VN	- Van	Sullate	
			1-	VN	07	n	n			+	 	VN		_	 	VN	-Van	oppy by the by t	OF MIN
				VN	000'1		1	000'13		_	1 -	VN		\vdash		VN	Vito	(lean) andie) may()	PIA 10 (
			_	VN	001	1	_	1610			 	٧N		†	_	٧N	.Ngu	da.blo(d) nogodiN	VIA 10
				٧N	30	n	n				1	VN				VN	·J/itn	SundAshine	
				VN	2,000	n	n				1	VN				VN	.Nyu	burmod nogez O la ngolodi	
				٧N	001	ın	n					٧N				VN	.Ngu	LimitaliA	1
]			VN	2,003			(309,51			1	VN		L		٧N	Nyu	on Hu?	
			<u> </u>	VN	02	1	n					VN				٧N	.l\qu	Applicable after	
	_		┞—	VN	(100)*1	Ļ.,	<u> </u>	004,4		 	1	٧N	<u> </u>		L_	VN	.Ngu	(lakd) media') amagit)	
	_		 	VN	001	1	 	OLL'E		<u> </u>	<u> </u>	VN		<u> </u>	└	ÝN	Van	(httheyd) nagoniy	
			├ —	YN	(IZ	n	n			┡	 	VN	ļ	└ ─	<u> </u>	VN	. Ngu	Munchine	
	-		├	YN	000'7	Ι÷	l u		ļ- 	—	 	VN			<u> </u>	VN	- Nyu - Nyu	Ammonia Dinaming respect Demandarial	
			├	VN	001	1	┝	34,40	L	┼	ļ	VN			<u> </u>	VN VN	Van Van	Sultate	1
			-	VN	30	<u></u>	1	IMP OC		 		AN		├	<u> </u>	VN	1/30	outho-phosphale	
			├	VN	(100,1	 -''-	 ''- -	051.6		┼	├	VN	· · · · · · · · · · · · · · · · · · ·			VN	- Ngu	(Jena) mate, jameni)	
	-		├	VN	001	+-	├	0511		┼~	┼—	YN			├	VN	- Ngu	Untaled (A) and and a	
_			├	VN	02	'n	1	172,11		┼~~	+	VN VN		├	├─	VN	Van	Marakamine	
_			 →	VN	2,000	n	0	 		┼	+	VN		-		VN	- Van	Datation togget hangeload	
			 	VN	001	17	 ''-	242		┼──	+	VN	 	-	 	VN	Vân	тин чин т	
ž			\vdash	006'11	2,000	├		005'91		 	1	VN		-	 	YN	Van	or not	Of MIN
		n	n		OZ.	n	n			_	! 	YN		<u> </u>		٧N	.Ngu	otaliyorli odito	61 MIN
1				(305,51	(XXO'1	 		006,61		 	1	VN		_		٧N	.Ngu	(falsa) (ezite) sansgi()	61:MIN
				(0)1(0)	001	1		(8)9'14				٧N		1		YN_	.Ngu	Oncolor (Nychdal)	61:MIN
		n	n					٧N				VN				٧N	-1/gu	Mink	
				VN	02	n	n					YN				٧N	-Ngu	Michellonic	
		n	n					YN				VN				YN	.l\qu	purink	
7]		匸	061,8	3,000	oxdot		71,300				YN				٧N	.Nyu	buamed asyge O to agolotti	
]		<u></u>	001,40	001	1		004,71		\bot		VX				٧N	.1/3µ	AmenniA	
7				103,000	2,000	<u> </u>		(10),44		L_		72		L	L	VN	Ayu	OFFICE	
		<u> </u>	1	-	OZ.		<u> </u>	45.00		<u> </u>		VN			 	VN	.1/30	outhe planting	
1			<u> </u>	2,180	000,1			066,6		 	<u> </u>	VN		L	_	٧N	.Ngu	Миоден (Aubon (мал) Ограни: Сагбол (мал)	
		1	<u> </u>	168	100	<u> </u>	-	751	<u> </u>	↓	↓	AN		<u> </u>	<u> </u>	YN	-Nyu	(ddalata) grountif	
		n	n			 	 	VN	 	 _	,	VN		 -	 	YN	. Ngu	Sunskylanic Sunsky	
	-		├	VN	1)2	├ ──	-	014,5			-	VN_			├	YN	- Ngu	Menty.	
			┝ <u></u>	1'240	- num	 _	 _ -	VN.	L	├	 	YN		 -	 	VN	Van	brunnel may est) in against	NI MIN
τ		<u>n</u>	Û	+	2,010	<u>n</u>	<u>n</u>			 		VN		 	 	VN VA		Amanual macety to and other	
		n	n		001	l tu	i n 🗆	1		1	1 '	VN				VN	-Nyu	y marining	NI-MIN
napac)	 +	Od	0.1	Mensil	Heni, I trataci	ŌŒ	0.1	Messali	Ment. I systyCl	200	0.1	Messil	himi. haba(l	δu	0.1	Harsh	edia! J	Myleny	11*44

Appendix C Maximum Concentrations of Natural Attenuation Study Analytes

Baseline Groundwater Monitoring

American Chemical Services NPL Site Griffith, Indiana

					Event l				Event		i		Event 3			Highest			
Well	Analyte	Units	Kesuli	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	1.0	DQ	Detect Limit	Result	I.Q	DQ	Detect Limit	Detection
MW 45	Organic Carbon (total)	ug/L	NA				NA				6,150			1,000	5,090			1,000	6,150
MW:45	ortho phosphate	υg/t,	NA				. NA				l	U	٦	20	[U	υ	20	20
MW 45	Sultate	ug/L	NA	T			NA	1			9,120			2,000		U	U	2,000	9,120
MW 48	Апшкина	ug/L	NA				NA				10,000		1	100	7,410		I	100	10,000
MW-48	Biological Oxygen Demand	ug/1,	NA	[NA				11,900			2,000	16,500			2,000	16,500
MW-48	Nitrate	ug/l.	NA				NA				NA				23			20	23
MM-4k	Nutrate/Nitrate	ug/L	NA				NA					U	ح	20	NA				20
MW-4K	Nitrite	ug/l.	NA				NA				NA	Ι				U	U	20	20
MW-4K	Numgen (Kjeklahl)	ug/L	NA				NA				K,K50		j	100	7,620			100	8,850
MW-4x	Organic Carbon (total)	υg/l.	NA				NA				16,300			1,000	12,000			1,000	16,300
MW-48	ortho-phosphate	ug/L	NA				NA				l	U	U	20		U	U	20	20
MW-4K	Sultate	ug/l.	NA				NA	1				U	U	2,000	i	U	Ū	2.000	2.(XX)